Glycosylation pathways in auxin homeostasis
Jazyk angličtina Země Dánsko Médium print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.01.01/00/22_008/0004581
ERDF Programme Johannes Amos Comenius
IGA_PrF_2025_013
Internal Grant Agency of Palacký University Olomouc
PubMed
40133767
PubMed Central
PMC11936858
DOI
10.1111/ppl.70170
Knihovny.cz E-zdroje
- MeSH
- glykosylace MeSH
- homeostáza * MeSH
- kyseliny indoloctové * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- kyseliny indoloctové * MeSH
Auxin glycosylation plays a fundamental role in the regulation of auxin homeostasis, activity, and transport, contributing to the dynamic control of plant growth and development. Glycosylation enhances auxin stability, solubility, and storage capacity, serving as a key mechanism for both temporary inactivation and long-term storage of auxin molecules. Specific glycosyltransferases are critical for this process, catalyzing glycosylation at either the carboxyl group or the nitrogen atom of the indole ring. The storage roles of glycosylated auxins, such as IAA-N-Glc, have been shown to be essential during embryogenesis and seed germination, while irreversible conjugation into catabolic products helps to maintain auxin homeostasis in vegetative tissues. This review highlights the diversity, enzymatic specificity, and physiological relevance of auxin glycosylation pathways, including a frequently overlooked N-glycosylation, underscoring its importance in the complex network of auxin metabolism.
Department of Chemical Biology Faculty of Science Palacký University Olomouc Czech Republic
Laboratory of Growth Regulators Faculty of Science Palacký University Olomouc Czech Republic
Zobrazit více v PubMed
Abbas M, Hernández‐García J, Pollmann S, Samodelov SL, Kolb M, Friml J, Hammes UZ, Zurbriggen MD, Blázquez MA, Alabadí D (2018) Auxin methylation is required for differential growth in Arabidopsis . Proceedings of the National Academy of Sciences 115: 6864–6869 PubMed PMC
Akabane T, Suzuki N, Ikeda K, Yonezawa T, Nagatoishi S, Matsumura H, Yoshizawa T, Tsuchiya W, Kamino S, Tsumoto K, Ishimaru K, Katoh E, Hirotsu N (2024) THOUSAND‐GRAIN WEIGHT 6, which is an IAA‐glucose hydrolase, preferentially recognizes the structure of the indole ring. Sci Rep 14: 6778 PubMed PMC
Aoi Y, Hira H, Hayakawa Y, Liu H, Fukui K, Dai X, Tanaka K, Hayashi K, Zhao Y, Kasahara H (2020) UDP‐glucosyltransferase UGT84B1 regulates the levels of indole‐3‐acetic acid and phenylacetic acid in Arabidopsis. Biochem Biophys Res Commun 532: 244–250 PubMed PMC
Bajguz A, Piotrowska A (2009) Conjugates of auxin and cytokinin. Phytochemistry 70: 957–969 PubMed
Bandurski RS, Schulze A (1977) Concentration of Indole‐3‐acetic Acid and Its Derivatives in Plants. Plant Physiol 60: 211–213 PubMed PMC
Brunoni F, Collani S, Casanova‐Sáez R, Šimura J, Karady M, Schmid M, Ljung K, Bellini C (2020) Conifers exhibit a characteristic inactivation of auxin to maintain tissue homeostasis. New Phytologist 226: 1753–1765 PubMed
Brunoni F, Collani S, Šimura J, Schmid M, Bellini C, Ljung K (2019) A bacterial assay for rapid screening of IAA catabolic enzymes. Plant Methods 15: 126 PubMed PMC
Brunoni F, Pěnčík A, Žukauskaitė A, Ament A, Kopečná M, Collani S, Kopečný D, Novák O (2023) Amino acid conjugation of oxIAA is a secondary metabolic regulation involved in auxin homeostasis. New Phytologist 238: 2264–2270 PubMed
Cheng J‐T, Guo C, Cui W‐J, Zhang Q, Wang S‐H, Zhao Q‐H, Liu D‐W, Zhang J, Chen S, Chen C, Liu Y, Pan Z‐H, Liu A (2020) Isolation of two rare N‐glycosides from Ginkgo biloba and their anti‐inflammatory activities. Sci Rep 10: 5994 PubMed PMC
Chen L, Huang X‐X, Li Y‐J, Hou B‐K (2020a) Glycosyltransferase UGT76F1 is involved in the temperature‐mediated petiole elongation and the BR‐mediated hypocotyl growth in Arabidopsis. Plant Signal Behav 15: 1777377 PubMed PMC
Chen L, Huang X‐X, Zhao S‐M, Xiao D‐W, Xiao L‐T, Tong J‐H, Wang W‐S, Li Y‐J, Ding Z, Hou B‐K (2020b) IPyA glucosylation mediates light and temperature signaling to regulate auxin‐dependent hypocotyl elongation in Arabidopsis . Proceedings of the National Academy of Sciences 117: 6910–6917 PubMed PMC
Chen L, Zhang X, Hu C, Zhang Y, Zhang L, Kan J, Li B, Du J (2020c) Regulation of GABAA and 5‐HT Receptors Involved in Anxiolytic Mechanisms of Jujube Seed: A System Biology Study Assisted by UPLC‐Q‐TOF/MS and RT‐qPCR Method. Front Pharmacol 11: PubMed PMC
Ciarkowska A, Wojtaczka P, Kęsy J, Ostrowski M (2023) Auxin homeostasis in maize (Zea mays) is regulated via 1‐O‐indole‐3‐acetyl‐myo‐inositol synthesis at early stages of seedling development and under abiotic stress. Planta 257: 23 PubMed PMC
Cooke TJ, Poli D, Sztein AE, Cohen JD (2002) Evolutionary patterns in auxin action. Plant Mol Biol 49: 319–38 PubMed
Cook SD, Nichols DS, Smith J, Chourey PS, McAdam EL, Quittenden L, Ross JJ (2016) Auxin Biosynthesis: Are the Indole‐3‐Acetic Acid and Phenylacetic Acid Biosynthesis Pathways Mirror Images? Plant Physiol 171: 1230–41 PubMed PMC
Damodaran S, Strader LC (2019) Indole 3‐Butyric Acid Metabolism and Transport in Arabidopsis thaliana. Front Plant Sci 10: PubMed PMC
Ester Sztein A, Cohen JD, de la Fuente IG, Cooke TJ (1999) Auxin metabolism in mosses and liverworts. Am J Bot 86: 1544–55 PubMed
Gachon CMM, Langlois‐Meurinne M, Saindrenan P (2005) Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci 10: 542–549 PubMed
Gharabli H, Della Gala V, Welner DH (2023) The function of UDP‐glycosyltransferases in plants and their possible use in crop protection. Biotechnol Adv 67: 108182 PubMed
Godjevac D, Vajs V, Milosavljevic S, Djordjevic B, Zdunic G, Tesevic V (2011) Chemical composition of white currant seed extract. Journal of the Serbian Chemical Society 76: 1465–1470
Harada M, Kubotsu T, Agui T, Dai X, Zhao Y, Kasahara H, Hayashi K (2024) Investigation of physiological roles of UDP‐glycosyltransferase UGT76F2 in auxin homeostasis through the TAA‐YUCCA auxin biosynthesis pathway. Biosci Biotechnol Biochem 88: 1326–1335 PubMed
Hayashi K, Arai K, Aoi Y, Tanaka Y, Hira H, Guo R, Hu Y, Ge C, Zhao Y, Kasahara H, Fukui K (2021) The main oxidative inactivation pathway of the plant hormone auxin. Nat Commun 12: 6752 PubMed PMC
Hladík P, Brunoni F, Žukauskaitė A, Zatloukal M, Bělíček J, Kopečný D, Briozzo P, Ferchaud N, Novák O, Pěnčík A (2024) Phenylacetic acid metabolism in land plants: novel pathways and metabolites. doi.org/10.1101/2024.11.06.622264 PubMed DOI
Hladík P, Petřík I, Žukauskaitė A, Novák O, Pěnčík A (2023) Metabolic profiles of 2‐oxindole‐3‐acetyl‐amino acid conjugates differ in various plant species. Front Plant Sci 14: PubMed PMC
Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E (2013) Loss of function of the IAA‐glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet 45: 707–711 PubMed
Isobe T, Miyagawa H (2022) Facilitation of auxin biosynthesis and metabolism by salt stress in rice plants. Biosci Biotechnol Biochem doi.org/10.1093/bbb/zbac070 PubMed DOI
Jackson RG, Kowalczyk M, Li Y, Higgins G, Ross J, Sandberg G, Bowles DJ (2002) Over‐expression of an Arabidopsis gene encoding a glucosyltransferase of indole‐3‐acetic acid: phenotypic characterisation of transgenic lines. The Plant Journal 32: 573–583 PubMed
Jackson RG, Lim E‐K, Li Y, Kowalczyk M, Sandberg G, Hoggett J, Ashford DA, Bowles DJ (2001) Identification and Biochemical Characterization of an Arabidopsis Indole‐3‐acetic Acid Glucosyltransferase. Journal of Biological Chemistry 276: 4350–4356 PubMed
J. Hall P (1980) Indole‐3‐acetyl‐myo‐inositol in kernels of Oryza sativa . Phytochemistry 19: 2121–2123
Jin S‐H, Ma X‐M, Han P, Wang B, Sun Y‐G, Zhang G‐Z, Li Y‐J, Hou B‐K (2013) UGT74D1 Is a Novel Auxin Glycosyltransferase from Arabidopsis thaliana . PLoS One 8: e61705 PubMed PMC
Jones P, Vogt T (2001) Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta 213: 164–174 PubMed
Kai K, Horita J, Wakasa K, Miyagawa H (2007a) Three oxidative metabolites of indole‐3‐acetic acid from Arabidopsis thaliana . Phytochemistry 68: 1651–1663 PubMed
Kai K, Wakasa K, Miyagawa H (2007b) Metabolism of indole‐3‐acetic acid in rice: Identification and characterization of N‐β‐d‐glucopyranosyl indole‐3‐acetic acid and its conjugates. Phytochemistry 68: 2512–2522 PubMed
Kasahara H (2016) Current aspects of auxin biosynthesis in plants. Biosci Biotechnol Biochem 80: 34–42 PubMed
Korasick DA, Enders TA, Strader LC (2013) Auxin biosynthesis and storage forms. J Exp Bot 64: 2541–2555 PubMed PMC
LeClere S, Tellez R, Rampey RA, Matsuda SPT, Bartel B (2002) Characterization of a Family of IAA‐Amino Acid Conjugate Hydrolases from Arabidopsis. Journal of Biological Chemistry 277: 20446–20452 PubMed
Leyser O (2006) Dynamic Integration of Auxin Transport and Signalling. Current Biology 16: R424–R433 PubMed
Li M, Wang Y, Tsoi B, Jin X, He R‐R, Yao X, Dai Y, Kurihara H, Yao X‐S (2014) Indoleacetic acid derivatives from the seeds of Ziziphus jujuba var. spinosa . Fitoterapia 99: 48–55 PubMed
Li M, Zhang F, Wei Z, Li Z, Zhang G, Li H (2021) Systematically characterization of in vivo substances of Ziziphi Spinosae Semen in rats by ultra‐high‐performance liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry analysis. J Pharm Biomed Anal 193: 113756 PubMed
Liu Q, Chen T‐T, Xiao D‐W, Zhao S‐M, Lin J‐S, Wang T, Li Y‐J, Hou B‐K (2019) OsIAGT1 Is a Glucosyltransferase Gene Involved in the Glucose Conjugation of Auxins in Rice. Rice 12: 92 PubMed PMC
Ljung K, Östin A, Lioussanne L, Sandberg G (2001) Developmental Regulation of Indole‐3‐Acetic Acid Turnover in Scots Pine Seedlings. Plant Physiol 125: 464–475 PubMed PMC
Ludwig‐Müller J (2011) Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 62: 1757–1773 PubMed
Mackenzie PI, Owens IS, Burchell B, Bock KW, Bairoch A, Belanger A, Gigleux SF, Green M, Hum DW, Iyanagi T, Lancet D, Louisot P, Magdalou J, Roy Chowdhury J, Ritter JK, Tephly TR, Schachter H, Tephly T, Tipton KF, Nebert DW (1997) The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 7: 255–269 PubMed
Maeda H, Dudareva N (2012) The Shikimate Pathway and Aromatic Amino Acid Biosynthesis in Plants. Annu Rev Plant Biol 63: 73–105 PubMed
Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteen P, Zhao Y, Hayashi K, Kamiya Y, Kasahara H (2011) The main auxin biosynthesis pathway in Arabidopsis . Proceedings of the National Academy of Sciences 108: 18512–18517 PubMed PMC
Mateo‐Bonmatí E, Casanova‐Sáez R, Šimura J, Ljung K (2021) Broadening the roles of UDP‐glycosyltransferases in auxin homeostasis and plant development. New Phytologist 232: 642–654 PubMed
Meech R, Mackenzie PI (1997) Structure and function of uridine diphosphate glucuronosyltransferases. Clin Exp Pharmacol Physiol 24: 907–915 PubMed
Müller K, Dobrev PI, Pěnčík A, Hošek P, Vondráková Z, Filepová R, Malínská K, Brunoni F, Helusová L, Moravec T, Retzer K, Harant K, Novák O, Hoyerová K, Petrášek J (2021) DIOXYGENASE FOR AUXIN OXIDATION 1 catalyzes the oxidation of IAA amino acid conjugates. Plant Physiol 187: 103–115 PubMed PMC
Naegeli A, Michaud G, Schubert M, Lin C‐W, Lizak C, Darbre T, Reymond J‐L, Aebi M (2014) Substrate Specificity of Cytoplasmic N‐Glycosyltransferase. Journal of Biological Chemistry 289: 24521–24532 PubMed PMC
Nonhebel HM, Bandurski RS (1984) Oxidation of Indole‐3‐acetic Acid and Oxindole‐3‐acetic Acid to 2,3‐Dihydro‐7‐hydroxy‐2‐oxo‐1H Indole‐3‐acetic Acid‐7′‐O‐β‐d‐Glucopyranoside in Zea mays Seedlings. Plant Physiol 76: 979–983 PubMed PMC
Nonhebel HM, Kruse LI, Bandurski RS (1985) Indole‐3‐acetic acid catabolism in Zea mays seedlings. Metabolic conversion of oxindole‐3‐acetic acid to 7‐hydroxy‐2‐oxindole‐3‐acetic acid 7’‐O‐beta‐D‐glucopyranoside. J Biol Chem 260: 12685–9 PubMed
Osmani SA, Bak S, Møller BL (2009) Substrate specificity of plant UDP‐dependent glycosyltransferases predicted from crystal structures and homology modeling. Phytochemistry 70: 325–347 PubMed
Östin A, Kowalyczk M, Bhalerao RP, Sandberg G (1998) Metabolism of Indole‐3‐Acetic Acid in Arabidopsis. Plant Physiol 118: 285–296 PubMed PMC
Östin A, Monteiro AM, Crozier A, Jensen E, Sandberg G (1992) Analysis of Indole‐3‐Acetic Acid Metabolites from Dalbergia dolichopetala by High Performance Liquid Chromatography‐Mass Spectrometry. Plant Physiol 100: 63–68 PubMed PMC
Ostrowski M, Jakubowska A (2014) UDP‐Glycosyltransferases of Plant Hormones. Adv Cell Biol 4: 43–60
Paque S, Weijers D (2016) Q&A: Auxin: the plant molecule that influences almost anything. BMC Biol 14: 67 PubMed PMC
Pěnčík A, Casanova‐Sáez R, Pilařová V, Žukauskaitė A, Pinto R, Micol JLJL, Ljung K, Novák O, Pênčík A, Casanova‐Sáez R, Pilařová V, Žukauskaite A, Pinto R, Micol JLJL, Ljung K, Novák O (2018) Ultra‐rapid auxin metabolite profiling for high‐throughput mutant screening in Arabidopsis. J Exp Bot 69: 2569–2579 PubMed PMC
Pěnčík A, Simonovik B, Petersson S V., Henyková E, Simon S, Greenham K, Zhang Y, Kowalczyk M, Estelle M, Zažímalová E, Novák O, Sandberg G, Ljung K (2013) Regulation of Auxin Homeostasis and Gradients in Arabidopsis Roots through the Formation of the Indole‐3‐Acetic Acid Catabolite 2‐Oxindole‐3‐Acetic Acid. Plant Cell 25: 3858–3870 PubMed PMC
Piccolella S, Fiorentino A, Pacifico S, D'Abrosca B, Uzzo P, Monaco P (2008) Antioxidant Properties of Sour Cherries (Prunus cerasus L.): Role of Colorless Phytochemicals from the Methanolic Extract of Ripe Fruits. J Agric Food Chem 56: 1928–1935 PubMed
Porco S, Pěnčík A, Rashed A, Voß U, Casanova‐Sáez R, Bishopp A, Golebiowska A, Bhosale R, Swarup R, Swarup K, Peňáková P, Novák O, Staswick P, Hedden P, Phillips AL, Vissenberg K, Bennett MJ, Ljung K (2016) Dioxygenase‐encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis . Proceedings of the National Academy of Sciences 113: 11016–11021 PubMed PMC
Qin G, Gu H, Zhao Y, Ma Z, Shi G, Yang Y, Pichersky E, Chen H, Liu M, Chen Z, Qu L‐J (2005) An Indole‐3‐Acetic Acid Carboxyl Methyltransferase Regulates Arabidopsis Leaf Development. Plant Cell 17: 2693–2704 PubMed PMC
Sandberg G, Ernstsen A, Hamnede M (1987) Dynamics of indole‐3‐acetic acid and indole‐3‐ethanol during development and germination of Pinus sylvestris seeds. Physiol Plant 71: 411–418
Sauer M, Robert SS, Kleine‐Vehn JJ (2013) Auxin: simply complicated. J Exp Bot 64: 2565–2577 PubMed
Schwarz B, Hofmann T (2007) Isolation, Structure Determination, and Sensory Activity of Mouth‐Drying and Astringent Nitrogen‐Containing Phytochemicals Isolated from Red Currants (Ribes rubrum). J Agric Food Chem 55: 1405–1410 PubMed
Shataer D, Li J, Duan X‐M, Liu L, Xin X‐L, Aisa HA (2021) Chemical Composition of the Hazelnut Kernel (Corylus avellana L.) and Its Anti‐inflammatory, Antimicrobial, and Antioxidant Activities. J Agric Food Chem 69: 4111–4119 PubMed
Singldinger B, Dunkel A, Bahmann D, Bahmann C, Kadow D, Bisping B, Hofmann T (2018) New Taste‐Active 3‐(O‐β‐d‐Glucosyl)‐2‐oxoindole‐3‐acetic Acids and Diarylheptanoids in Cimiciato‐Infected Hazelnuts. J Agric Food Chem 66: 4660–4673 PubMed
Široká J, Ament A, Mik V, Pospíšil T, Kralová M, Zhang C, Pernisová M, Karady M, Nožková V, Nishizato Y, Kaji T, Saito R, Htitich M, Floková K, Wasternack C, Strnad M, Ueda M, Novák O, Brunoni F (2025) Amide conjugates of the jasmonate precursor cis‐(+)‐12‐oxo‐phytodienoic acid regulate its homeostasis during plant stress responses. Plant Physiol 197: kiae636 PubMed PMC
Široká J, Brunoni F, Pěnčík A, Mik V, Žukauskaitė A, Strnad M, Novák O, Floková K (2022) High‐throughput interspecies profiling of acidic plant hormones using miniaturised sample processing. Plant Methods 18: 122 PubMed PMC
Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis Enzyme Family That Conjugates Amino Acids to Indole‐3‐Acetic Acid. Plant Cell 17: 616–627 PubMed PMC
Stepanova AN, Yun J, Robles LM, Novak O, He W, Guo H, Ljung K, Alonso JM (2011) The Arabidopsis YUCCA1 Flavin Monooxygenase Functions in the Indole‐3‐Pyruvic Acid Branch of Auxin Biosynthesis. Plant Cell 23: 3961–3973 PubMed PMC
Sugawara S, Mashiguchi K, Tanaka K, Hishiyama S, Sakai T, Hanada K, Kinoshita‐Tsujimura K, Yu H, Dai X, Takebayashi Y, Takeda‐Kamiya N, Kakimoto T, Kawaide H, Natsume M, Estelle M, Zhao Y, Hayashi K, Kamiya Y, Kasahara H (2015) Distinct Characteristics of Indole‐3‐Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants. Plant Cell Physiol 56: 1641–1654 PubMed PMC
Szerszen JB, Szczyglowski K, Bandurski RS (1994) iaglu, a Gene from Zea mays Involved in Conjugation of Growth Hormone Indole‐3‐Acetic Acid. Science (1979) 265: 1699–1701 PubMed
Tam YY, Epstein E, Normanly J (2000) Characterization of Auxin Conjugates in Arabidopsis. Low Steady‐State Levels of Indole‐3‐Acetyl‐Aspartate, Indole‐3‐Acetyl‐Glutamate, and Indole‐3‐Acetyl‐Glucose. Plant Physiol 123: 589–596 PubMed PMC
Tanaka K, Hayashi K, Natsume M, Kamiya Y, Sakakibara H, Kawaide H, Kasahara H (2014) UGT74D1 Catalyzes the Glucosylation of 2‐Oxindole‐3‐Acetic Acid in the Auxin Metabolic Pathway in Arabidopsis. Plant Cell Physiol 55: 218–228 PubMed PMC
Tateishi K, Matsushima Y, Shibata H (1989) Changes in the IAA Metabolic Content of Zea mays L Kernels during Maturation. Agric Biol Chem 53: 2545–2551
Tateishi K, Shibata H, Matsushima Y (1988) Isolation of Zeanoside C, a New Metabolite of IAA from Corn (Zea mays L.) Kernels. Agric Biol Chem 52: 3231–3233
Tateishi K, Shibata H, Matsushima Y, Iijima T (1987) Isolation of Two New IAA Conjugates, 7’O‐β‐D‐Glucopyranoside of 3,7‐Dihydroxy‐2‐Indolinone‐3‐Acetic Acid and 8’‐O‐D‐Glucopyranoside of 8‐Hydroxy‐2‐Quinolone‐4‐Carboxylic Acid, from Immature Sweet Corn Kernels (Zea mays L). Agric Biol Chem 51: 3445–3447
Tateishi K, Yamashita S (1998) Isolation of Four New Indole‐3‐acetic Acid (IAA) Oxidative Metabolites, a Pair of Diasteromers 5‐O‐β‐D‐glucopyranosyl 3,5‐Dihydroxy‐2‐indolinone‐3‐acetic Acid and 5‐O‐β‐D‐cellobiosyl 3,5‐Dihydroxy‐2‐indolinone‐3‐acetic Acid from Rice Bran. Biosci Biotechnol Biochem 62: 1870–1874 PubMed
Teichert A, Schmidt J, Porzel A, Arnold N, Wessjohann L (2008) N‐Glucosyl‐1H‐indole Derivatives from Cortinarius brunneus (Basidiomycetes). Chem Biodivers 5: 664–669 PubMed
Tivendale ND, Davidson SE, Davies NW, Smith JA, Dalmais M, Bendahmane AI, Quittenden LJ, Sutton L, Bala RK, Le Signor C, Thompson R, Horne J, Reid JB, Ross JJ (2012) Biosynthesis of the Halogenated Auxin, 4‐Chloroindole‐3‐Acetic Acid. Plant Physiol 159: 1055–1063 PubMed PMC
Tivendale ND, Millar AH (2022) How is auxin linked with cellular energy pathways to promote growth? New Phytologist 233: 2397–2404 PubMed
Tivendale ND, Ross JJ, Cohen JD (2014) The shifting paradigms of auxin biosynthesis. Trends Plant Sci 19: 44–51 PubMed
Tsurumi S, Wada S (1986) Dioxindole‐3‐Acetic Acid Conjugates Formation from Indole‐3‐Acetylaspartic Acid in Vicia Seedlings. Plant Cell Physiol 27: 1513–1522
Wang M, Ji Q, Lai B, Liu Y, Mei K (2023) Structure‐function and engineering of plant UDP‐glycosyltransferase. Comput Struct Biotechnol J 21: 5358–5371 PubMed PMC
Wang X (2009) Structure, mechanism and engineering of plant natural product glycosyltransferases. FEBS Lett 583: 3303–3309 PubMed
Won C, Shen X, Mashiguchi K, Zheng Z, Dai X, Cheng Y, Kasahara H, Kamiya Y, Chory J, Zhao Y (2011) Conversion of tryptophan to indole‐3‐acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis . Proceedings of the National Academy of Sciences 108: 18518–18523 PubMed PMC
Yang Y, Xu R, Ma C, Vlot AC, Klessig DF, Pichersky E (2008) Inactive Methyl Indole‐3‐Acetic Acid Ester Can Be Hydrolyzed and Activated by Several Esterases Belonging to the AtMES Esterase Family of Arabidopsis . Plant Physiol 147: 1034–1045 PubMed PMC
Yin Q, Zhang J, Wang S, Cheng J, Gao H, Guo C, Ma L, Sun L, Han X, Chen S, Liu A (2021) N‐glucosyltransferase GbNGT1 from ginkgo complements the auxin metabolic pathway. Hortic Res 8: 229 PubMed PMC
Yu J, Hu F, Dossa K, Wang Z, Ke T (2017) Genome‐wide analysis of UDP‐glycosyltransferase super family in Brassica rapa and Brassica oleracea reveals its evolutionary history and functional characterization. BMC Genomics 18: 474 PubMed PMC
Yu JS, Lee D, Lee SR, Lee JW, Choi C‐I, Jang TS, Kang KS, Kim KH (2018) Chemical characterization of cytotoxic indole acetic acid derivative from mulberry fruit (Morus alba L.) against human cervical cancer. Bioorg Chem 76: 28–36 PubMed
Záveská Drábková L, Dobrev PI, Motyka V (2015) Phytohormone Profiling across the Bryophytes. PLoS One 10: e0125411 PubMed PMC
Zhang F, Li M, Qiao L, Yao Z, Li C, Shen X, Wang Y, Yu K, Yao X, Dai Y (2016a) Rapid characterization of Ziziphi Spinosae Semen by UPLC/Qtof MS with novel informatics platform and its application in evaluation of two seeds from Ziziphus species. J Pharm Biomed Anal 122: 59–80 PubMed
Zhang J, Lin JE, Harris C, Campos Mastrotti Pereira F, Wu F, Blakeslee JJ, Peer WA (2016b) DAO1 catalyzes temporal and tissue‐specific oxidative inactivation of auxin in Arabidopsis thaliana . Proceedings of the National Academy of Sciences 113: 11010–11015 PubMed PMC
Zhang J, Peer WA (2017) Auxin homeostasis: the DAO of catabolism. J Exp Bot 68: 3145–3154 PubMed
Zhang L, Tu Z, Xie X, Wang H, Wang H, Wang Z, Sha X, Lu Y (2017) Jackfruit (Artocarpus heterophyllus Lam.) peel: A better source of antioxidants and a ‐glucosidase inhibitors than pulp, flake and seed, and phytochemical profile by HPLC‐QTOF‐MS/MS. Food Chem 234: 303–313 PubMed
Zhang N, Cao S, Huang W, Li P, Kang N, Ding L, Qiu F (2019) New Indole Glycosides from Aesculus chinensis var. chekiangensis and Their Neuroprotective Activities. Molecules 24: 4063 PubMed PMC
Zhao Z, Zhang Y, Liu X, Zhang X, Liu S, Yu X, Ren Y, Zheng X, Zhou K, Jiang L, Guo X, Gai Y, Wu C, Zhai H, Wang H, Wan J (2013) A Role for a Dioxygenase in Auxin Metabolism and Reproductive Development in Rice. Dev Cell 27: 113–122 PubMed