Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis

. 2018 Apr 27 ; 69 (10) : 2569-2579.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29514302

Auxin (indole-3-acetic acid, IAA) plays fundamental roles as a signalling molecule during numerous plant growth and development processes. The formation of local auxin gradients and auxin maxima/minima, which is very important for these processes, is regulated by auxin metabolism (biosynthesis, degradation, and conjugation) as well as transport. When studying auxin metabolism pathways it is crucial to combine data obtained from genetic investigations with the identification and quantification of individual metabolites. Thus, to facilitate efforts to elucidate auxin metabolism and its roles in plants, we have developed a high-throughput method for simultaneously quantifying IAA and its key metabolites in minute samples (<10 mg FW) of Arabidopsis thaliana tissues by in-tip micro solid-phase extraction and fast LC-tandem MS. As a proof of concept, we applied the method to a collection of Arabidopsis mutant lines and identified lines with altered IAA metabolite profiles using multivariate data analysis. Finally, we explored the correlation between IAA metabolite profiles and IAA-related phenotypes. The developed rapid analysis of large numbers of samples (>100 samples d-1) is a valuable tool to screen for novel regulators of auxin metabolism and homeostasis among large collections of genotypes.

Zobrazit více v PubMed

Bak S, Tax FE, Feldmann KA, Galbraith DW, Feyereisen R. 2001. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. The Plant Cell 13, 101–111. PubMed PMC

Barlier I, Kowalczyk M, Marchant A, Ljung K, Bhalerao R, Bennett MJ, Sandberg G, Bellini C. 2000. The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proceedings of the National Academy of Sciences, USA 97, 14819–14824. PubMed PMC

Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J. 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591–602. PubMed

Berná G, Robles P, Micol JL. 1999. A mutational analysis of leaf morphogenesis in Arabidopsis thaliana. Genetics 152, 729–742. PubMed PMC

Di Mambro R, De Ruvo M, Pacifici E et al. . 2017. Auxin minimum triggers the developmental switch from cell division to cell differentiation in the Arabidopsis root. Proceedings of the National Academy of Sciences, USA 114, E7641–E7649. PubMed PMC

Edlund A, Eklof S, Sundberg B, Moritz T, Sandberg G. 1995. A microscale technique for gas chromatography–mass spectrometry measurements of picogram amounts of indole-3-acetic acid in plant tissues. Plant Physiology 108, 1043–1047. PubMed PMC

Floková K, Tarkowská D, Miersch O, Strnad M, Wasternack C, Novák O. 2014. UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry 105, 147–157. PubMed

Henrichs S, Wang B, Fukao Y et al. . 2012. Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation. EMBO Journal 31, 2965–2980. PubMed PMC

Ilić N, Magnus V, Östin A, Sandberg G. 1997. Stable-isotope labeled metabolites of the phytohormone, indole-3-acetic acid. Journal of Labelled Compounds and Radiopharmaceuticals 39, 433–440.

Kai K, Horita J, Wakasa K, Miyagawa H. 2007a Three oxidative metabolites of indole-3-acetic acid from Arabidopsis thaliana. Phytochemistry 68, 1651–1663. PubMed

Kai K, Nakamura S, Wakasa K, Miyagawa H. 2007b Facile preparation of deuterium-labeled standards of indole-3-acetic acid (IAA) and its metabolites to quantitatively analyze the disposition of exogenous IAA in Arabidopsis thaliana. Bioscience, Biotechnology, and Biochemistry 71, 1946–1954. PubMed

Kasahara H. 2016. Current aspects of auxin biosynthesis in plants. Bioscience, Biotechnology, and Biochemistry 80, 34–42. PubMed

Kowalczyk M. 2002. Metabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. PhD thesis. Swedish University of Agricultural Sciences, Umeå, Sweden.

Kowalczyk M, Sandberg G. 2001. Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis. Plant Physiology 127, 1845–1853. PubMed PMC

Liu HT, Li YF, Luan TG, Lan CY, Shu WS. 2007. Simultaneous determination of phytohormones in plant extracts using SPME and HPLC. Chromatographia 66, 515–520.

Liu X, Hegeman AD, Gardner G, Cohen JD. 2012. Protocol: high-throughput and quantitative assays of auxin and auxin precursors from minute tissue samples. Plant Methods 8, 31. PubMed PMC

Ljung K. 2013. Auxin metabolism and homeostasis during plant development. Development 140, 943–950. PubMed

Ludwig-Müller J. 2011. Auxin conjugates: their role for plant development and in the evolution of land plants. Journal of Experimental Botany 62, 1757–1773. PubMed

Mano Y, Nemoto K. 2012. The pathway of auxin biosynthesis in plants. Journal of Experimental Botany 63, 2853–2872. PubMed

Mashiguchi K, Tanaka K, Sakai T et al. . 2011. The main auxin biosynthesis pathway in Arabidopsis. Proceedings of the National Academy of Sciences, USA 108, 18512–18517. PubMed PMC

Matsuda F, Miyazawa H, Wakasa K, Miyagawa H. 2005. Quantification of indole-3-acetic acid and amino acid conjugates in rice by liquid chromatography–electrospray ionization–tandem mass spectrometry. Bioscience, Biotechnology, and Biochemistry 69, 778–783. PubMed

Novák O, Hényková E, Sairanen I, Kowalczyk M, Pospíšil T, Ljung K. 2012. Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. The Plant Journal 72, 523–536. PubMed

Novák O, Napier R, Ljung K. 2017. Zooming in on plant hormone analysis: tissue- and cell-specific approaches. Annual Review of Plant Biology 68, 323–348. PubMed

Novák O, Pěnčík A, Ljung K. 2014. Identification and profiling of auxin and auxin metabolites. In: Zažímalová E, Petrášek J, Benková E, eds. Auxin and its role in plant development. Vienna: Springer, 39–60.

Ostin A, Kowalyczk M, Bhalerao RP, Sandberg G. 1998. Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiology 118, 285–296. PubMed PMC

Pěnčík A, Rolcík J, Novák O, Magnus V, Barták P, Buchtík R, Salopek-Sondi B, Strnad M. 2009. Isolation of novel indole-3-acetic acid conjugates by immunoaffinity extraction. Talanta 80, 651–655. PubMed

Pěnčík A, Simonovik B, Petersson SV et al. . 2013. Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic acid catabolite 2-oxindole-3-acetic acid. The Plant Cell 25, 3858–3870. PubMed PMC

Pérez-Pérez JM, Ponce MR, Micol JL. 2004. The ULTRACURVATA2 gene of Arabidopsis encodes an FK506-binding protein involved in auxin and brassinosteroid signaling. Plant Physiology 134, 101–117. PubMed PMC

Pérez-Pérez JM, Candela H, Robles P, Quesada V, Ponce MR, Micol JL. 2009. Lessons from a search for leaf mutants in Arabidopsis thaliana. International Journal of Developmental Biology 53, 1623–1634. PubMed

Porco S, Pěnčík A, Rashed A et al. . 2016. Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis. Proceedings of the National Academy of Sciences, USA 113, 11016–11021. PubMed PMC

Porfírio S, Gomes da Silva MDR, Peixe A, Cabrita MJ, Azadi P. 2016. Current analytical methods for plant auxin quantification—a review. Analytica Chimica Acta 902, 8–21. PubMed

Quesada V, Sarmiento-Mañús R, González-Bayón R, Hricová A, Ponce MR, Micol JL. 2013. PORPHOBILINOGEN DEAMINASE deficiency alters vegetative and reproductive development and causes lesions in Arabidopsis. PLoS One 8, e53378. PubMed PMC

Rappsilber J, Ishihama Y, Mann M. 2003. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Analytical Chemistry 75, 663–670. PubMed

Rittenberg D, Foster L. 1940. A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. Journal of Biological Chemistry 133, 727–744.

Rosquete MR, Barbez E, Kleine-Vehn J. 2012. Cellular auxin homeostasis: gatekeeping is housekeeping. Molecular Plant 5, 772–786. PubMed

Sugawara S, Hishiyama S, Jikumaru Y, Hanada A, Nishimura T, Koshiba T, Zhao Y, Kamiya Y, Kasahara H. 2009. Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis. Proceedings of the National Academy of Sciences, USA 106, 5430–5435. PubMed PMC

Svačinová J, Novák O, Plačková L, Lenobel R, Holík J, Strnad M, Doležal K. 2012. A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods 8, 17. PubMed PMC

Tam YY, Epstein E, Normanly J. 2000. Characterization of auxin conjugates in Arabidopsis. Low steady-state levels of indole-3-acetyl-aspartate, indole-3-acetyl-glutamate, and indole-3-acetyl-glucose. Plant Physiology 123, 589–596. PubMed PMC

Tam YY, Normanly J. 1998. Determination of indole-3-pyruvic acid levels in Arabidopsis thaliana by gas chromatography-selected ion monitoring-mass spectrometry. Journal of Chromatography A 800, 101–108. PubMed

Tarkowská D, Novák O, Floková K, Tarkowski P, Turečková V, Grúz J, Rolčík J, Strnad M. 2014. Quo vadis plant hormone analysis?Planta 240, 55–76. PubMed

Tivendale ND, Ross JJ, Cohen JD. 2014. The shifting paradigms of auxin biosynthesis. Trends in Plant Science 19, 44–51. PubMed

van de Weert M, Lagerwerf FM, Haverkamp J, Heerma W. 1998. Mass spectrometric analysis of oxidized tryptophan. Journal of Mass Spectrometry 33, 884–891.

Wang B, Chu J, Yu T, Xu Q, Sun X, Yuan J, Xiong G, Wang G, Wang Y, Li J. 2015. Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proceedings of the National Academy of Sciences, USA 112, 4821–4826. PubMed PMC

Woodward AW, Bartel B. 2005. Auxin: regulation, action, and interaction. Annals of Botany 95, 707–735. PubMed PMC

Wu G, Otegui MS, Spalding EP. 2010. The ER-localized TWD1 immunophilin is necessary for localization of multidrug resistance-like proteins required for polar auxin transport in Arabidopsis roots. The Plant Cell 22, 3295–3304. PubMed PMC

Zhang Y, Li Y, Hu Y, Li G, Chen Y. 2010. Preparation of magnetic indole-3-acetic acid imprinted polymer beads with 4-vinylpyridine and β-cyclodextrin as binary monomer via microwave heating initiated polymerization and their application to trace analysis of auxins in plant tissues. Journal of Chromatography A 1217, 7337–7344. PubMed

Zheng Z, Guo Y, Novák O, Chen W, Ljung K, Noel JP, Chory J. 2016. Local auxin metabolism regulates environment-induced hypocotyl elongation. Nature Plants 2, 16025. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Sulfonation of IAA in Urtica eliminates its DR5 auxin activity

. 2024 Dec 20 ; 44 (1) : 8. [epub] 20241220

Karrikinolide1 (KAR1), a Bioactive Compound from Smoke, Improves the Germination of Morphologically Dormant Apium graveolens L. Seeds by Reducing Indole-3-Acetic Acid (IAA) Levels

. 2024 Jul 29 ; 13 (15) : . [epub] 20240729

Profiling of 1-aminocyclopropane-1-carboxylic acid and selected phytohormones in Arabidopsis using liquid chromatography-tandem mass spectrometry

. 2024 Mar 16 ; 20 (1) : 41. [epub] 20240316

In situ separation and visualization of isomeric auxin derivatives in Arabidopsis by ion mobility mass spectrometry imaging

. 2024 Jan ; 416 (1) : 125-139. [epub] 20231023

Application of Long-Chained Auxin Conjugates Influenced Auxin Metabolism and Transcriptome Response in Brassica rapa L. ssp. pekinensis

. 2023 Dec 28 ; 25 (1) : . [epub] 20231228

Can plant hormonomics be built on simple analysis? A review

. 2023 Oct 13 ; 19 (1) : 107. [epub] 20231013

Metabolic profiles of 2-oxindole-3-acetyl-amino acid conjugates differ in various plant species

. 2023 ; 14 () : 1217421. [epub] 20230718

High-throughput interspecies profiling of acidic plant hormones using miniaturised sample processing

. 2022 Nov 16 ; 18 (1) : 122. [epub] 20221116

IPT9, a cis-zeatin cytokinin biosynthesis gene, promotes root growth

. 2022 ; 13 () : 932008. [epub] 20221014

New Insights Into the Activity of Apple Dihydrochalcone Phloretin: Disturbance of Auxin Homeostasis as Physiological Basis of Phloretin Phytotoxic Action

. 2022 ; 13 () : 875528. [epub] 20220707

Inactivation of the entire Arabidopsis group II GH3s confers tolerance to salinity and water deficit

. 2022 Jul ; 235 (1) : 263-275. [epub] 20220416

Long-Term High-Temperature Stress Impacts on Embryo and Seed Development in Brassica napus

. 2022 ; 13 () : 844292. [epub] 20220422

The Photoperiod Stress Response in Arabidopsis thaliana Depends on Auxin Acting as an Antagonist to the Protectant Cytokinin

. 2022 Mar 08 ; 23 (6) : . [epub] 20220308

Auxin Metabolite Profiling in Isolated and Intact Plant Nuclei

. 2021 Nov 16 ; 22 (22) : . [epub] 20211116

DIOXYGENASE FOR AUXIN OXIDATION 1 catalyzes the oxidation of IAA amino acid conjugates

. 2021 Sep 04 ; 187 (1) : 103-115.

Auxin Metabolome Profiling in the Arabidopsis Endoplasmic Reticulum Using an Optimised Organelle Isolation Protocol

. 2021 Aug 29 ; 22 (17) : . [epub] 20210829

Xyloglucan Remodeling Defines Auxin-Dependent Differential Tissue Expansion in Plants

. 2021 Aug 26 ; 22 (17) : . [epub] 20210826

Altered Root Growth, Auxin Metabolism and Distribution in Arabidopsis thaliana Exposed to Salt and Osmotic Stress

. 2021 Jul 27 ; 22 (15) : . [epub] 20210727

The chemical compound 'Heatin' stimulates hypocotyl elongation and interferes with the Arabidopsis NIT1-subfamily of nitrilases

. 2021 Jun ; 106 (6) : 1523-1540. [epub] 20210506

Hormopriming to Mitigate Abiotic Stress Effects: A Case Study of N 9-Substituted Cytokinin Derivatives With a Fluorinated Carbohydrate Moiety

. 2020 ; 11 () : 599228. [epub] 20201210

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...