Amide conjugates of the jasmonate precursor cis-(+)-12-oxo-phytodienoic acid regulate its homeostasis during plant stress responses
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
19-10464Y
Czech Science Foundation
Grant-in-Aid for Scientific Research
23H00316, JPJSBP120239903
JSPS
JP23H04880
Latent Chemical Space
Ministry of Education, Culture, Sports, Science and Technology, Japan
SEG-10697
European Molecular Biology Organization
PubMed
39607728
PubMed Central
PMC11663710
DOI
10.1093/plphys/kiae636
PII: 7912146
Knihovny.cz E-zdroje
- MeSH
- amidy metabolismus MeSH
- Arabidopsis * genetika metabolismus MeSH
- cyklopentany * metabolismus MeSH
- fyziologický stres * MeSH
- homeostáza * MeSH
- isoleucin analogy a deriváty metabolismus MeSH
- nenasycené mastné kyseliny * metabolismus MeSH
- oxylipiny * metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 12-oxophytodienoic acid MeSH Prohlížeč
- amidy MeSH
- cyklopentany * MeSH
- isoleucin MeSH
- jasmonic acid MeSH Prohlížeč
- nenasycené mastné kyseliny * MeSH
- oxylipiny * MeSH
- regulátory růstu rostlin MeSH
Jasmonates are a family of oxylipin phytohormones regulating plant development and growth and mediating "defense versus growth" responses. The upstream JA biosynthetic precursor cis-(+)-12-oxo-phytodienoic acid (cis-OPDA) acts independently of CORONATIVE INSENSITIVE 1-mediated JA signaling in several stress-induced and developmental processes. However, its perception and metabolism are only partially understood. An isoleucine analog of the biologically active JA-Ile, OPDA-Ile, was detected years ago in wounded leaves of flowering plants, opening up the possibility that conjugation of cis-OPDA to amino acids might be a relevant mechanism for cis-OPDA regulation. Here, we extended the analysis of amino acid conjugates of cis-OPDA and identified naturally occurring OPDA-Val, OPDA-Phe, OPDA-Ala, OPDA-Glu, and OPDA-Asp accumulating in response to biotic and abiotic stress in Arabidopsis (Arabidopsis thaliana). The OPDA amino acid conjugates displayed cis-OPDA-related plant responses in a JA-Ile-dependent manner. We also showed that the synthesis and hydrolysis of cis-OPDA amino acid conjugates are mediated by members of the amidosynthetase GRETCHEN HAGEN 3 and the amidohydrolase INDOLE-3-ACETYL-LEUCINE RESISTANT 1/ILR1-like families. Thus, OPDA amino acid conjugates function in the catabolism or temporary storage of cis-OPDA in stress responses instead of acting as chemical signals per se.
Zobrazit více v PubMed
Arnold MD, Gruber C, Floková K, Miersch O, Strnad M, Novák O, Wasternack C, Hause B. The recently identified isoleucine conjugate of cis-12-oxo-phytodienoic acid is partially active in cis-12-oxo-phytodienoic acid-specific gene expression of Arabidopsis thaliana. PLoS One. 2016:11(9):e0162829. 10.1371/journal.pone.0162829 PubMed DOI PMC
Barbez E, Kleine-Vehn J. Divide Et Impera—cellular auxin compartmentalization. Curr Opin Plant Biol. 2013:16(1):78–84. 10.1016/j.pbi.2012.10.005 PubMed DOI
Bartel B, Fink GR. ILR1, an amidohydrolase that releases active indole-3-acetic acid from conjugates. Science. 1995:268(5218):1745–1748. 10.1126/science.7792599 PubMed DOI
Blázquez MA, Nelson DC, Weijers D. Evolution of plant hormone response pathways. Annu Rev Plant Biol. 2020:71(1):327–353. 10.1146/annurev-arplant-050718-100309 PubMed DOI
Breithaupt C, Kurzbauer R, Lilie H, Schaller A, Strassner J, Huber R, Macheroux P, Clausen T. Crystal structure of 12-oxophytodienoate reductase 3 from tomato: self-inhibition by dimerization. Proc Natl Acad Sci U S A. 2006:103(39):14337–14342. 10.1073/pnas.0606603103 PubMed DOI PMC
Brunoni F, Collani S, Šimura J, Schmid M, Bellini C, Ljung K. A bacterial assay for rapid screening of IAA catabolic enzymes. Plant Methods. 2019a:15(1):126. 10.1186/s13007-019-0509-6 PubMed DOI PMC
Brunoni F, Ljung K, Bellini C. Control of root meristem establishment in conifers. Physiol Plant. 2019b:165(1):81–89. 10.1111/ppl.12783 PubMed DOI
Brunoni F, Pěnčík A, Žukauskaitė A, Ament A, Kopečná M, Collani S, Kopečný D, Novák O. Amino acid conjugation of oxIAA is a secondary metabolic regulation involved in auxin homeostasis. New Phytol. 2023:238(6):2264–2270. 10.1111/nph.18887 PubMed DOI
Caarls L, Elberse J, Awwanah M, Ludwig NR, De Vries M, Zeilmaker T, Van Wees SCM, Schuurink RC, Van den Ackerveken G. Arabidopsis JASMONATE-INDUCED OXYGENASES down-regulate plant immunity by hydroxylation and inactivation of the hormone jasmonic acid. Proc Natl Acad Sci U S A. 2017:114(24):6388–6393. 10.1073/pnas.1701101114 PubMed DOI PMC
Chang Y, Shi M, Sun Y, Cheng H, Ou X, Zhao Y, Zhang X, Day B, Miao C, Jiang K. Light-induced stomatal opening in Arabidopsis is negatively regulated by chloroplast-originated OPDA signaling. Curr Biol. 2023:33(6):1071–1081. 10.1016/j.cub.2023.02.012 PubMed DOI
Chini A, Fonseca S, Fernández G, Adie B, Chico JM, Lorenzo O, García-Casado G, López-Vidriero I, Lozano FM, Ponce MR, et al. . The JAZ family of repressors is the missing link in jasmonate signalling. Nature. 2007:448(7154):666–671. 10.1038/nature06006 PubMed DOI
Chini A, Monte I, Zamarreño ÁM, Hamberg M, Lassueur S, Reymond P, Hamberg M, Lassueur S, Reymond P, Weiss S, et al. . An OPR3-independent pathway uses 4, 5-didehydrojasmonate for jasmonate synthesis. Nat Chem Biol. 2018:14(2):171–178. 10.1038/nchembio.2540 PubMed DOI
Dave A, Hernández ML, He Z, Andriotis VM, Vaistij FE, Larson TR, Graham IA. 12-Oxo-phytodienoic acid accumulation during seed development represses seed germination in Arabidopsis. Plant Cell. 2011:23(2):583–599. 10.1105/tpc.110.081489 PubMed DOI PMC
Dave A, Vaistij FE, Gilday AD, Penfield SD, Graham IA. Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid. J Exp Bot. 2016:67(8):2277–2284. 10.1093/jxb/erw028 PubMed DOI PMC
Davies RT, Goetz DH, Lasswell J, Anderson MN, Bartel B. IAR3 encodes an auxin conjugate hydrolase from Arabidopsis. Plant Cell. 1999:11(3):365–376. 10.1105/tpc.11.3.365 PubMed DOI PMC
Delfin JC, Kanno Y, Seo M, Kitaoka N, Matsuura H, Tohge T, Shimizu T. AtGH3.10 is another jasmonic acid-amido synthetase in Arabidopsis thaliana. Plant J. 2022:110(4):1082–1096. 10.1111/tpj.15724 PubMed DOI
Di Mambro R, Svolacchia R, Ioio N, Pierdonati RD, Salvi E, Pedrazzini E, Vitale E, Perilli A, Sozzani S, Benfey R, et al. . The lateral root cap acts as an auxin sink that controls meristem size. Curr Biol. 2019:29(7):1199–1205. 10.1016/j.cub.2019.02.022 PubMed DOI
Farmer EE, Mueller MJ. ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol. 2013:64(1):429–450. 10.1146/annurev-arplant-050312-120132 PubMed DOI
Floková K, Feussner K, Herrfurth C, Miersch O, Mik V, Tarkowská D, Strnad M, Feussner I, Wasternack C, Novák O. A previously undescribed jasmonate compound in flowering Arabidopsis thaliana–the identification of cis-(+)-OPDA-Ile. Phytochemistry. 2016:122:230–237. 10.1016/j.phytochem.2015.11.012 PubMed DOI
Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R. (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol. 2009:5(5):344–350. 10.1038/nchembio.161 PubMed DOI
Geldner N, Dénervaud-Tendon V, Hyman DL, Mayer U, Stierhof YD, Chory J. Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J. 2009:59(1):169–178. 10.1111/j.1365-313X.2009.03851.x PubMed DOI PMC
Hurný A, Cuesta C, Cavallari N, Ötvös K, Duclercq J, Dokládal L, Montesinos JC, Gallemí M, Semerádová H, Rauter T, et al. . SYNERGISTIC ON AUXIN AND CYTOKININ 1 positively regulates growth and attenuates soil pathogen resistance. Nat Commun. 2020:11(1):2170. 10.1038/s41467-020-15895-5 PubMed DOI PMC
Jimenez-Aleman GH, Almeida-Trapp M, Fernández-Barbero G, Gimenez-Ibanez S, Reichelt M, Vadassery J, Mithöfer A, Caballero J, Boland W, Solano R. Omega hydroxylated JA-Ile is an endogenous bioactive jasmonate that signals through the canonical jasmonate signaling pathway. Biochim Biophys Acta Mol Cell Biol Lipids. 2019:1864(12):158520. 10.1016/j.bbalip.2019.158520 PubMed DOI
Jimenez-Aleman GH, Thirumalaikumar VP, Jander G, Fernie AR, Skirycz A. OPDA, more than just a jasmonate precursor. Phytochemistry. 2022:204:113432. 10.1016/j.phytochem.2022.113432 PubMed DOI
Kneeshaw S, Soriano G, Monte I, Hamberg M, Zamarreño ÁM, García-Mina JM, Franco-Zorilla JM, Kato N, Ueda M, Rey-Stolle MF, et al. . Ligand diversity contributes to the full activation of the jasmonate pathway in Marchantia polymorpha. Proc Natl Acad Sci U S A. 2022:119(36):e2202930119. 10.1073/pnas.2202930119 PubMed DOI PMC
Koo AJ, Cooke TF, Howe GA. Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-L-isoleucine. Proc Natl Acad Sci U S A. 2011:108(22):9298–9303. 10.1073/pnas.1103542108 PubMed DOI PMC
Koo AJ, Gao X, Daniel Jones A, Howe GA. A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J. 2009:59(6):974–986. 10.1111/j.1365-313X.2009.03924.x PubMed DOI
Koo AJ, Thireault C, Zemelis S, Poudel AN, Zhang T, Kitaoka N, Brandizzi F, Matsuura H, Howe GA. Endoplasmic reticulum-associated inactivation of the hormone jasmonoyl-L-isoleucine by multiple members of the cytochrome P450 94 family in Arabidopsis. J Biol Chem. 2014:289(43):29728–29738. 10.1074/jbc.M114.603084 PubMed DOI PMC
Lampropoulos A, Sutikovic Z, Wenzl C, Maegele I, Lohmann JU, Forner J. GreenGate-a novel, versatile, and efficient cloning system for plant transgenesis. PLoS One. 2013:8(12):e83043. 10.1371/journal.pone.0083043 PubMed DOI PMC
LeClere S, Tellez R, Rampey RA, Matsuda SP, Bartel B. Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis. J Biol Chem. 2002:277(23):20446–20452. 10.1074/jbc.M111955200 PubMed DOI
Liang W, Zamarreño AM, Torres-Montilla S, de la Torre A, Totozafy JC, Kaji T, Ueda M, Corso M, García-Mina JM, Solano R, et al. . Conjugation of dn-OPDA with amino acids inhibits its hormonal bioactivity in Marchantia polymorpha. Plant Physiol. 2024:kiae610. 10.1093/plphys/kiae610 PubMed DOI PMC
Mik V, Pospíšil T, Brunoni F, Grúz J, Nožková V, Wasternack C, Miersch O, Strnad M, Floková K, Novák O, et al. . Synthetic and analytical routes to the L-amino acid conjugates of cis-OPDA and their identification and quantification in plants. Phytochemistry. 2023:215:113855. 10.1016/j.phytochem.2023.113855 PubMed DOI
Monte I, Caballero J, Zamarreño ÁM, Fernández-Barbero G, García-Mina JM, Solano R. JAZ is essential for ligand specificity of the COI1/JAZ co-receptor. Proc Natl Acad Sci U S A. 2022:119(49):e2212155119. 10.1073/pnas.2212155119 PubMed DOI PMC
Monte I, Ishida S, Zamarreño ÁM, Hamberg M, Franco-Zorrilla JM, García-Casado G, Gouhier-Darimont C, Reymond P, Takahashi K, García-Mina JM, et al. . Ligand-receptor co-evolution shaped the jasmonate pathway in land plants. Nat Chem Biol. 2018:14(5):480–488. 10.1038/s41589-018-0033-4 PubMed DOI
Monte I, Kneeshaw S, Franco-Zorrilla JM, Chini A, Zamarreño ÁM, García-Mina JM, Solano R. An ancient COI1-independent function for reactive electrophilic oxylipins in thermotolerance. Curr Biol. 2020:30(6):962–971. 10.1016/j.cub.2020.01.023 PubMed DOI
Mueller MJ, Berger S. Reactive electrophilic oxylipins: pattern recognition and signalling. Phytochemistry. 2009:70(13-14):1511–1521. 10.1016/j.phytochem.2009.05.018 PubMed DOI
Nishizato Y, Muraoka Y, Morikawa M, Saito R, Kaji T, Ueda M. Identification of “modified OPDA (mo-OPDA)” as a Michael adduct of cis-OPDA. Biosci Biotech Biochem. 2024:88(8):885–891. 10.1093/bbb/zbae056 PubMed DOI
Ohkama-Ohtsu N, Sasaki-Sekimoto Y, Oikawa A, Jikumaru Y, Shinoda S, Inoue E, Kamide Y, Yokohama T, Hirai MY, Shirasu K, et al. . 12-oxo-phytodienoic acid–glutathione conjugate is transported into the vacuole in Arabidopsis. Plant Cell Physiol. 2011:52(1):205–209. 10.1093/pcp/pcq181 PubMed DOI
Park S-W, Li W, Viehhauser A, He B, Kim S, Nilsson AK, Andersson MX, Kittle JD, Ambavan MMR, Luan S, et al. . Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis. Proc Natl Acad Sci U S A. 2013:110(23):9559–9564. 10.1073/pnas.1218872110 PubMed DOI PMC
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001:29(9):e45. 10.1093/nar/29.9.e45 PubMed DOI PMC
Porco S, Pěnčík A, Rashed A, Voß U, Casanova-Sáez R, Bishopp A, Bishopp A, Golebiowska A, Bhosale R, Swarup R, et al. . Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis. Proc Natl Acad Sci U S A. 2016:113(39):11016–11021. 10.1073/pnas.1604375113 PubMed DOI PMC
Poudel AN, Holtsclaw RE, Kimberlin A, Sen S, Zeng S, Joshi T, Lei Z, Summer LW, Singh K, Matsuura H, et al. . 12-Hydroxy-jasmonoyl-L-isoleucine is an active jasmonate that signals through CORONATINE INSENSITIVE 1 and contributes to the wound response in Arabidopsis. Plant Cell Physiol. 2019:60(10):2152–2166. 10.1093/pcp/pcz109 PubMed DOI
Rampey RA, LeClere S, Kowalczyk M, Ljung K, Sandberg G, Bartel B. A family of auxin-conjugate hydrolases that contributes to free indole-3-acetic acid levels during Arabidopsis germination. Plant Physiol. 2004:135(2):978–988. 10.1104/pp.104.039677 PubMed DOI PMC
Saito R, Muto T, Urano H, Kitajima T, Kato N, Kwon E, Ueda M. (3R, 7S)-12-Hydroxy-jasmonoyl-L-isoleucine is the genuine bioactive stereoisomer of a jasmonate metabolite in Arabidopsis thaliana. Plant J. 2023:115(3):709–723. 10.1111/tpj.16256 PubMed DOI
Schulze A, Zimmer M, Mielke S, Stellmach H, Melnyk CW, Hause B, Gasperini D. Wound-induced shoot-to-root relocation of JA-Ile precursors coordinates Arabidopsis growth. Mol Plant. 2019:12(10):1383–1394. 10.1016/j.molp.2019.05.013 PubMed DOI
Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu F-F, Sharon M, Browse J, et al. . Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor. Nature. 2010:468(7322):400–405. 10.1038/nature09430 PubMed DOI PMC
Sherp AM, Westfall CS, Alvarez S, Jez JM. Arabidopsis thaliana GH3.15 acyl acid amido synthetase has a highly specific substrate preference for the auxin precursor indole-3-butyric acid. J Biol Chem. 2018:293(12):4277–4288. 10.1074/jbc.RA118.002006 PubMed DOI PMC
Shinya T, Miyamoto K, Uchida K, Hojo Y, Yumoto E, Okada K, Yamane H, Galis I. Chitooligosaccharide elicitor and oxylipins synergistically elevate phytoalexin production in rice. Plant Mol Biol. 2022:109(4–5):595–609. 10.1007/s11103-021-01217-w PubMed DOI
Široká J, Brunoni F, Pěnčík A, Mik V, Žukauskaitė A, Strnad M, Novák O, Floková K. High-throughput interspecies profiling of acidic plant hormones using miniaturised sample processing. Plant Methods. 2022:18(1):122. 10.1186/s13007-022-00954-3 PubMed DOI PMC
Smirnova E, Marquis V, Poirier L, Aubert Y, Zumsteg J, Ménard R, Miesch L, Heitz T. Jasmonic acid oxidase 2 hydroxylates jasmonic acid and represses basal defense and resistance responses against Botrytis cinerea infection. Mol Plant. 2017:10(9):1159–1173. 10.1016/j.molp.2017.07.010 PubMed DOI
Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell. 2005:17(2):616–627. 10.1105/tpc.104.026690 PubMed DOI PMC
Staswick PE, Tiryaki I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell. 2004:16(8):2117–2127. 10.1105/tpc.104.023549 PubMed DOI PMC
Takaoka Y, Iwahashi M, Chini A, Saito H, Ishimaru Y, Egoshi S, Kato N, Tanaka M, Bashir K, Seki M, et al. . A rationally designed JAZ subtype-selective agonist of jasmonate perception. Nat Commun. 2018:9(1):3654. 10.1038/s41467-018-06135-y PubMed DOI PMC
Takaoka Y, Nagumo K, Azizah IN, Oura S, Iwahashi M, Kato N, Ueda M. A comprehensive in vitro fluorescence anisotropy assay system for screening ligands of the jasmonate COI1-JAZ co-receptor in plants. J Biol Chem. 2019:294(13):5074–5081. 10.1074/jbc.RA118.006639 PubMed DOI PMC
Taki N, Sasaki-Sekimoto Y, Obayashi T, Kikuta A, Kobayashi K, Ainai T, Yagi K, Sakurai N, Suzuki H, Masuda T, et al. . 12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiol. 2005:139(3):1268–1283. 10.1104/pp.105.067058 PubMed DOI PMC
Theodoulou FL, Job K, Slocombe SP, Footitt S, Holdsworth M, Baker A, Larson TR, Graham IA. Jasmonic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants. Implications for transport of jasmonate precursors into peroxisomes. Plant Phys. 2005:137(3):835–840. 10.1104/pp.105.059352 PubMed DOI PMC
Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature. 2007:448(7154):661–665. 10.1038/nature05960 PubMed DOI
Wasternack C, Feussner I. The oxylipin pathways: biochemistry and function. Annu Rev Plant Biol. 2018:69(1):363–386. 10.1146/annurev-arplant-042817-040440 PubMed DOI
Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot. 2013:111(6):1021–1058. 10.1093/aob/mct067 PubMed DOI PMC
Weber H, Vick BA, Farmer EE. Dinor-oxo-phytodienoic acid: a new hexadecanoid signal in the jasmonate family. Proc Natl Acad Sci U S A. 1997:94(19):10473–10478. 10.1073/pnas.94.19.10473 PubMed DOI PMC
Weiler EW, Albrecht T, Groth B, Xia Z-Q, Luxem M, Liß H, Andert L, Spengler P. Evidence for the involvement of jasmonates and their octadecanoid precursors in the tendril coiling response of Bryonia dioica. Phytochemistry. 1993:32(3):591–600. 10.1016/S0031-9422(00)95142-2 DOI
Westfall CS, Sherp AM, Zubieta C, Alvarez S, Schraft E, Marcellin R, Ramirez L, Jez JM. Arabidopsis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis. Proc Natl Acad Sci U S A. 2016:113(48):13917–13922. 10.1073/pnas.1612635113 PubMed DOI PMC
Widemann E, Miesch L, Lugan R, Holder E, Heinrich C, Aubert Y, Miesch M, Pinot F, Heitz T. The amidohydrolases IAR3 and ILL6 contribute to jasmonoyl-isoleucine hormone turnover and generate 12-hydroxyjasmonic acid upon wounding in Arabidopsis leaves. J Biol Chem. 2013:288(44):31701–31714. 10.1074/jbc.M113.499228 PubMed DOI PMC
Yan J, Zhang C, Gu M, Bai Z, Zhang W, Qi T, Cheng Z, Peng W, Luo H, Nan F, et al. . The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell. 2009:21(8):2220–2236. 10.1105/tpc.109.065730 PubMed DOI PMC
Yi R, Du R, Wang J, Yan J, Chu J, Yan J, Shan X, Xie D. Dioxygenase JID1 mediates the modification of OPDA to regulate jasmonate homeostasis. Cell Discov. 2023:9(1):39. 10.1038/s41421-023-00530-6 PubMed DOI PMC
Zhang C, Žukauskaitė A, Petřík I, Pěnčík A, Hönig M, Grúz J, Široká J, Novák O, Doležal K. In situ characterisation of phytohormones from wounded Arabidopsis leaves using desorption electrospray ionisation mass spectrometry imaging. Analyst. 2021:146(8):2653–2663. 10.1039/D0AN02118K PubMed DOI
Zhang T, Poudel AN, Jewell JB, Kitaoka N, Staswick P, Matsuura H, Koo AJ. Hormone crosstalk in wound stress response: wound-inducible amidohydrolases can simultaneously regulate jasmonate and auxin homeostasis in Arabidopsis thaliana. J Exp Bot. 2016:67(7):2107–2120. 10.1093/jxb/erv521 PubMed DOI PMC