Phenylacetic acid metabolism in land plants: novel pathways and metabolites
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
TowArds Next GENeration Crops
CZ.02.01.01/00/22_008/0004581
ERDF Programme Johannes Amos Comenius
Jean d'Alembert
ANR-11-IDEX-0003
France 2030 Program
PubMed
40130494
PubMed Central
PMC12369477
DOI
10.1093/jxb/eraf092
PII: 8093000
Knihovny.cz E-zdroje
- Klíčová slova
- Auxin, Gretchen Hagen 3, HPLC-MS/MS, conjugation, glucosyl ester, indole-3-acetic acid, metabolism, phenylacetic acid, plant,
- MeSH
- fenylacetáty * metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- metabolické sítě a dráhy * MeSH
- regulátory růstu rostlin * metabolismus MeSH
- vyšší rostliny * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fenylacetáty * MeSH
- kyseliny indoloctové MeSH
- phenylacetic acid MeSH Prohlížeč
- regulátory růstu rostlin * MeSH
In recent years, substantial progress has been made in exploring auxin conjugation and metabolism, primarily aiming at indole-3-acetic acid (IAA). However, the metabolic regulation of another key auxin, phenylacetic acid (PAA), remains largely uncharacterized. Here, we provide a comprehensive exploration of PAA metabolism in land plants. Through LC-MS screening across multiple plant species and their organs, we identified four previously unreported endogenous PAA metabolites: phenylacetyl-leucine, phenylacetyl-phenylalanine, phenylacetyl-valine, and phenylacetyl-glucose. Enzyme assays, genetic evidence, crystal structures, and docking studies demonstrate that PAA and IAA share core metabolic machinery, revealing a complex regulatory network that maintains auxin homeostasis. Furthermore, our study of PAA conjugation with amino acids and glucose suggests limited compensatory mechanisms within known conjugation pathways, pointing to the existence of alternative metabolic routes in land plants. These insights advance our knowledge of auxin-specific metabolic networks and highlight the unique complexity within plant hormone regulation.
Department of Chemical Biology Faculty of Science Palacký University Olomouc Czech Republic
Department of Experimental Biology Faculty of Science Palacký University Olomouc Czech Republic
Laboratory of Growth Regulators Faculty of Science Palacký University Olomouc Czech Republic
Zobrazit více v PubMed
Aoi Y, Hira H, Hayakawa Y, Liu H, Fukui K, Dai X, Tanaka K, Hayashi KI, Zhao Y, Kasahara H.. 2020a. UDP-glucosyltransferase UGT84B1 regulates the levels of indole-3-acetic acid and phenylacetic acid in Arabidopsis. Biochemical and Biophysical Research Communications 532, 244–250. PubMed PMC
Aoi Y, Oikawa A, Sasaki R, Huang J, Hayashi K, Kasahara H.. 2020b. Arogenate dehydratases can modulate the levels of phenylacetic acid in Arabidopsis. Biochemical and Biophysical Research Communications 524, 83–88. PubMed
Aoi Y, Tanaka K, Cook SD, Hayashi KI, Kasahara H.. 2020c. GH3 auxin-amido synthetases alter the ratio of indole-3-acetic acid and phenylacetic acid in Arabidopsis. Plant & Cell Physiology 61, 596–605. PubMed PMC
Bartel B, Fink GR.. 1995. ILR1, an amidohydrolase that releases active indole-3-acetic acid from conjugates. Science 268, 1745–1748. PubMed
Bauer MR, Mackey MD.. 2019. Electrostatic complementarity as a fast and effective tool to optimize binding and selectivity of protein-ligand complexes. Journal of Medicinal Chemistry 62, 3036–3050. PubMed
Bieleszová K, Pařízková B, Kubeš M, et al. 2019. New fluorescently labeled auxins exhibit promising anti-auxin activity. New Biotechnology 48, 44–52. PubMed
Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Görlach J.. 2001. Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. The Plant Cell 13, 1499–1510. PubMed PMC
Bricogne G, Blanc E, Brandl M, et al. 2011. BUSTER version 2.1.0. Cambridge, UK: Global Phasing Ltd.
Brunoni F, Collani S, Casanova-Sáez R, Šimura J, Karady M, Schmid M, Ljung K, Bellini C.. 2020. Conifers exhibit a characteristic inactivation of auxin to maintain tissue homeostasis. New Phytologist 226, 1753–1765. PubMed
Brunoni F, Collani S, Šimura J, Schmid M, Bellini C, Ljung K.. 2019. A bacterial assay for rapid screening of IAA catabolic enzymes. Plant Methods 15, 126. PubMed PMC
Brunoni F, Pěnčík A, Žukauskaitė A, Ament A, Kopečná M, Collani S, Kopečný D, Novák O.. 2023. Amino acid conjugation of oxIAA is a secondary metabolic regulation involved in auxin homeostasis. New Phytologist 238, 2264–2270. PubMed
Casanova-Sáez R, Mateo-Bonmatí E, Ljung K.. 2021. Auxin metabolism in plants. Cold Spring Harbor Perspectives in Biology 13, a039867. PubMed PMC
Cheeseright T, Mackey M, Rose S, Vinter A.. 2006. Molecular field extrema as descriptors of biological activity: definition and validation. Journal of Chemical Information and Modeling 46, 665–676. PubMed
Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC.. 2010. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica, Section D: Biological Crystallography 66, 12–21. PubMed PMC
Cohen JD, Strader LC.. 2024. An auxin research odyssey: 1989-2023. The Plant Cell 36, 1410–1428. PubMed PMC
Cook SD. 2019. An historical review of phenylacetic acid. Plant & Cell Physiology 60, 243–254. PubMed
Cook SD, Nichols DS, Smith J, Chourey PS, McAdam EL, Quittenden L, Ross JJ.. 2016. Auxin biosynthesis: Are the indole-3-acetic acid and phenylacetic acid biosynthesis pathways mirror images? Plant Physiology 171, 1230–1241. PubMed PMC
Davies PJ. 2010. Plant hormones: biosynthesis, signal transduction, action! New York: Springer.
Davies RT, Goetz DH, Lasswell J, Anderson MN, Bartel B.. 1999. PubMed PMC
Emsley P, Cowtan K.. 2004. Coot: model-building tools for molecular graphics. Acta Crystallographica, Section D: Biological Crystallography 60, 2126–2132. PubMed
Fukui K, Arai K, Tanaka Y, et al. 2022. Chemical inhibition of the auxin inactivation pathway uncovers the roles of metabolic turnover in auxin homeostasis. Proceedings of the National Academy of Sciences, USA 119, e2206869119. PubMed PMC
Gabor EM, Janssen DB.. 2004. Increasing the synthetic performance of penicillin acylase PAS2 by structure-inspired semi-random mutagenesis. Protein Engineering, Design & Selection 17, 571–579. PubMed
Graves S, Piepho H, Selzer L, Dorai-Raj S.. 2019. multcompView: Visualizations of paired comparisons. R package version 0.1-8/r26. https://R-Forge.R-project.org/projects/multcompview.
Grubb CD, Zipp BJ, Ludwig-Müller J, Masuno MN, Molinski TF, Abel S.. 2004. Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. The Plant Journal 40, 893–908. PubMed
Haagen-Smit SAJ, Went FW.. 1935. A physiological analysis of growth substance. Proceedings Koninklijke Nederlandse Akademie van Wetenschappen 38, 852–857.
Hayashi K, Arai K, Aoi Y, et al. 2021. The main oxidative inactivation pathway of the plant hormone auxin. Nature Communications 12, 6752. PubMed PMC
Hladík P, Brunoni F, Žukauskaitė A, Zatloukal M, Bělíček J, Kopečný D, Briozzo P, Ferchaud N, Novák O, Pěnčík A.. 2025. Data from: Phenylacetic acid metabolism in land plants: novel pathways and metabolites. Zenodo. 10.5281/zenodo.13587370 PubMed DOI PMC
Hladík P, Petřík I, Žukauskaitė A, Novák O, Pěnčík A.. 2023. Metabolic profiles of 2-oxindole-3-acetyl-amino acid conjugates differ in various plant species. Frontiers in Plant Science 14, 1217421. PubMed PMC
Hothorn T, Bretz F, Westfall P.. 2008. Simultaneous inference in general parametric models. Biometrical Journal. Biometrische Zeitschrift 50, 346–363. PubMed
Iddon L, Richards SE, Johnson CH, Harding JR, Wilson ID, Nicholson JK, Lindon JC, Stachulski AV.. 2011. Synthesis of a series of phenylacetic acid 1-β- PubMed
Illić N, Magnus V, Östin A, Sandberg G.. 1997. Stable-isotope labeled metabolites of the phytohormone, indole-3-acetic acid. Journal of labelled compounds and radiopharmaceuticals 39, 433–440.
Jackson RG, Lim EK, Li Y, Kowalczyk M, Sandberg G, Hogget J, Ashford DA, Bowles DJ.. 2001. Identification and biochemical characterization of an PubMed
Kabsch W. 2010. XDS. Acta Crystallographica, Section D: Biological Crystallography 66, 125–132. PubMed PMC
Kai K, Horita J, Wakasa K, Miyagawa H.. 2007a. Three oxidative metabolites of indole-3-acetic acid from PubMed
Kai K, Nakamura S, Wakasa K, Miyagawa H.. 2007b. Facile preparation of deuterium-labeled standards of indole-3-acetic acid (IAA) and its metabolites to quantitatively analyze the disposition of exogenous IAA in PubMed
Kaminaga Y, Schnepp J, Peel G, et al. 2006. Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. The Journal of Biological Chemistry 281, 23357–23366. PubMed
Karplus PA, Diederichs K.. 2012. Linking crystallographic model and data quality. Science 336, 1030–1033. PubMed PMC
Kawazu K, Zhang H, Yamashita H, Kanzaki H.. 1996. Relationship between the pathogenicity of the pine wood nematode, PubMed
Končitíková R, Vigouroux A, Kopečná M, Andree T, Bartoš J, Šebela M, Moréra S, Kopečný D.. 2015. Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7. The Biochemical Journal 468, 109–123. PubMed
Kowalczyk M, Sandberg G.. 2001. Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis. Plant Physiology 127, 1845–1853. PubMed PMC
Kuhn M, Firth-Clark S, Tosco P, Mey ASJS, Mackey M, Michel J.. 2020. Assessment of binding affinity via alchemical free-energy calculations. Journal of Chemical Information and Modeling 60, 3120–3130. PubMed
Kunkel BN, Harper CP.. 2018. The roles of auxin during interactions between bacterial plant pathogens and their hosts. Journal of Experimental Botany 69, 245–254. PubMed
Lancashire PD, Bleiholder H, Boom PVD, Langeluddeke P, Stauss R, Weber E, Witzenberger A.. 1991. A uniform decimal code for growth stages of crops and weeds. Annals of Applied Biology 11, 561–601.
LeClere S, Tellez R, Rampey RA, Matsuda SPT, Bartel B.. 2002. Characterization of a family of IAA-amino acid conjugate hydrolases from PubMed
Liu P, Cheng Y, Yang M, Liu Y, Chen K, Long C, Deng X.. 2014. Mechanisms of action for 2-phenylethanol isolated from PubMed PMC
Mateo-Bonmatí E, Casanova-Sáez R, Šimura J, Ljung K.. 2021. Broadening the roles of UDP-glycosyltransferases in auxin homeostasis and plant development. New Phytologist 232, 642–654. PubMed
Matsui D, Hirata Y, Iwakawa A, Toyotake Y, Wakayama M, Asano Y.. 2021. Combination of enzymatic oxidation of amino acid and native chemical ligation with hydroxylamine for amide formation toward a one-pot process. Chemistry Letters 50, 1632–1634.
McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ.. 2007. Phaser crystallographic software. Journal of Applied Crystallography 40, 658–674. PubMed PMC
Mellor N, Band LR, Pěnčík A, et al. 2016. Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis. Proceedings of the National Academy of Sciences, USA 113, 11022–11027. PubMed PMC
Müller K, Dobrev PI, Pěnčík A, et al. 2021. DIOXYGENASE FOR AUXIN OXIDATION 1 catalyzes the oxidation of IAA amino acid conjugates. Plant Physiology 187, 103–115. PubMed PMC
Navarro-Llorens JM, Patrauchan MA, Stewart GR, Davies JE, Eltis LD, Mohn WW.. 2005. Phenylacetate catabolism in PubMed PMC
Pěnčík A, Casanova-Sáez R, Pilařová V, Žukauskaitė A, Pinto R, Micol JL, Ljung K, Novák O.. 2018. Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis. Journal of Experimental Botany 69, 2569–2579. PubMed PMC
Pěnčík A, Rolčík J, Novák O, Magnus V, Barták P, Buchtík R, Salopek-Sondi B, Strnad M.. 2009. Isolation of novel indole-3-acetic acid conjugates by immunoaffinity extraction. Talanta 80, 651–655. PubMed
Perez VC, Dai R, Bai B, et al. 2021. Aldoximes are precursors of auxins in Arabidopsis and maize. New Phytologist 231, 1449–1461. PubMed PMC
Perez VC, Zhao H, Lin M, Kim J.. 2023. Occurrence, function, and biosynthesis of the natural auxin phenylacetic acid (PAA) in plants. Plants 12, 266. PubMed PMC
Porco S, Pěnčík A, Rashed A, et al. 2016. Dioxygenase-encoding PubMed PMC
Posit Team. 2023. RStudio: Integrated Development Environment for R. Boston, MA: Posit Software, PBC. http://www.posit.co/
Qin G, Gu H, Zhao Y, et al. 2005. An indole-3-acetic acid carboxyl methyltransferase regulates Arabidopsis leaf development. The Plant Cell 17, 2693–2704. PubMed PMC
Rampey RA, LeClere S, Kowalczyk M, Ljung K, Sandberg G, Bartel B.. 2004. A family of auxin-conjugate hydrolases that contributes to free indole-3-acetic acid levels during Arabidopsis germination. Plant Physiology 135, 978–988. PubMed PMC
R Core Team. 2021. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/
Schneider S, Mohamed ME-S, Fuchs G.. 1997. Anaerobic metabolism of L-phenylalanine via benzoyl-CoA in the denitrifying bacterium PubMed
Schwieter KE, Johnston JN.. 2016. A one-pot amidation of primary nitroalkanes. Chemical Communications 52, 152–155. PubMed
Sherp AM, Westfall CS, Alvarez S, Jez JM.. 2018. PubMed PMC
Široká J, Ament A, Mik V, et al. 2025. Amide conjugates of the jasmonate precursor PubMed PMC
Staswick PE. 2009. The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant Physiology 150, 1310–1321. PubMed PMC
Staswick PE, Rowe M, Spalding EP, Splitt BL.. 2017. Jasmonoyl-L-tryptophan disrupts IAA activity through the AUX1 auxin permease. Frontiers in Plant Science 8, 736. PubMed PMC
Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W.. 2005. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. The Plant Cell 17, 616–627. PubMed PMC
Stroganov OV, Novikov FN, Stroylov VS, Kulkov V, Chilov GG.. 2008. Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening. Journal of Chemical Information and Modeling 48, 2371–2385. PubMed
Sugawara S, Mashiguchi K, Tanaka K, et al. 2015. Distinct characteristics of indole-3-acetic acid and phenylacetic acid, two common auxins in plants. Plant and Cell Physiology 56, 1641–1654. PubMed PMC
Takeuchi H, Fujimori Y, Ueda Y, Shibayama H, Nagaishi M, Yoshimura T, Sasamori T, Tokitoh N, Furuta T, Kawabata T.. 2020. Solvent-dependent mechanism and stereochemistry of mitsunobu glycosylation with unprotected pyranoses. Organic Letters 22, 4754–4759. PubMed
Takubo E, Kobayashi M, Hirai S, Aoi Y, Ge C, Dai X, Fukui K, Hayashi K-I, Zhao Y, Kasahara H.. 2020. Role of Arabidopsis PubMed PMC
Tanaka K, Hayashi K, Natsume M, Kamiya Y, Sakakibara H, Kawaide H, Kasahara H.. 2014. UGT74D1 catalyzes the glucosylation of 2-oxindole-3-acetic acid in the auxin metabolic pathway in PubMed PMC
Teufel R, Mascaraque V, Ismail W, Voss M, Perera J, Eisenreich W, Haehnel W, Fuchs G.. 2010. Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proceedings of the National Academy of Sciences, USA 107, 14390–14395. PubMed PMC
Thangavelu B, Mutthamsetty V, Wang Q, Viola RE.. 2017. Design and optimization of aspartate PubMed
Tickle IJ, Flensburg C, Keller P, Paciorek W, Sharff A, Vonrhein C, Bricogne G.. 2016. STARANISO. Cambridge, UK: Global Phasing Ltd. http://staraniso.globalphasing.org/cgi-bin/staraniso.cgi
Tieman D, Taylor M, Schauer N, Fernie AR, Hanson AD, Klee HJ.. 2006. Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proceedings of the National Academy of Sciences, USA 103, 8287–8292. PubMed PMC
Tottman DR. 1987. The decimal code for the growth stages of cereals, with illustrations. Annals of Applied Biology 110, 441–454.
Westfall CS, Sherp AM, Zubieta C, Alvarez S, Schraft E, Marcellin R, Ramirez L, Jez JM.. 2016. Arabidopsis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis. Proceedings of the National Academy of Sciences, USA 113, 13917–13922. PubMed PMC
Westfall CS, Zubieta C, Herrmann J, Kapp U, Nanao MH, Jez JM.. 2012. Structural basis for prereceptor modulation of plant hormones by GH3 proteins. Science 336, 1708–1711. PubMed
Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag.
Wickham H, Bryan J.. 2023. readxl: Read Excel Files. R package version 1.4.3. https://CRAN.R-project.org/package=readxl.
Wickham H, François R, Henry L, Müller K, Vaughan D.. 2023. dplyr: A grammar of data manipulation. R package version 1.1.4. https://CRAN.R-project.org/package=dplyr
Wightman F, Lighty DL.. 1982. Identification of phenylacetic acid as a natural auxin in the shoots of higher plants. Physiologia Plantarum 55, 17–24.
Xie Y, Zhu Y, Wang N, et al. 2022. Chemical genetic screening identifies nalacin as an inhibitor of GH3 amido synthetase for auxin conjugation. Proceedings of the National Academy of Sciences, USA 119, e2209256119. PubMed PMC
Xu S, Chen M, Feng T, Zhan L, Zhou L, Yu G.. 2021. Use ggbreak to effectively utilize plotting space to deal with large datasets and outliers. Frontiers in Genetics 12, 774846. PubMed PMC
Yoo H, Widhalm JR, Qian Y, Maeda H, Cooper BR, Jannasch AS, Gonda I, Lewinsohn E, Rhodes D, Dudareva N.. 2013. An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine:phenylpyruvate aminotransferase. Nature Communications 4, 2833. PubMed
Zasedateleva OA, Surzhikov SA, Shershov VE, Miftakhov RA, Yurasov DA, Kuznetsova VE, Chudinov AV.. 2020. PCR incorporation of dUMPs modified with aromatic hydrocarbon substituents of different hydrophilicities: Synthesis of C5-modified dUTPs and PCR studies using Taq, Tth, Vent (exo-) and Deep Vent (exo-) polymerases. Bioorganic Chemistry 99, 103829. PubMed
Zhang C, Zhang L, Wang D, Ma H, Liu B, Shi Z, Ma X, Chen Y, Chen Q.. 2018. Evolutionary history of the glycoside hydrolase 3 (GH3) family based on the sequenced genomes of 48 plants and identification of jasmonic acid-related GH3 proteins in PubMed PMC
Zhang H, Cheng Q, Wang X, Jia W, Xie J, Fan G, Han C, Zhao X.. 2022. Selenium improved phenylacetic acid content in oilseed rape and thus enhanced the prevention of PubMed PMC
Phenylacetic acid metabolism in land plants: novel pathways and metabolites
Glycosylation pathways in auxin homeostasis