Karrikinolide1 (KAR1), a Bioactive Compound from Smoke, Improves the Germination of Morphologically Dormant Apium graveolens L. Seeds by Reducing Indole-3-Acetic Acid (IAA) Levels
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
39124214
PubMed Central
PMC11314525
DOI
10.3390/plants13152096
PII: plants13152096
Knihovny.cz E-zdroje
- Klíčová slova
- Karrikinolide, biostimulants, celery, phytohormones, smoke-water,
- Publikační typ
- časopisecké články MeSH
Smoke-water (SW) and Karrikinolide1 (KAR1) release dormancy and improve seed germination in many plant species. Therefore, we tested SW (1:2500 v/v) and KAR1 (10-7 M) to break the morphological dormancy of celery cultivar (Apium graveolens L.). In the first trial, seeds were subjected to a 21-day incubation period at 20 °C with SW and KAR1 applied as single treatments. KAR1 showed significantly improved germination (30.7%) as compared to SW (17.2%) and a water control (14.7%). In seed soaking experiments, SW, KAR1, and gibberellic acid (GA3) treatments showed higher germination percentages than the water control after 3 and 6 h of soaking. However, prolonged soaking (12 h) reduced germination percentages for all treatments, indicating a detrimental effect. Analysis of KAR1 content dynamics in 7-day- and 21-day-old celery seeds indicated its prolonged effects on germination and dormancy alleviation. Phytohormones, including auxins in 7-day-old and cytokinins in 7-day- and 21-day-old celery seedlings, along with their precursors and metabolites, were analyzed using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) after treatment with KAR1 and SW. The analysis of auxin levels in 7-day-old seeds revealed a negative correlation between seed germination and auxin (indole-3-acetic acid, IAA) content. Notably, it was found that KAR1-treated seeds significantly reduced IAA levels in all treatments. SW and KAR1 did not significantly affect cytokinin levels during celery germination except for N6-Isopentenyladenine. Hence, further research is needed to understand their precise role in celery seed germination. This work will improve our understanding of the role of bioactive compounds from plant-derived smoke and how they regulate hormonal responses and improve germination efficiency in celery.
Zobrazit více v PubMed
Koornneef M., Bentsink L., Hilhorst H. Seed dormancy and germination. Curr. Opin. Plant Biol. 2002;5:33–36. doi: 10.1016/S1369-5266(01)00219-9. PubMed DOI
Palevitch D., Thomas T.H. Thermodormancy release of celery seed by gibberellins, 6-benzylaminopurine, and ethephon applied in organic solvent to dry seeds. J. Expt. Bot. 1974;25:981–986. doi: 10.1093/jxb/25.5.981. DOI
Li H., Chen J., He L., Zhu H., Huang Z., Zhu M., Fan L., Wu L., Yu L., Zhu W., et al. Transcriptome analyses reveal the role of light in releasing the morphological dormancy of celery seed by integrating plant hormones, sugar metabolism and endosperm weakening. Int. J. Mol. Sci. 2022;23:10140. doi: 10.3390/ijms231710140. PubMed DOI PMC
Jacobsen J.V., Pressman E. A structural study of germination in celery (Apium graveolens L.) seed with emphasis on endosperm breakdown. Planta. 1979;144:241–248. doi: 10.1007/BF00388765. PubMed DOI
Finch-Savage W.E., Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol. 2006;171:501–523. doi: 10.1111/j.1469-8137.2006.01787.x. PubMed DOI
Garg S.K., Gupta S.R., Sharma N.D. Coumarins from Apium graveolens seeds. Phytochemistry. 1979;18:1580–1581. doi: 10.1016/S0031-9422(00)98508-X. DOI
Garg S.K., Gupta S.R., Sharma N.D. Celerin, a new courmarin from Apium graveolens. Planta Med. 1980;38:186–188. doi: 10.1055/s-2008-1074862. DOI
Seymour J. The New Self-Sufficient Gardener: The Complete Illustrated Guide to Planning, Growing, Storing and Preserving Your Own Garden Produce. Dorling Kindersley Ltd.; London, UK: 2007. 248p
Linkies A., Leubner-Metzger G. Beyond gibberellins and abscisic acid: How ethylene and jasmonates control seed germination. Plant Cell Rep. 2012;31:253–270. doi: 10.1007/s00299-011-1180-1. PubMed DOI
Gupta S., Plačková L., Kulkarni M.G., Doležal K., Van Staden J. Role of smoke stimulatory and inhibitory biomolecules in phytochrome-regulated seed germination of Lactuca sativa. Plant Physiol. 2019;181:458–470. doi: 10.1104/pp.19.00575. PubMed DOI PMC
Gupta S., Hrdlička J., Ngoroyemoto N., Nemahunguni N.K., Gucký T., Novák O., Kulkarni M.G., Doležal K., Van Staden J. Preparation and standardisation of smoke-water for seed germination and plant growth stimulation. J. Plant Growth Regul. 2020;39:338–345. doi: 10.1007/s00344-019-09985-y. DOI
Flematti G.R., Ghisalberti E.L., Dixon K.W., Trengrove R.D. A compound from smoke that promotes seed germination. Science. 2004;305:977. doi: 10.1126/science.1099944. PubMed DOI
Van Staden J., Jäger A.K., Light M.E., Burger B.V. Isolation of the major germination cue from plant-derived smoke. S. Afr. J. Bot. 2004;70:654–659. doi: 10.1016/S0254-6299(15)30206-4. DOI
Nelson D.C., Flematti G.R., Ghisalberti E.L., Dixon K.W., Smith S.M. Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Ann. Rev. Plant Biol. 2012;63:107–130. doi: 10.1146/annurev-arplant-042811-105545. PubMed DOI
Doherty L.C., Cohn M.A. Seed dormancy in rice (Oryza sativa). XI. Commercial liquid smoke elicits germination. Seed Sci. Res. 2000;10:415–421. doi: 10.1017/S0960258500000465. DOI
Kulkarni M.G., Light M.E., Van Staden J. Plant-derived smoke: Old technology with possibilities for economic applications in agriculture and horticulture. S. Afr. J. Bot. 2011;77:972–979. doi: 10.1016/j.sajb.2011.08.006. DOI
Van Staden J., Brown N.A.C., Jäger A.K., Johnson T.A. Smoke as a germination cue. Plant Species Biol. 2000;15:167–178. doi: 10.1046/j.1442-1984.2000.00037.x. DOI
Van Staden J., Jäger A.K., Strydom A. Interaction between a plant-derived smoke extract, light and phytohormones on the germination of light-sensitive lettuce seeds. Plant Growth Regul. 1995;17:213–218. doi: 10.1007/BF00024728. DOI
Thomas T.H., Van Staden J. Dormancy break of celery (Apium graveolens L.) seeds by plant-derived smoke extract. Plant Growth Regul. 1995;17:195–198. doi: 10.1007/BF00024725. DOI
Salter P.J., Darby R.J. A technique for osmotically pretreating and germinating quantities of small seeds. Ann. Appl. Biol. 1976;83:313–315.
Garg S.K., Gupta S.R., Sharma N.D. Apiumetin—A new furanocoumarin from the seed of Apium graveolens. Phytochemistry. 1978;17:2135–2136. doi: 10.1016/S0031-9422(00)89300-0. DOI
Khan A.A., Tao K.L., Knypl J.S., Borkowska B. Osmoconditioning of seeds: Physiological and biochemical changes. Acta Hortic. 1978;83:267–278. doi: 10.17660/ActaHortic.1978.83.35. DOI
Cantliffe D.J., Elbella M., Guedes A., Odell G.B., Perkins-Veazie P., Schultheis J.R., Seale D.N., Shuler K.D., Tanne J., Watkins J.T. Improving stand establishment of direct-seeded vegetables in Florida. Proc. Fla. State Hort. Soc. 1987;100:213–216.
Globerson D., Feder Z. The effect of seed priming and fluid drilling on germination emergence and growth of vegetables at unfavorable temperatures. Acta Hortic. 1987;198:15–22. doi: 10.17660/ActaHortic.1987.198.1. DOI
Heydecker W., Coolbear P. Seed treatments for improved performance-survey and attempted prognosis. Seed Sci. Technol. 1977;5:353–425.
Light M.E., Daws M.I., Van Staden J. Smoke-derived butenolide: Towards understanding its biological effects. S. Afr. J. Bot. 2009;75:1–7. doi: 10.1016/j.sajb.2008.10.004. DOI
Casanova-Sáez R., Mateo-Bonmatí E., Ljung K. Auxin metabolism in plants. Cold Spring Harb. Perspect. Biol. 2021;13:a039867. doi: 10.1101/cshperspect.a039867. PubMed DOI PMC
Walker M., Perez M., Steinbrecher T., Gawthrop F., Pavlovic I., Novák O., Tarkowska D., Strnad M., Marone F., Nakabayashi K., et al. Molecular mechanisms and hormonal regulation underpinning morphological dormancy: A case study using Apium graveolens (Apiaceae) Plant J. 2021;108:1020–1036. doi: 10.1111/tpj.15489. PubMed DOI
Zeng F., Zheng C., Ge W., Gao Y., Pan X., Ye X., Wu X., Sun Y. Regulatory function of the endogenous hormone in the germination process of quinoa seeds. Front. Plant Sci. 2024;14:1322986. doi: 10.3389/fpls.2023.1322986. PubMed DOI PMC
Brady S.M., Sarkar S.F., Bonetta D., McCourt P. The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J. 2003;34:67–75. doi: 10.1046/j.1365-313X.2003.01707.x. PubMed DOI
Ramaih S., Guedira M., Paulsen G.M. Relationship of indoleacetic acid and tryptophan to dormancy and preharvest sprouting of wheat. Funct. Plant Biol. 2003;30:939–945. doi: 10.1071/FP03113. PubMed DOI
Park J., Kim Y.S., Kim S.G., Jung J.H., Woo J.C., Park C.M. Integration of auxin and salt signals by the NAC transcription factor NTM2 during seed germination in Arabidopsis. Plant Physiol. 2003;156:537–549. doi: 10.1104/pp.111.177071. PubMed DOI PMC
Liu X.D., Zhang H., Zhao Y., Feng Z.Y., Li Q., Yang H.-Q., Luan S., Li J.M., He Z.-H. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2013;110:15485–15490. doi: 10.1073/pnas.1304651110. PubMed DOI PMC
Shuai H., Meng Y., Luo X., Chen F., Zhou W., Dai Y., Qi Y., Du J., Yang F., Liu J., et al. Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio. Sci. Rep. 2017;3:12620. doi: 10.1038/s41598-017-13093-w. PubMed DOI PMC
Zheng G., Li W., Zhang S., Mi Q., Luo W., Zhao Y., Qin X., Li W., Pu S., Xu F. Multiomics strategies for decoding seed dormancy breakdown in Paris polyphylla. BMC Plant Biol. 2023;23:247. doi: 10.1186/s12870-023-04262-3. PubMed DOI PMC
Schmitz R.Y., Skoog F., Playtis A.J., Leonard N.J. Cytokinins: Synthesis and biological activity of geometric and position isomers of zeatin. Plant Physiol. 1972;50:702–705. doi: 10.1104/pp.50.6.702. PubMed DOI PMC
Gajdošová S., Spíchal L., Kamínek M., Hoyerová K., Novák O., Dobrev P.I., Galuszka P., Klíma P., Gaudinová A., Žižková E., et al. Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J. Expt. Bot. 2011;6662:2827–2840. doi: 10.1093/jxb/erq457. PubMed DOI
Schäfer M., Brütting C., Meza-Canales I.D., Großkinsky D.K., Vankova R., Baldwin I.T., Meldau S. The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J. Expt. Bot. 2015;66:4873–4884. doi: 10.1093/jxb/erv214. PubMed DOI PMC
Goggin D.E., Emery R.J.N., Powles S.B., Steadman K.J. Initial characterisation of low and high seed dormancy populations of Lolium rigidum produced by repeated selection. J. Plant Physiol. 2010;167:1282–1288. doi: 10.1016/j.jplph.2010.04.004. PubMed DOI
Biddington N.L., Thomas T.H. Thermodormancy in celery seeds and its removal by cytokinins and gibberellins. Physiol Plant. 1978;42:401–405. doi: 10.1111/j.1399-3054.1978.tb04104.x. DOI
Khan A.A. Primary, preventive and permissive roles of hormones in plant systems. Bot. Rev. 1975;41:391–420. doi: 10.1007/BF02860831. DOI
Biddington N.L., Thomas T.H. Influence of different cytokinins on germination of lettuce (Lactuca sativa) and celery (Apium graveolens) seeds. Physiol Plant. 1976;37:12–16. doi: 10.1111/j.1399-3054.1976.tb01865.x. DOI
Miller C.O. A kinetin-like compound in maize. Proc. Natl. Acad. Sci. USA. 1961;47:170–174. doi: 10.1073/pnas.47.2.170. PubMed DOI PMC
Hrdlička J., Gucký T., van Staden J., Novák O., Doležal K. A stable isotope dilution method for a highly accurate analysis of karrikins. Plant Methods. 2021;17:37. doi: 10.1186/s13007-021-00738-1. PubMed DOI PMC
Svačinová J., Novák O., Plǎcková L., Lenobel R., Holík J., Strnad M., Doležal K. A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: Pipette tip solid-phase extraction. Plant Methods. 2012;8:17. doi: 10.1186/1746-4811-8-17. PubMed DOI PMC
Novák O., Hauserová E., Amakorová P., Doležal K., Strnad M. Cytokinin profiling in plant tissues using ultra-performance liquid chromatography–electrospray tandem mass spectrometry. Phytochemistry. 2008;69:2214–2224. doi: 10.1016/j.phytochem.2008.04.022. PubMed DOI
Pěnčík A., Casanova-Sáez R., Pilařová V., Žukauskaitė A., Pinto R., Micol J.L., Ljung K., Novák O. Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis. J. Expt. Bot. 2018;9:2569–2579. doi: 10.1093/jxb/ery084. PubMed DOI PMC
Goedhart P.W. Procedure VSEARCH. In: Goedhart P.W., Thissen J.T.N.M., editors. Biometris GenStat Procedure Library Manual. Biometris; Wageningen, The Netherlands: 2014. pp. 181–184.