High-throughput interspecies profiling of acidic plant hormones using miniaturised sample processing
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-10464Y
Grantová Agentura České Republiky
19-10464Y
Grantová Agentura České Republiky
19-10464Y
Grantová Agentura České Republiky
19-10464Y
Grantová Agentura České Republiky
JG_2020_002
Palacký University Olomouc Young Researcher grant
PubMed
36384566
PubMed Central
PMC9670418
DOI
10.1186/s13007-022-00954-3
PII: 10.1186/s13007-022-00954-3
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printing, Evolutionarily distant plant species, High-throughput, In-tip microSPE, Liquid chromatography, Mass spectrometry, Miniaturisation, Plant hormones,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Acidic phytohormones are small molecules controlling many physiological functions in plants. A comprehensive picture of their profiles including the active forms, precursors and metabolites provides an important insight into ongoing physiological processes and is essential for many biological studies performed on plants. RESULTS: A high-throughput sample preparation method for liquid chromatography-tandem mass spectrometry determination of 25 acidic phytohormones classed as auxins, jasmonates, abscisates and salicylic acid was optimised. The method uses a small amount of plant tissue (less than 10 mg fresh weight) and acidic extraction in 1 mol/L formic acid in 10% aqueous methanol followed by miniaturised purification on reverse phase sorbent accommodated in pipette tips organised in a 3D printed 96-place interface, capable of processing 192 samples in one run. The method was evaluated in terms of process efficiency, recovery and matrix effects as well as establishing validation parameters such as accuracy and precision. The applicability of the method in relation to the amounts of sample collected from distantly related plant species was evaluated and the results for phytohormone profiles are discussed in the context of literature reports. CONCLUSION: The method developed enables high-throughput profiling of acidic phytohormones with minute amounts of plant material, and it is suitable for large scale interspecies studies.
Zobrazit více v PubMed
Casanova-Saez R, Mateo-Bonmati E, Ljung K. Auxin metabolism in plants. Cold Spring Harb Perspect Biol. 2021;13:a039867. PubMed PMC
Hayashi K, Arai K, Aoi Y, Tanaka Y, Hira H, Guo RP, et al. The main oxidative inactivation pathway of the plant hormone auxin. Nat Commun. 2021;12:6752. PubMed PMC
Porco S, Pencik A, Rashed A, Voss U, Casanova-Saez R, Bishopp A, et al. Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis. Proc Natl Acad Sci. 2016;113:11016–11021. PubMed PMC
Tanaka K, Hayashi K, Natsume M, Kamiya Y, Sakakibara H, Kawaide H, et al. UGT74D1 catalyzes the glucosylation of 2-Oxindole-3-acetic acid in the auxin metabolic pathway in arabidopsis. Plant Cell Physiol. 2014;55:218–228. PubMed PMC
Brunoni F, Collani S, Simura J, Schmid M, Bellini C, Ljung K. A bacterial assay for rapid screening of IAA catabolic enzymes. Plant Methods. 2019;15(1):1–10. PubMed PMC
Muller K, Dobrev PI, Pencik A, Hosek P, Vondrakova Z, Filepova R, et al. dioxygenase for auxin oxidation 1 catalyzes the oxidation of IAA amino acid conjugates. Plant Physiol. 2021;187:103–115. PubMed PMC
Ludwig-Muller J. Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot. 2011;62:1757–1773. PubMed
Cooke TJ, Poli D, Sztein AE, Cohen JD. Evolutionary patterns in auxin action. Plant Mol Biol. 2002;49:319–338. PubMed
Zhang J, Peer WA. Auxin homeostasis: the DAO of catabolism. J Exp Bot. 2017;68:3145–3154. PubMed
Brunoni F, Collani S, Casanova-Saez R, Simura J, Karady M, Schmid M, et al. Conifers exhibit a characteristic inactivation of auxin to maintain tissue homeostasis. New Phytol. 2020;226:1753–1765. PubMed
Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. an update to the review in annals of botany. Ann Bot. 2007;2013(111):1021–1058. PubMed PMC
Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, et al. (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol. 2009;5:344–350. PubMed
Wasternack C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot. 2007;100:681–697. PubMed PMC
Han GZ. Evolution of jasmonate biosynthesis and signaling mechanisms. J Exp Bot. 2017;68:1323–1331. PubMed
Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y. Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol. 2020;62:25–54. PubMed
Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Ann Rev Plant Biol. 2005;56:165–185. PubMed
Zhang YL, Li X. Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Curr Opin Plant Biol. 2019;50:29–36. PubMed
Lefevere H, Bauters L, Gheysen G. Salicylic acid biosynthesis in plants. Front Plant Sci. 2020;11:338. PubMed PMC
Dempsey MA, Vlot AC, Wildermuth MC, Klessig DF. Salicylic acid biosynthesis and metabolism. Arabidopsis Book. 2011;9:e0156. PubMed PMC
Hedden P. The current status of research on gibberellin biosynthesis. Plant Cell Physiol. 2020;61:1832–1849. PubMed PMC
Deng T, Wu DP, Duan CF, Yan XH, Du Y, Zou J, et al. Spatial profiling of gibberellins in a single leaf based on microscale matrix solid-phase dispersion and precolumn derivatization coupled with ultraperformance liquid chromatography-tandem mass spectrometry. Anal Chem. 2017;89:9537–9543. PubMed
Hao YH, Zhang Z, Wang L, Liu C, Lei AW, Yuan BF, et al. Stable isotope labeling assisted liquid chromatography-electrospray tandem mass spectrometry for quantitative analysis of endogenous gibberellins. Talanta. 2015;144:341–348. PubMed
Urbanova T, Tarkowska D, Novak O, Hedden P, Strnad M. Analysis of gibberellins as free acids by ultra performance liquid chromatography-tandem mass spectrometry. Talanta. 2013;112:85–94. PubMed
Ljung K. Auxin metabolism and homeostasis during plant development. Development. 2013;140:943–950. PubMed
Wasternack C, Strnad M. Jasmonate signaling in plant stress responses and development—active and inactive compounds. New Biotechnol. 2016;33:604–613. PubMed
Maruri-Lopez I, Yaniri Aviles-Baltazar N, Buchala A, Serrano M. Intra and extracellular journey of the phytohormone salicylic acid. Front Plant Sci. 2019;10:423. PubMed PMC
Trapp MA, De Souza GD, Rodrigues E, Boland W, Mithofer A. Validated method for phytohormone quantification in plants. Front Plant Sci. 2014;5:417. PubMed PMC
Erland LAE, Shukla MR, Glover WB, Saxena PK. A simple and efficient method for analysis of plant growth regulators: a new tool in the chest to combat recalcitrance in plant tissue culture. Plant Cell Tissue Organ Cult. 2017;131:459–470.
Sheflin AM, Kirkwood JS, Wolfe LM, Jahn CE, Broeckling CD, Schachtman DP, et al. High-throughput quantitative analysis of phytohormones in sorghum leaf and root tissue by ultra-performance liquid chromatography-mass spectrometry. Anal Bioanal Chem. 2019;411:4839–4848. PubMed
Yonny ME, Ballesteros-Gomez A, Adamo MLT, Torresi AR, Nazareno MA, Rubio S. Supramolecular solvent-based high-throughput sample treatment for monitoring phytohormones in plant tissues. Talanta. 2020;219:121249. PubMed
Cai WJ, Yu L, Wang W, Sun MX, Feng YQ. Simultaneous determination of multiclass phytohormones in submilligram plant samples by one-pot multifunctional derivatization-assisted liquid chromatography-tandem mass spectrometry. Anal Chem. 2019;91:3492–3499. PubMed
Cao ZY, Sun LH, Mou RX, Zhang LP, Lin XY, Zhu ZW, et al. Profiling of phytohormones and their major metabolites in rice using binary solid-phase extraction and liquid chromatography-triple quadrupole mass spectrometry. J Chromatogr A. 2016;1451:67–74. PubMed
Flokova K, Tarkowska D, Miersch O, Strnad M, Wasternack C, Novak O. UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry. 2014;105:147–157. PubMed
Simura J, Antoniadi I, Siroka J, Tarkowska D, Strnad M, Ljung K, et al. Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiol. 2018;177:476–489. PubMed PMC
Balcke GU, Handrick V, Bergau N, Fichtner M, Henning A, Stellmach H, et al. An UPLC-MS/MS method for highly sensitive high-throughput analysis of phytohormones in plant tissues. Plant Methods. 2012;8:47. PubMed PMC
Miggiels P, Wouters B, van Westen GJP, Dubbelman AC, Hankemeier T. Novel technologies for metabolomics: more for less. Trends Anal Chem. 2019;120:115323.
Burato JSD, Medina DAV, de Toffoli AL, Maciel EVS, Lancas FM. Recent advances and trends in miniaturized sample preparation techniques. J Sep Sci. 2020;43:202–225. PubMed
Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using stagetips. Nat Protoc. 2007;2:1896–1906. PubMed
Svacinova J, Novak O, Plackova L, Lenobel R, Holik J, Strnad M, et al. A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods. 2012;8:17. PubMed PMC
Pencik A, Casanova-Saez R, Pilarova V, Zukauskaite A, Pinto R, Micol JL, et al. Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis. J Exp Bot. 2018;69:2569–2579. PubMed PMC
Miersch O, Neumerkel J, Dippe M, Stenzel I, Wasternack C. Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling. New Phytol. 2008;177:114–127. PubMed
Glauser G, Grata E, Dubugnon L, Rudaz S, Farmer EE, Wolfender JL. Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. J Biol Chem. 2008;283:16400–16407. PubMed
Novak O, Henykova E, Sairanen I, Kowalczyk M, Pospisil T, Ljung K. Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J. 2012;72:523–536. PubMed
Tureckova V, Novak O, Strnad M. Profiling ABA metabolites in Nicotiana tabacum L. leaves by ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Talanta. 2009;80:390–9. PubMed
Stelmach BA, Muller A, Hennig P, Gebhardt S, Schubert-Zsilavecz M, Weiler EW. A novel class of oxylipins, sn1-O-(12-oxophytodienoyl)-sn2-O-(hexadecatrienoyl)-monogalactosyl diglyceride, from Arabidopsis thaliana. J Biol Chem. 2001;276:12832–12838. PubMed
Genva M, Akong FO, Andersson MX, Deleu M, Lins L, Fauconnier ML. New insights into the biosynthesis of esterified oxylipins and their involvement in plant defense and developmental mechanisms. Phytochem Rev. 2019;18:343–358.
Keunchkarian S, Reta M, Romero L, Castells C. Effect of sample solvent on the chromatographic peak shape of analytes eluted under reversed-phase liquid chromatogaphic conditions. J Chromatogr A. 2006;1119:20–28. PubMed
Jang G, Shim JS, Jung C, Song JT, Lee HY, Chung PJ, et al. Volatile methyl jasmonate is a transmissible form of jasmonate and its biosynthesis is involved in systemic jasmonate response in wounding. Plant Biotechnol Rep. 2014;8:409–419.
Matuszewski BK, Constanzer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem. 2003;75:3019–3030. PubMed
Stirk WA, Ordog V, Novak O, Rolcik J, Strnad M, Balint P, et al. Auxin and cytokinin relationships in 24 microalgal strains. J Phycol. 2013;49:459–467. PubMed
Zaveska Drabkova L, Dobrev PI, Motyka V. Phytohormone profiling across the bryophytes. PLoS ONE. 2015;10:e0125411. PubMed PMC
Kosakivska IV, Voytenko LV, Likhnyovskiy RV, Ustinova AY. Effect of temperature on accumulation of abscisic acid and indole-3-acetic acid in Triticum aestivum L seedlings. Genet Plant Physiol. 2014;4(3–4):201–8.
Pavlovic I, Petrik I, Tarkowska D, Lepedus H, Vujcic Bok V, Radic Brkanac S, et al. Correlations between phytohormones and drought tolerance in selected Brassica crops: Chinese cabbage, white cabbage and kale. Int J Mol Sci. 2018;19:2866. PubMed PMC
Junghans U, Polle A, Duchting P, Weiler E, Kuhlman B, Gruber F, et al. Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology. Plant Cell Environ. 2006;29:1519–1531. PubMed
De Zio E, Trupiano D, Karady M, Antoniadi I, Montagnoli A, Terzaghi M, et al. Tissue-specific hormone profiles from woody poplar roots under bending stress. Physiol Plant. 2019;165:101–113. PubMed
Stumpe M, Gobel C, Faltin B, Beike AK, Hause B, Himmelsbach K, et al. The moss Physcomitrella patens contains cyclopentenones but no jasmonates: mutations in allene oxide cyclase lead to reduced fertility and altered sporophyte morphology. New Phytol. 2010;188:740–749. PubMed
De Leon IP, Schmelz EA, Gaggero C, Castro A, Alvarez A, Montesano M. Physcomitrella patens activates reinforcement of the cell wall, programmed cell death and accumulation of evolutionary conserved defence signals, such as salicylic acid and 12-oxo-phytodienoic acid, but not jasmonic acid, upon Botrytis cinerea infection. Mol Plant Pathol. 2012;13:960–974. PubMed PMC
Yamamoto Y, Ohshika J, Takahashi T, Ishizaki K, Kohchi T, Matusuura H, et al. Functional analysis of allene oxide cyclase, MpAOC, in the liverwort Marchantia polymorpha. Phytochemistry. 2015;116:48–56. PubMed
Stintzi A, Weber H, Reymond P, Browse J, Farmer EE. Plant defense in the absence of jasmonic acid: The role of cyclopentenones. Proc Natl Acad Sci. 2001;98:12837–12842. PubMed PMC
Monte I, Kneeshaw S, Franco-Zorrilla JM, Chini A, Zamarreno AM, Garcia-Mina JM, et al. An ancient COI1-independent function for reactive electrophilic oxylipins in thermotolerance. Curr Biol. 2020;30:962–971. PubMed
Alallaq S, Ranjan A, Brunoni F, Novak O, Lakehal A, Bellini C. Red light controls adventitious root regeneration by modulating hormone homeostasis in Picea abies seedlings. Front Plant Sci. 2020;11:586140. PubMed PMC
Hartung W. The evolution of abscisic acid (ABA) and ABA function in lower plants, fungi and lichen. Funct Plant Biol. 2010;37:806–812.
Pashkovskiy PP, Vankova R, Zlobin IE, Dobrev P, Ivanov YV, Kartashov AV, et al. Comparative analysis of abscisic acid levels and expression of abscisic acid-related genes in scots pine and Norway spruce seedlings under water deficit. Plant Physiol Biochem. 2019;140:105–112. PubMed
Kramell R, Schmidt J, Schneider G, Sembdner G, Schreiber K. Synthesis Of N-(Jasmonoyl)amino acid conjugates. Tetrahedron. 1988;44:5791–5807.
Kowalczyk M, Sandberg G. Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis. Plant Physiol. 2001;127:1845–1853. PubMed PMC
Kai K, Horita J, Wakasa K, Miyagawa H. Three oxidative metabolites of indole-3-acetic acid from Arabidopsis thaliana. Phytochemistry. 2007;68:1651–1663. PubMed
Kai K, Nakamura S, Wakasa K, Miyagawa H. Facile preparation of deuterium-labeled standards of indole-3-acetic acid (IAA) and its metabolites to quantitatively analyze the disposition of exogenous IAA in Arabidopsis thaliana. Biosci Biotechnol Biochem. 2007;71:1946–1954. PubMed
Pavlovic I, Pencik A, Novak O, Vujcic V, Brkanac SR, Lepedus H, et al. Short-term salt stress in Brassica rapa seedlings causes alterations in auxin metabolism. Plant Physiol Biochem. 2018;125:74–84. PubMed
Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. 2. California: California agricultural experiment station; 1950.
Bischoff HW, Bold HC. Phycological studies IV some soil algae from enchanted rock and related algal species. Texas: Univ Texas Publ; 1963.
Can plant hormonomics be built on simple analysis? A review
Metabolic profiles of 2-oxindole-3-acetyl-amino acid conjugates differ in various plant species