A Plastid-Bound Ankyrin Repeat Protein Controls Gametophyte and Early Embryo Development in Arabidopsis thaliana
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35350296
PubMed Central
PMC8958021
DOI
10.3389/fpls.2022.767339
Knihovny.cz E-zdroje
- Klíčová slova
- embryo development, fertilization, pollen, pollen tube reception, proplastid,
- Publikační typ
- časopisecké články MeSH
Proplastids are essential precursors for multi-fate plastid biogenesis, including chloroplast differentiation, a powerhouse for photosynthesis in plants. Arabidopsis ankyrin repeat protein (AKRP, AT5G66055) is a plastid-localized protein with a putative function in plastid differentiation and morphogenesis. Loss of function of akrp leads to embryo developmental arrest. Whether AKRP is critical pre-fertilization has remained unresolved. Here, using reverse genetics, we report a new allele, akrp-3, that exhibited a reduced frequency of mutant embryos (<13%) compared to previously reported alleles. akrp-3 affected both male and female gametophytes resulting in reduced viability, incompetence in pollen tube attraction, altered gametic cell fate, and embryo arrest that were depleted of chlorophyll. AKRP is widely expressed, and the AKRP-GFP fusion localized to plastids of both gametophytes, in isolated chloroplast and co-localized with a plastid marker in pollen and pollen tubes. Cell-type-specific complementation of akrp-3 hinted at the developmental timing at which AKRP might play an essential role. Our findings provide a plausible insight into the crucial role of AKRP in the differentiation of both gametophytes and coupling embryo development with chlorophyll synthesis.
Zobrazit více v PubMed
Ajjawi I., Lu Y., Savage L. J., Bell S. M., Last R. L. (2010). Large-scale reverse genetics in Arabidopsis: case studies from the Chloroplast 2010 Project. Plant Physiol. 152 529–540. 10.1104/pp.109.148494 PubMed DOI PMC
Alandete-Saez M., Ron M., Leiboff S., McCormick S. (2011). Arabidopsis thaliana GEX1 has dual functions in gametophyte development and earlyembryogenesis. Plant J. 68 620–632. 10.1111/j.1365-313X.2011.04713.x PubMed DOI
Albert S., Despres B., Guilleminot J., Bechtold N., Pelletier G., Delseny M., et al. (1999). The EMB 506 gene encodes a novel ankyrin repeat containing protein that is essential for the normal development of Arabidopsis embryos. Plant J. 17 169–179. 10.1046/j.1365-313x.1999.00361.x PubMed DOI
Allorent G., Courtois F., Chevalier F., Lerbs-Mache S. (2013). Plastid gene expression during chloroplast differentiation and dedifferentiation into non-photosynthetic plastids during seed formation. Plant Mol. Biol. 82 59–70. 10.1007/s11103-013-0037-0 PubMed DOI
Beale K. M., Leydon A. R., Johnson M. A. (2012). Gamete fusion is required to block multiple pollen tubes from entering an Arabidopsis ovule. Curr. Biol. 22 1090–1094. 10.1016/j.cub.2012.04.041 PubMed DOI PMC
Becerra C., Jahrmann T., Puigdomènech P., Vicient C. M. (2004). Ankyrin repeat-containing proteins in Arabidopsis: characterization of a novel and abundant group of genes coding ankyrin-transmembrane proteins. Gene 340 111–121. 10.1016/j.gene.2004.06.006 PubMed DOI
Billey E., Hafidh S., Cruz-Gallardo I., Litholdo C. G., Jean V. J., Carpentier M. C., et al. (2021). LARP6C orchestrates posttranscriptional reprogramming of gene expression during hydration to promote pollen tube guidance. Plant Cell 33 2637–2661. 10.1093/plcell/koab131 PubMed DOI PMC
Boavida L. C., McCormick S. (2007). TECHNICAL ADVANCE: temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J. 52 570–582. 10.1111/j.1365-313X.2007.03248.x PubMed DOI
Brownfield L., Hafidh S., Borg M., Sidorova A., Mori T., Twell D. (2009a). A plant germline-specific integrator of sperm specification and cell cycle progression. PLoS Genet. 5:e1000430. 10.1371/journal.pgen.1000430 PubMed DOI PMC
Brownfield L., Hafidh S., Durbarry A., Khatab H., Sidorova A., Doerner P., et al. (2009b). Arabidopsis DUO POLLEN3 is a key regulator of male germline development and embryogenesis. Plant Cell 21 1940–1956. 10.1105/tpc.109.066373 PubMed DOI PMC
Bryant N., Lloyd J., Sweeney C., Myouga F., Meinke D. (2011). Identification of nuclear genes encoding chloroplast-localized proteins required for embryo development in Arabidopsis. Plant Physiol. 155 1678–1689. 10.1104/pp.110.168120 PubMed DOI PMC
Chen Y. L., Chen L. J., Chu C. C., Huang P. K., Wen J. R., Li H. M. (2018). TIC236 links the outer and inner membrane translocons of the chloroplast. Nature 564 125–129. 10.1038/s41586-018-0713-y PubMed DOI
Chen W., Yu X. H., Zhang K., Shi J., De Oliveira S., Schreiber L., et al. (2011). Male Sterile2 encodes a plastid-localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis. Plant Physiol. 157 842–853. 10.1104/pp.111.181693 PubMed DOI PMC
Clément C., Pacini E. (2001). Anther plastids in angiosperms. Bot. Rev. 67 54–73. 10.1007/BF02857849 DOI
Clough S. J., Bent A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. Plant J. 16 735–743. 10.1046/j.1365-313x.1998.00343.x PubMed DOI
Demarsy E., Buhr F., Lambert E., Lerbs-Mache S. (2012). Characterization of the plastid-specific germination and seedling establishment transcriptional programme. J. Exp. Bot. 63 925–939. 10.1093/jxb/err322 PubMed DOI
Dickinson H. G. (1973). The role of plastids in the formation of pollen grain coatings. Cytobios 8: 2 1981. The structure and chemistry ofplastid differentiation during male meiosis in Lilium heryi. J. Cell Sci. 52 223–241. 10.1242/jcs.52.1.223 PubMed DOI
Dickinson H. G., Lewis D. (1973). The formation of tryphine coating the pollen grains of Raphanus and its properties relating to the self incompatibility system. Proc. R. Soc. Lond B 184 149–156.
Garcion C., Guilleminot J., Kroj T., Parcy F., Giraudat J., Devic M., et al. (2006). AKRP and EMB506 are two ankyrin repeat proteins essential for plastid differentiation and plant development in Arabidopsis. Plant J. 48 895–906. 10.1111/j.1365-313X.2006.02922.x PubMed DOI
Grossniklaus U. (2017). Polyspermy produces tri-parental seeds in maize. Curr. Biol. 27 R1300–R1302. 10.1016/j.cub.2017.10.059 PubMed DOI
Hafidh S., Honys D. (2021). Reproduction multitasking - The male gametophyte. Annu. Rev. Plant Biol. 72 581–614. 10.1146/annurev-arplant-080620-021907 PubMed DOI
Harris C. J., Baulcombe D. C. (2015). Chlorophyll Content Assay to Quantify the Level of Necrosis Induced by Different R Gene/Elicitor Combinations after Transient Expression. Bio-Protoc. 5:e1670. 10.21769/BioProtoc.1670 PubMed DOI PMC
Jarvis P., Loìpez-Juez E. (2013). Biogenesis and homeostasis of chloroplasts and other plastids. Nat. Rev. Mol. Cell Biol. 14 787–802. 10.1038/nrm3702 PubMed DOI
Johnson M. A., Harper J. F., Palanivelu R. A. (2019). fruitful journey: pollen tube navigation from germination to fertilization. Annu. Rev. Plant Biol. 70 809–837. 10.1146/annurev-arplant-050718-100133 PubMed DOI
Julca I., Ferrari C., Flores-Tornero M., Proost S., Lindner A.-C., Hackenberg D., et al. (2021). Comparative transcriptomic analysis reveals conserved programmes underpinning organogenesis and reproduction in land plants. Nat. Plants 7 1143–1159. 10.1038/s41477-021-00958-2 PubMed DOI
Karimi M., Inzé D., Depicker A. (2002). GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7 193–195. 10.1016/S1360-1385(02)02251-3 PubMed DOI
Kleinboelting N., Huep G., Kloetgen A., Viehoever P., Weisshaar B. (2012). GABI-Kat SimpleSearch: new features of the Arabidopsis thaliana T-DNA mutant database. Nucleic Acids Res. 40 D1211–D1215. 10.1093/nar/gkr1047 PubMed DOI PMC
Kuai X., MacLeod B. J., Després C. (2015). Integrating data on the Arabidopsis NPR1/NPR3/NPR4 salicylic acid receptors; a differentiating argument. Front. Plant Sci. 6:235. 10.3389/fpls.2015.00235 PubMed DOI PMC
Lee D. W., Lee J., Hwang I. (2017). Sorting of nuclear-encoded chloroplast membrane proteins. Curr. Opin. Plant Biol. 40 1–7. 10.1016/j.pbi.2017.06.011 PubMed DOI
Liebers M., Grübler B., Chevalier F., Lerbs-Mache S., Merendino L., Blanvillain R., et al. (2017). Regulatory Shifts in Plastid Transcription Play a Key Role in Morphological Conversions of Plastids during Plant Development. Front. Plant Sci. 8:23. 10.3389/fpls.2017.00023 PubMed DOI PMC
Marcus A., Raulet D. H. (2013). A simple and effective method for differentiating GFP and YFP by flow cytometry using the violet laser. Cytometry A 83 973–974. 10.1002/cyto.a.22347 PubMed DOI PMC
Maruyama D., Hamamura Y., Takeuchi H., Susaki D., Nishimaki M., Kurihara D., et al. (2013). Independent control by each female gamete prevents the attraction of multiple pollen tubes. Dev. Cell 25 317–323. 10.1016/j.devcel.2013.03.013 PubMed DOI
Mehlmer N., Parvin N., Hurst C. H., Knight M. R., Teige M., Vothknecht U. C., et al. (2012). A toolset of aequorin expression vectors for in planta studies of subcellular calcium concentrations in Arabidopsis thaliana. J. Exp. Bot. 63 1751–1761. 10.1093/jxb/err406 PubMed DOI PMC
Meinke D. (2019). Genome-wide identification of EMBRYO- DEFECTIVE (EMB) genes required for growth and development in Arabidopsis. New Phytol. 226 306–325. 10.1111/nph.16071 PubMed DOI
Meinke D., Muralla R., Sweeney C., Dickerman A. (2008). Identifying essential genes in Arabidopsis thaliana. Trends Plant Sci. 13 483–491. 10.1016/j.tplants.2008.06.003 PubMed DOI
Mori T., Kuroiwa H., Higashiyama T., Kuroiwa T. (2006). GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nat. Cell Biol. 8 64–71. 10.1038/ncb1345 PubMed DOI
Mosavi L. K., Cammett T. J., Desrosiers D. C., Peng Z.-Y. (2004). The ankyrin repeat as molecular architecture for protein recognition. Protein Sci. 13 1435–1448. 10.1110/ps.03554604 PubMed DOI PMC
Muñoz-Bertomeu J., Cascales-Miñana B., Irles-Segura A., Mateu I., Nunes-Nesi A., Fernie A. R., et al. (2010). The plastidial glyceraldehyde-3-phosphate dehydrogenase is critical for viable pollen development in Arabidopsis. Plant Physiol. 152 1830–1841. 10.1104/pp.109.150458 PubMed DOI PMC
Muralla R., Lloyd J., Meinke D. (2011). Molecular Foundations of Reproductive Lethality in Arabidopsis thaliana. PLoS One 6:e28398. 10.1371/journal.pone.0028398 PubMed DOI PMC
Myouga F., Akiyama K., Motohashi R., Kuromori T., Ito T., Iizumi H., et al. (2010). The Chloroplast Function Database: a large-scale collection of Arabidopsis Ds/Spm - or T-DNA-tagged homozygous lines for nuclear-encoded chloroplast proteins, and their systematic phenotype analysis. Plant J. 61 529–542. 10.1111/j.1365-313X.2009.04074.x PubMed DOI
Myouga F., Akiyama K., Tomonaga Y., Kato A., Sato Y., Kobayashi M., et al. (2013). The Chloroplast Function Database II: a Comprehensive Collection of Homozygous Mutants and Their Phenotypic/Genotypic Traits for Nuclear-Encoded Chloroplast Proteins. Plant Cell Physiol. 54:e2. 10.1093/pcp/pcs171 PubMed DOI
Nagahara S., Takeuchi H., Higashiyama T. (2021). Polyspermy Block in the Central Cell During Double Fertilization of Arabidopsis thaliana. Front. Plant Sci. 11:588700. 10.3389/fpls.2020.588700 PubMed DOI PMC
Nodine M. D., Bartel D. P. (2012). Maternal and paternal genomes contribute equally to the transcriptome of early plant embryos. Nature 482 94–97. 10.1038/nature10756 PubMed DOI PMC
Ouyang M., Li X., Zhang J., Feng P., Pu H., Kong L., et al. (2020). Liquid-Liquid phase transition drives Intra-chloroplast cargo sorting. Cell 180 1144–1159. 10.1016/j.cell.2020.02.045 PubMed DOI
Pacini E. (1994). “Cell biology of anther and pollen development,” in Genetic control of self-incompatibility and reproductive development in flowering plants, eds Williams E. G., Clarke A. E., Knox R. B. (Dordrecht, Netherlands: Kluwer Academic; ), 289–308. 10.1007/978-94-017-1669-7_14 DOI
Pacini E., Juniper B. E. (1979). The ultrastructure of pollen-grain development in the olive (Olea euro- pea), 2. Secretion by the tapetal cells. New Phytol. 83 165–174. 10.1111/j.1469-8137.1979.tb00738.x DOI
Palanivelu R., Preuss D. (2006). Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro. BMC Plant Biol. 6:7. 10.1186/1471-2229-6-7 PubMed DOI PMC
Prabhakar V., Löttgert T., Geimer S., Dörmann P., Krüger S., Vijayakumar V., et al. (2010). Phosphoenolpyruvate provision to plastids is essential for gametophyte and sporophyte development in Arabidopsis thaliana. Plant Cell 22 2594–2617. 10.1105/tpc.109.073171 PubMed DOI PMC
Ruiz-Sola M. A., Barja M. V., Manzano D., Llorente B., Schipper B., Beekwilder J., et al. (2016). A single Arabidopsis gene encodes two differentially targeted geranylgeranyl diphosphate synthase isoforms. Plant Physiol. 172 1393–1402. 10.1104/pp.16.01392 PubMed DOI PMC
Schoft V. K., Chumak N., Choi Y., Hannon M., Garcia-Aguilar M., Machlicova A., et al. (2011). Function of the DEMETER DNA glycosylase in the Arabidopsis thaliana male gametophyte. Proc. Natl. Acad. Sci. U. S. A. 108 8042–8047. 10.1073/pnas.1105117108 PubMed DOI PMC
Schuenemann D., Gupta S., Persello-Cartieaux F., Klimyuk V. I., Jones J. D., Nussaume L., et al. (1998). A novel signal recognition particle targets light-harvesting proteins to the thylakoid membranes. Proc. Natl. Acad. Sci. U.S.A. 95 10312–10316. 10.1073/pnas.95.17.10312 PubMed DOI PMC
Settles A. M., Yonetani A., Baron A., Bush D. R., Cline K., Martienssen R. (1997). Sec-independent protein translocation by the maize Hcf106 protein. Science 278 1467–1470. 10.1126/science.278.5342.1467 PubMed DOI
Selinski J., Scheibe R. (2014). Pollen tube growth: where does the energy come from? Plant Signal. Behav. 9:e977200. 10.4161/15592324.2014.977200 PubMed DOI PMC
Steffen J. G., Kang H., Macfarlane J., Drew G. N. (2007). Identification of genes expressed in the Arabidopsis female gametophyte. Plant J. 51 281–292. 10.1111/j.1365-313x.2007.03137.x PubMed DOI
Taylor P. E., Spuck K., Smith P. M., Sasse J. M., Yokota T., Griffiths P. G., et al. (1993). Detection of brassinosteroids in pollen of Lolium perenne L. by immunocytochemistry. Planta 189 91–100.
Thierry-Mieg D., Thierry-Mieg J. (2006). AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol. 7 S12.1–S12.14. 10.1186/gb-2006-7-s1-s12 PubMed DOI PMC
Ting J. T. L., Wu S. S. H., Ratnayake C., Huang A. H. C. (1998). Constituents of tapetasomes and elaioplasts in Brassica campestris tapetum and their degradation and retention during microsporogenesis. Plant J. 16 541–551. 10.1046/j.1365-313x.1998.00325.x PubMed DOI
Twell D., Yamaguchi J., McCormick S. (1990). Pollen-specific gene expression in transgenic plants: coordinate regulation of two different tomato gene promoters during microsporogenesis. Development 109 705–713. PubMed
Tzafrir I., Pena-Muralla R., Dickerman A., Berg M., Rogers R., Hutchens S., et al. (2004). Identification of Genes Required for Embryo Development in Arabidopsis. Plant Physiol. 135 1206–1220. 10.1104/pp.104.045179.published PubMed DOI PMC
Ursin V. M., Yamaguchi J., McCormick S. (1989). Gametophytic and sporophytic expression of anther-specific genes in developing tomato anthers. Plant Cell 1 727–736. 10.1105/tpc.1.7.727 PubMed DOI PMC
Van Damme D., Coutuer S., De Rycke R., Bouget F. Y., Inzé D., Geelen D., et al. (2006). Somatic cytokinesis and pollen maturation in Arabidopsis depend on TPLATE, which has domains similar to coat proteins. Plant Cell 18 3502–3518. 10.1105/tpc.106.040923 PubMed DOI PMC
Yang C., Vizcay-Barrena G., Conner K., Wilson Z. A. (2007). MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell 19 3530–3548. 10.1105/tpc.107.054981 PubMed DOI PMC
Yu F., Shi J., Zhou J., Gu J., Chen Q., Li J., et al. (2010). ANK6, a mitochondrial ankyrin repeat protein, is required for male-female gamete recognition in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 107 22332–22337. 10.1073/pnas.1015911107 PubMed DOI PMC
Yu T. Y., Shi D. Q., Jia P. F., Tang J., Li H. J., Liu J., et al. (2016). The Arabidopsis receptor kinase ZAR1 is required for zygote asymmetric division and its daughter cell fate. PLoS Genet. 12:e1005933. 10.1371/journal.pgen.1005933 PubMed DOI PMC
Yuan J., Henry R., McCaffery M., Cline K. (1994). SecA homolog in protein transport within chloroplasts: evidence for endosymbiont-derived sorting. Science 266 796–798. 10.1126/science.7973633 PubMed DOI
Zhang H., Scheirer D. C., Fowle W. H., Goodman H. M. (1992). Expression of antisense or sense RNA of an ankyrin repeat-containing gene blocks chloroplast differentiation in arabidopsis. Plant Cell 4 1575–1588. 10.1105/tpc.4.12.1575 PubMed DOI PMC
Zhang H., Wang J., Goodman H. M. (1994). Expression of the Arabidopsis Gene AKRP Coincides with Chloroplast Development. Plant Physiol. 106 1261–1267. PubMed PMC
Zhao Z., Assmann S. M. (2011). The glycolytic enzyme, phosphoglycerate mutase, has critical roles in stomatal movement, vegetative growth, and pollen production in Arabidopsis thaliana. J. Exp. Bot. 62 5179–5189. 10.1093/jxb/err223 PubMed DOI PMC