Correlations between Phytohormones and Drought Tolerance in Selected Brassica Crops: Chinese Cabbage, White Cabbage and Kale
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IP-2014-09-4359
Hrvatska Zaklada za Znanost
LO1204
Ministry of Education, Youth and Sports of the Czech Republic
17-06613S
Czech Science Foundation
PubMed
30241414
PubMed Central
PMC6213169
DOI
10.3390/ijms19102866
PII: ijms19102866
Knihovny.cz E-zdroje
- Klíčová slova
- Brassica crops, drought, phytohormones, recovery, tolerance,
- MeSH
- Brassica klasifikace genetika metabolismus MeSH
- fyziologický stres * MeSH
- období sucha * MeSH
- regulace genové exprese u rostlin * MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostlinné proteiny genetika metabolismus MeSH
- stanovení celkové genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- regulátory růstu rostlin MeSH
- rostlinné proteiny MeSH
Drought is one of the major abiotic stresses affecting the productivity of Brassica crops. To understand the role of phytohormones in drought tolerance, we subjected Chinese cabbage (B. rapa ssp. pekinensis), white cabbage (B. oleracea var. capitata), and kale (B. oleracea var. acephala) to drought and examined the stress response on the physiological, biochemical and hormonal levels. The phytohormones abscisic acid (ABA), auxin indole-3-acetic acid (IAA), brassinosteroids (BRs), cytokinins (CKs), jasmonates (JAs), and salicylic acid (SA) were analyzed by ultra-high-performance liquid chromatography⁻tandem mass spectrometry (UHPLC-MS/MS). Based on the physiological and biochemical markers the Chinese cabbage exhibited the lowest tolerance, followed by the white cabbage, while the kale appeared to be the most tolerant to drought. The drought tolerance of the kale correlated with increased levels of SA, ABA, IAA, CKs iP(R) and cZ(R), and typhasterol (TY), a precursor of active BRs. In contrast, the drought sensitivity of the Chinese cabbage correlated with a significant increase in ABA, JAs and the active BRs castasterol (CS) and brassinolide (BL). The moderately tolerant white cabbage, positioned between the kale and Chinese cabbage, showed more similarity in terms of the phytohormone patterns with the kale. We concluded that the drought tolerance in Brassicaceae is mostly determined by the increased endogenous levels of IAA, CKs, ABA and SA and the decreased levels of active BRs.
Department of Biology Faculty of Science University of Zagreb Rooseveltov trg 6 Zagreb 10000 Croatia
Zobrazit více v PubMed
Wikipedia, the Free Encyclopedia. [(accessed on 11 September 2018)]; Available online: https://en.wikipedia.org/wiki/Cabbage.
Trenberth K.E., Dai A.G., van der Schrier G., Jones P.D., Barichivich J., Briffa K.R., Sheffield J. Global warming and changes in drought. Nat. Clim. Chang. 2014;4:17–22. doi: 10.1038/nclimate2067. DOI
Zhang X.K., Lu G.Y., Long W.H., Zou X.L., Li F., Nishio T. Recent progress in drought and salt tolerance studies in Brassica crops. Breed. Sci. 2014;64:60–73. doi: 10.1270/jsbbs.64.60. PubMed DOI PMC
Daliakopoulos I.N., Panagea I.S., Tsanis I.K., Grillakis M.G., Koutroulis A.G., Hessel R., Mayor A.G., Ritsema C.J. Yield response of Mediteranean rangelands under a changing climate. Land Degrad. Dev. 2017;28:1962–1972. doi: 10.1002/ldr.2717. DOI
Janiak A., Kwaśniewski M., Szarejko I. Gene expression regulation in roots under drought. J. Exp. Bot. 2016;67:1003–1014. doi: 10.1093/jxb/erv512. PubMed DOI
Golldack D., Li C., Mohan H., Probst N. Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Front. Plant Sci. 2014;5:151. doi: 10.3389/fpls.2014.00151. PubMed DOI PMC
Llanes A., Andrade A., Alemano S., Luna V. Alterations of endogenous hormonal levels in plants under drought and salinity. Am. J. Plant Sci. 2016;7:1357–1371. doi: 10.4236/ajps.2016.79129. DOI
Tiwari S., Lata C., Chauhan P.S., Prasad V., Prasad M. A functional genomic perspective on drought signalling with phytohormone-mediated signalling pathways in plants and its crosstalk. Curr. Genom. 2017;18:469–482. doi: 10.2174/1389202918666170605083319. PubMed DOI PMC
Ratnakumar P., Khan M.I.R., Minhas P.S., Farooq M.A., Sultana R., Per T.S., Deokate P.P., Khan N.A., Singh Y., Rane J. Can plant bio-regulators minimize crop productivity losses caused by drought, salinity and heat stress? An integrated review. J. Appl. Bot. Food Qual. 2016;89:113–125. doi: 10.5073/JABFQ.2016.089.014. DOI
Wani S.H., Kumar V., Shriram V., Saroj Kumar Sah S.K. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 2016;4:162–176. doi: 10.1016/j.cj.2016.01.010. DOI
Liu T., Song X., Duan W., Huang Z., Liu G., Li Y., Hou X. Genome-wide analysis and expression patterns of NAC transcription factor family under different developmental stages and abiotic stresses in Chinese cabbage. Plant Mol. Biol. Rep. 2014;32:1041–1056. doi: 10.1007/s11105-014-0712-6. DOI
Paul P., Dhandapani V., Rameneni J.J., Li X., Sivanandhan G., Choi S.R., Pang W., Im S., Lim Y.P. Genome-wide analysis and characterization of Aux/IAA family genes in Brassica rapa. PLoS ONE. 2016;11:e0151522. doi: 10.1371/journal.pone.0151522. PubMed DOI PMC
Saha G., Park J.-I., Kayum M.A., Nou I.-S. A Genome-wide analysis reveals stress and hormone responsive patterns of TIFY family genes in Brassica rapa. Front. Plant Sci. 2016;7:936. doi: 10.3389/fpls.2016.00936. PubMed DOI PMC
Bhardwaj A.R., Joshi G., Kukreja B., Malik V., Arora P., Pandey R., Shukla R.N., Bankar K.G., Katiyar-Agarwal S., Goel S., et al. Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea. BMC Plant Biol. 2015;15:9. doi: 10.1186/s12870-014-0405-1. PubMed DOI PMC
Kumar M., Choi J.-Y., Kumari N., Pareek A., Kim S.-R. Molecular breeding in Brassica for salt tolerance: Importance of microsatellite (SSR) markers for molecular breeding in Brassica. Front. Plant Sci. 2015;6:688. doi: 10.3389/fpls.2015.00688. PubMed DOI PMC
Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009;29:185–212. doi: 10.1051/agro:2008021. DOI
Ashraf M., Harris P.J.C. Photosynthesis under stressful environments: An overview. Photosynthetica. 2013;51:163–190. doi: 10.1007/s11099-013-0021-6. DOI
Oukarroum A., El Madidi S., Schansker G., Strasser R.J. Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ. Exp. Bot. 2007;60:438–446. doi: 10.1016/j.envexpbot.2007.01.002. DOI
Živčák M., Brestič M., Olšovská K., Slamka P. Performance index as a sensitive indicator of water stress in Triticum aestivum L. Plant Soil Environ. 2008;54:133–139. doi: 10.17221/392-PSE. DOI
Antunović Dunić J., Lepeduš H., Šimić D., Lalić A., Mlinarić S., Kovačević J., Cesar V. Physiological response to different irradiation regimes during barley seedlings growth followed by drought stress under non-photoinhibitory light. Agric. Sci. 2015;7:69–83. doi: 10.5539/jas.v7n6p69. DOI
Goltsev V., Zaharieva I., Chernev P., Kouzmanova M., Kalaji M.H., Yordanov I., Krasteva V., Alexandrov V., Stefanov D., Allakhverdiev S.I., et al. Drought-induced modifications of photosynthetic electron transport in intact leaves: Analysis and use of neural networks as a tool for a rapid non-invasive estimation. Biochim. Biophys. Acta Bioenerg. 2012;1817:1490–1498. doi: 10.1016/j.bbabio.2012.04.018. PubMed DOI
Kalaji H.M., Jajoo A., Oukarroum A., Brestic M., Zivcak M., Samborska I.A., Cetner M.D., Łukasik I., Goltsev V., Ladle R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 2016;38:3–11. doi: 10.1007/s11738-016-2113-y. DOI
Liang X., Zhang L., Natarajan S.K., Becker D.F. Proline mechanisms of stress survival. Antioxid. Redox Sign. 2013;19:998–1011. doi: 10.1089/ars.2012.5074. PubMed DOI PMC
Soshinkova T.N., Radyukina N.L., Korolkova D.V., Nosov A.V. Proline and functioning of the antioxidant system in Thellungiella salsuginea plants and cultured cells subjected to oxidative stress. Russ. J. Plant Physiol. 2013;60:41–54. doi: 10.1134/S1021443713010093. DOI
Distefano S., Palma J.M., McCarthy I., del Rio L.A. Proteolytic cleavage of plant proteins by peroxisomal endoproteases from senescent pea leaves. Planta. 1999;209:308–313. PubMed
Kishor P.B.K., Sreenivasulu N. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ. 2014;37:300–311. doi: 10.1111/pce.12157. PubMed DOI
Vishwakarma K., Upadhyay N., Kumar N., Yadav G., Singh J., Mishra R.K., Kumar V., Verma R., Upadhyay R.G., Pandey M., et al. Abscisic acid signaling and abiotic stress tolerance in plants: A review on current knowledge and future prospects. Front. Plant Sci. 2017;8:161. doi: 10.3389/fpls.2017.00161. PubMed DOI PMC
Li Z., Yu J., Peng Y., Huang B. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera) Physiol. Plant. 2017;159:42–58. doi: 10.1111/ppl.12483. PubMed DOI
Kurahashi Y., Terashima A., Takumi S. Variation in dehydration tolerance, ABA sensitivity and related gene expression patterns in D-genome progenitor and synthetic hexaploid wheat lines. Int. J. Mol. Sci. 2009;10:2733–2751. doi: 10.3390/ijms10062733. PubMed DOI PMC
Li X., Li G., Li Y., Kong X., Zhang L., Wang J., Li X., Yang Y. ABA receptor subfamily III enhances Abscisic Acid sensitivity and improves the drought tolerance of Arabidopsis. Int. J. Mol. Sci. 2018;19:1938. doi: 10.3390/ijms19071938. PubMed DOI PMC
Kumar M., Choi J., An G., Kim S.-R. Ectopic expression of OsSta2 enhances salt stress tolerance in rice. Front. Plant Sci. 2017;8:316. doi: 10.3389/fpls.2017.00316. PubMed DOI PMC
Khan M.I.R., Fatma M., Per T.S., Anjum N.A., Khan N.A. Salicylic acid-induced a biotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci. 2015;6:462. doi: 10.3389/fpls.2015.00462. PubMed DOI PMC
Miura K., Tada Y. Regulation of water, salinity, and cold stress responses by salicylic acid. Front. Plant Sci. 2014;5:4. doi: 10.3389/fpls.2014.00004. PubMed DOI PMC
Gururani M.A., Venkatesh J., Tran L.S.P. Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol. Plant. 2015;8:1304–1320. doi: 10.1016/j.molp.2015.05.005. PubMed DOI
Per T.S., Khan M.I.R., Anjum N.A., Masood A., Hussain S.J., Khan N.A. Jasmonates in plants under abiotic stresses: Crosstalk with other phytohormones matters. Environ. Exp. Bot. 2018;145:104–120. doi: 10.1016/j.envexpbot.2017.11.004. DOI
Riemann M., Dhakarey R., Hazman M., Miro B., Kohli A., Nick P. Exploring jasmonates in the hormonal network of drought and salinity responses. Front. Plant Sci. 2015;6:1077. doi: 10.3389/fpls.2015.01077. PubMed DOI PMC
Savchenko T., Kolla V.A., Wang C.Q., Nasafi Z., Hicks D.R., Phadungchob B., Chehab W.E., Brandizzi F., Froehlich J., Dehesh K. Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. Plant Physiol. 2014;164:1151–1160. doi: 10.1104/pp.113.234310. PubMed DOI PMC
Deb A., Grewal R.K., Kundu S. Regulatory cross-talks and cascades in rice hormone biosynthesis pathways contribute to stress signaling. Front. Plant Sci. 2016;7:1303. doi: 10.3389/fpls.2016.01303. PubMed DOI PMC
Northey J.G., Liang S., Jamshed M., Deb S., Foo E., Reid J.B., McCourt P., Samuel M.A. Farnesylation mediates brassinosteroid biosynthesis to regulate abscisic acid responses. Nat. Plants. 2016;2:16114. doi: 10.1038/nplants.2016.114. PubMed DOI
Han J.Y., Kim Y.S., Hwang O.J., Roh J., Ganguly K., Kim S.K., Hwang I., Kim J.I. Overexpression of Arabidopsis thaliana brassinosteroid-related acyltransferase 1 gene induces brassinosteroid-deficient phenotypes in creeping bentgrass. PLoS ONE. 2017;12:e0187378. doi: 10.1371/journal.pone.0187378. PubMed DOI PMC
Janeczko A., Gruszka D., Pociecha E., Dziurka M., Filek M., Jurczyk B., Kalaji H.M., Kocurek M., Waligórski P. Physiological and biochemical characterisation of watered and drought-stressed barley mutants in the HvDWARF gene encoding C6-oxidase involved in brassinosteroid biosynthesis. Plant Physiol. Biochem. 2016;99:126–141. doi: 10.1016/j.plaphy.2015.12.003. PubMed DOI
Naser V., Shani E. Auxin response under osmotic stress. Plant Mol. Biol. 2016;91:661–672. doi: 10.1007/s11103-016-0476-5. PubMed DOI
Hu L., Xie Y., Fan S., Wang Z., Wang F., Zhang B., Li H., Song J., Kong L. Comparative analysis of root transcriptome profiles between drought-tolerant and susceptible wheat genotypes in response to water stress. Plant Sci. 2018;272:276–293. doi: 10.1016/j.plantsci.2018.03.036. PubMed DOI
Lee M., Jung J.H., Han D.Y., Seo P.J., Park W.J., Park C.M. Activation of a flavin monooxygenase gene YUCCA7 enhances drought resistance in Arabidopsis. Planta. 2012;235:923–938. doi: 10.1007/s00425-011-1552-3. PubMed DOI
Shi H.T., Chen L., Ye T.T., Liu X.D., Ding K.J., Chan Z.L. Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiol. Biochem. 2014;82:209–217. doi: 10.1016/j.plaphy.2014.06.008. PubMed DOI
Kim J.I., Baek D., Park H.C., Chun H.J., Oh D.H., Lee M.K., Cha J.Y., Kim W.Y., Kim M.C., Chung W.S. Overexpression of Arabidopsis YUCCA6 in potato results in high auxin developmental phenotypes and enhanced resistance to water deficit. Mol. Plant. 2013;6:337–349. doi: 10.1093/mp/sss100. PubMed DOI
Ke Q., Wang Z., Ji C.Y., Jeong J.C., Lee H.-S., Li H., Xu B., Deng X., Kwak S.-S. Transgenic poplar expressing Arabidopsis YUCCA6 exhibits auxin-overproduction phenotypes and increased tolerance to abiotic stress. Plant Physiol. Biochem. 2015;94:19–27. doi: 10.1016/j.plaphy.2015.05.003. PubMed DOI
Bielach A., Hrtyan M., Tognetti V.B. Plants under stress: Involvement of auxin and cytokinin. Int. J. Mol. Sci. 2017;18:1427. doi: 10.3390/ijms18071427. PubMed DOI PMC
Pospíšilová H., Jiskrová E., Vojta P., Mrízová K., Kokáš F., Čudejková M.M., Bergougnoux V., Plíhal O., Klimešová J., Novák O., et al. Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress. New Biotechnol. 2016;33:692–705. doi: 10.1016/j.nbt.2015.12.005. PubMed DOI
Verslues P.E. ABA and cytokinins: Challenge and opportunity for plant stress research. Plant Mol. Biol. 2016;91:629–640. doi: 10.1007/s11103-016-0458-7. PubMed DOI
Schäfer M., Brütting C., Meza-Canales I.D., Großkinsky D.K., Vankova R., Baldwin I.T., Meldau S. The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J. Exp. Bot. 2015;66:4873–4884. doi: 10.1093/jxb/erv214. PubMed DOI PMC
Havlová M., Dobrev P.I., Motyka V., Štrochová H., Libus J., Dobrá J., Malbeck J., Gaudinová A., Vaňková R. The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under 35S or SAG12 promoters. Plant Cell Environ. 2008;31:341–353. doi: 10.1111/j.1365-3040.2007.01766.x. PubMed DOI
Li Y.J., Wang B., Dong R.R., Hou B.K. AtUGT76C2, an Arabidopsis cytokinin glycosyltransferase is involved in drought stress adaptation. Plant Sci. 2015;236:157–167. doi: 10.1016/j.plantsci.2015.04.002. PubMed DOI
Todaka D., Zhao Y., Yoshida T., Kudo M., Kidokoro S., Mizoi J., Kodaira K.-S., Takebayashi Y., Kojima M., Sakakibara H., et al. Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. Plant J. 2017;90:61–78. doi: 10.1111/tpj.13468. PubMed DOI
Ha S., Vankova R., Yamaguchi-Shinozaki K., Shinozaki K., Phan Tran L.S. Cytokinins: Metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci. 2012;17:172–179. doi: 10.1016/j.tplants.2011.12.005. PubMed DOI
Zhu Z.S., Sun B.M., Xu X.X., Chen H., Zou L.F., Chen G.J., Cao B.H., Chen C.M., Lei J.J. Overexpression of AtEDT1/HDG11 in Chinese kale (Brassica oleracea var. alboglabra) enhances drought and osmotic stress tolerance. Front. Plant Sci. 2016;7:1285. doi: 10.3389/fpls.2016.01285. PubMed DOI PMC
Khanna P., Kaur K., Gupta A.K. Salicylic acid induces differential antioxidant response in spring maize under high temperature stress. Indian J. Exp. Biol. 2016;54:386–393. PubMed
Fahad S., Hussain S., Matloob A., Khan F.A., Khaliq A., Saud S., Hassan S., Shan D., Khan F., Ullah N., et al. Phytohormones and plant responses to salinity stress: A review. Plant Growth Regul. 2015;75:391–404. doi: 10.1007/s10725-014-0013-y. DOI
Gruszka D., Janeczko A., Dziurka M., Pociecha E., Oklestkova J., Szarejko I. Barley brassinosteroid mutants provide an insight into phytohormonal homeostasis in plant reaction to drought stress. Front. Plant Sci. 2016;7:1824. doi: 10.3389/fpls.2016.01824. PubMed DOI PMC
Strasser R.J., Tsimilli-Michael M., Srivastava A. Analysis of the Chlorophyll a Fluorescence Transient. In: Papageorgiou G.C., Govinjee, editors. Chlorophyll a Fluorescence: A Signature of photosynthesis. Volume 19. Springer; Dordrecht, The Netherlands: 2004. pp. 321–362.
Radić S., Cvjetko P., Glavaš K., Roje V., Pevalek-Kozlina B., Pavlica M. Oxidative stress and DNA damage in broad bean (Vicia faba L.) seedlings induced by thallium. Environ. Toxicol. Chem. 2009;28:189–196. doi: 10.1897/08-188.1. PubMed DOI
Floková K., Tarkowská D., Miersch O., Strnad M., Wasternack C., Novák O. UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry. 2014;105:147–157. doi: 10.1016/j.phytochem.2014.05.015. PubMed DOI
Antoniadi I., Plačková L., Simonovik B., Doležal K., Turnbull C., Ljung K., Novák O. Cell-type specific cytokinin distribution within the Arabidopsis primary root apex. Plant Cell. 2015;27:1955–1967. doi: 10.1105/tpc.15.00176. PubMed DOI PMC
Tarkowská D., Novák O., Oklestkova J., Strnad M. The determination of twenty-two natural brassinosteroids in a minute sample of plant tissue by UHPLC-ESI-MS/MS. Anal. Bioanal. Chem. 2016;408:6799–6812. doi: 10.1007/s00216-016-9807-2. PubMed DOI
Novák O., Hényková E., Sairanen I., Kowalczyk M., Pospíšil T., Ljung K. Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J. 2012;7:523–536. doi: 10.1111/j.1365-313X.2012.05085.x. PubMed DOI
Svačinová J., Novák O., Plačková L., Lenobel R., Holík J., Strnad M., Doležal K. A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: Pipette tip solid-phase extraction. Plant Methods. 2012;8:17. doi: 10.1186/1746-4811-8-17. PubMed DOI PMC
Martín-Fernández J.A., Barceló-Vidal C., Pawlowsky-Glahn V. Dealing with zeros and missing values in compositional data sets using nonparametric imputation. Math. Geol. 2003;35:253–278. doi: 10.1023/A:1023866030544. DOI
High-throughput interspecies profiling of acidic plant hormones using miniaturised sample processing