Timing-dependent effects of salicylic acid treatment on phytohormonal changes, ROS regulation, and antioxidant defense in salinized barley (Hordeum vulgare L.)
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32807910
PubMed Central
PMC7431421
DOI
10.1038/s41598-020-70807-3
PII: 10.1038/s41598-020-70807-3
Knihovny.cz E-zdroje
- MeSH
- antioxidancia metabolismus MeSH
- biomasa MeSH
- časové faktory MeSH
- chlorofyl a metabolismus MeSH
- chlorofyl metabolismus MeSH
- ječmen (rod) účinky léků růst a vývoj fyziologie MeSH
- kyselina salicylová farmakologie MeSH
- látky reagující s kyselinou thiobarbiturovou metabolismus MeSH
- listy rostlin účinky léků fyziologie MeSH
- prolin metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- regulátory růstu rostlin farmakologie MeSH
- solný stres účinky léků MeSH
- voda MeSH
- výhonky rostlin účinky léků růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antioxidancia MeSH
- chlorofyl a MeSH
- chlorofyl MeSH
- chlorophyll b MeSH Prohlížeč
- kyselina salicylová MeSH
- látky reagující s kyselinou thiobarbiturovou MeSH
- prolin MeSH
- reaktivní formy kyslíku MeSH
- regulátory růstu rostlin MeSH
- voda MeSH
Cross-talk between exogenous salicylic acid (SA) and endogenous phytohormone pathways affects the antioxidant defense system and its response to salt stress. The study presented here investigated the effects of SA treatment before and during salt stress on the levels of endogenous plant growth regulators in three barley cultivars with different salinity tolerances: Hordeum vulgare L. cvs. Akhisar (sensitive), Erginel (moderate), and Kalaycı (tolerant). The cultivars' relative leaf water contents, growth parameters, proline contents, chlorophyll a/b ratios, and lipid peroxidation levels were measured, along with the activities of enzymes involved in detoxifying reactive oxygen species (ROS) including superoxide-dismutase, peroxidase, catalase, ascorbate-peroxidase, and glutathione-reductase. In addition, levels of several endogenous phytohormones (indole-3-acetic-acid, cytokinins, abscisic acid, jasmonic acid, and ethylene) were measured. Barley is known to be more salt tolerant than related plant species. Accordingly, none of the studied cultivars exhibited changes in membrane lipid peroxidation under salt stress. However, they responded differently to salt-stress with respect to their accumulation of phytohormones and antioxidant enzyme activity. The strongest and weakest increases in ABA and proline accumulation were observed in Kalaycı and Akhisar, respectively, suggesting that salt-stress was more effectively managed in Kalaycı. The effects of exogenous SA treatment depended on both the timing of the treatment and the cultivar to which it was applied. In general, however, where SA helped mitigate salt stress, it appeared to do so by increasing ROS scavenging capacity and antioxidant enzyme activity. SA treatment also induced changes in phytohormone levels, presumably as a consequence of SA-phytohormone salt-stress cross-talk.
Faculty of Agriculture and Natural Science Düzce University Düzce Turkey
Faculty of Science Karadeniz Technical University Trabzon Turkey
Zobrazit více v PubMed
Baik BK, Ullrich SE. Barley for food: characteristics, improvement, and renewed interest. J. Cereal Sci. 2008;48:233–242.
Seckin B, Türkan I, Sekmen AH, Ozfidan C. The role of antioxidant defense system at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (cultivated barley) Environ. Exp. Bot. 2010;69:76–85.
Nazar R, Iqbal N, Syeed S, Khan NA. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mung bean cultivars. J. Plant Physiol. 2011;168:807–815. PubMed
Gong B, et al. Comparative effects of NaCl and NaHCO3 stress on photosynthetic parameters, nutrient metabolism, and the antioxidant system in tomato leaves. Sci. Hort. 2013;157:1–12.
Miller G, Shulaev V, Mittler R. Reactive oxygen signalling and abiotic stress. Physiol. Plant. 2008;133:481–489. PubMed
Duan B, et al. Interactions between drought stress, ABA and genotypes in Picea asperata. J. Exp. Bot. 2007;58:3025–3036. PubMed
Mittler M. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7:405–410. PubMed
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010;48:909–930. PubMed
Vanková R, et al. Dynamics of cold acclimation and complex phytohormone responses in Triticum monococcum lines G3116 and DV92 differing in vernalization and frost tolerance level. Environ. Exp. Bot. 2014;101:12–25.
Kosová K, et al. Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter samanta and spring sandra. J. Plant Physiol. 2012;169:567–576. PubMed
Parida AK, Das AB. Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Saf. 2005;60:324–349. PubMed
Moons A, Prinsen E, Bauw G, Van Montagu M. Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots. Plant Cell. 1997;9(12):2243–2259. PubMed PMC
Khadri M, Tejera NA, Lluch C. Sodium chloride-ABA interaction in two common bean (Phaseolus vulgaris) cultivars differing in salinity tolerance. Environ. Exp. Bot. 2007;60:211–218.
Ashraf M, Akram NA, Arteca NA, Foolad MR. The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit. Rev. Plant Sci. 2010;29:162–190.
Asensi-Fabado MA, et al. Enhanced oxidative stress in the ethylene-insensitive (ein3-1) mutant of Arabidopsis thaliana exposed to salt stress. J. Plant Physiol. 2012;169:360–368. PubMed
Iqbal N, Umar S, Khan NA, Khan MIR. A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ. Exp. Bot. 2014;100:34–42.
Raskin I. Role of salicylic acid in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1992;43:439–463.
Horváth E, Szalai G, Janda T. Induction of abiotic stress tolerance by salicylic acid signaling. J. Plant Growth Regul. 2007;26:290–300.
Arfan M, Athar HR, Ashraf M. Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J. Plant Physiol. 2007;164(6):685–694. PubMed
Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S. Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. J. Exp. Bot. 2013;64:2255–2268. PubMed PMC
El-Tayeb MA. Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul. 2005;45:215–224.
Peleg Z, Blumwald E. Hormone balance and abiotic stress tolerance in crop plants. Curr. Opin. Plant Biol. 2011;14:290–295. PubMed
Albacete A, et al. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J. Exp. Bot. 2008;59:4119–4131. PubMed PMC
Torre-González A, Navarro-León E, Albacete A, Blasco B, Ruiz JM. Study of phytohormone profile and oxidative metabolism as key process to identification of salinity response in tomato commercial genotypes. J. Plant Physiol. 2017;216:164–173. PubMed
Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci. 2003;164:317–322.
Fahad S, Bano A. Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pak. J. Bot. 2012;44:1433–1438.
Xia X-J, et al. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J. Exp. Bot. 2015;66(10):2839–2856. PubMed
Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S. Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regul. 2015;76:25–40.
Mittler R, et al. ROS signaling: the new wave? Trends Plant Sci. 2011;16:300–309. PubMed
Koca H, Bor M, Özdemir F, Türkan I. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ. Exp. Bot. 2007;60:344–351.
Li R, Shi F, Fukuda K, Yang Y. Effects of salt and alkali stresses on germination, growth, photosynthesis and ion accumulation in alfalfa (Medicago sativa L.) Soil Sci. Plant Nutr. 2010;56:725–733.
Tartoura KAH, Youssef SA, Tartoura SAA. Compost alleviates the negative effects of salinity via upregulation of antioxidants in Solanum lycopersicum L. plants. Plant Growth Regul. 2014;74:299–310.
Sekmen AH, Turkan I, Takio S. Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritime and salt-sensitive Plantago media. Physiol. Plant. 2007;131:399–411. PubMed
Farhangi-Abriz S, Ghassemi-Golezani K. How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants? Ecotoxicol. Environ. Saf. 2018;147(1):1010–1016. PubMed
Gedik, O. & Uslu, O. S. The tolerance of some barley cultivars to salt stress. 2nd International Conference on Agriculture, Technology, Engineering and Sciences. https://www.researchgate.net/publication/338160121 (2019).
Gunes A, et al. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J. Plant Physiol. 2007;164:728–736. PubMed
Islam S, Malik AI, Islam AK, Colmer TD. Salt tolerance in a Hordeum marinum-Triticum aestivum amphiploid, and its parents. J. Exp. Bot. 2007;58:1219–1229. PubMed
Chandra A, Bhatt RK. Biochemical physiological response to salicylic acid in relation to the systemic acquired resistance. Photosynthetica. 1998;35:255–258.
Jiang Y, Huang B. Drought and heat stress injury to two cool season turf grasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci. 2001;41:436–442.
Asada K. Ascorbate peroxidase: a hydrogen peroxide-scavenging enzyme in plants. Physiol. Plant. 1992;85:235–241.
Larkindale J, Huang B. Thermotolerance and antioxidant system in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J. Plant Physiol. 2004;61:405–413. PubMed
Chen Z, Silva H, Klessig DF. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science. 1993;262:1883–1886. PubMed
Klessig DF, et al. Nitric oxide and salicylic acid signaling in plant defense. Proc. Natl. Acad. Sci. USA. 2000;97:8849–8855. PubMed PMC
Ma X, Zheng J, Zhang X, Hu Q, Qian R. Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus (Caryophyllaceae) by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system. Front. Plant Sci. 2017;8:600. doi: 10.3389/fpls.2017.00600. PubMed DOI PMC
Wang Y, Mopper S, Hasentein KH. Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J. Chem. Ecol. 2001;27:327–342. PubMed
Dhindsa RS, Amaral AC, Cleland RE. Rapid reduction by IAA of malondialdehyde levels in Avena coleoptiles, a possible effect on lipid peroxidation. Biochem. Biophys. Res. Commun. 1984;125(1):76–81. PubMed
Keskin BC, Sarikaya AT, Yuksel B, Memon AR. Abscisic acid regulated gene expression in bread wheat. Aust. J. Crop Sci. 2010;4:617–625.
Amjad M, et al. Integrating role of ethylene and ABA in tomato plants adaptation to salt stress. Sci. Hortic. 2014;172:109–116.
Pospíšilová J. Interaction of cytokinins and abscisic acid during regulation of stomatal opening in bean leaves. Photosynthetica. 2003;41:49–56.
Pavlović I, et al. Correlations between phytohormones and drought tolerance in selected Brassica crops: Chinese cabbage, white cabbage and kale. Int. J. Mol. Sci. 2018;19(10):2866. doi: 10.3390/ijms19102866. PubMed DOI PMC
Ghanem ME, et al. Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants. J. Exp. Bot. 2011;62:125–140. PubMed PMC
Wasternack C, Hause B. Jasmonates and octadecanoids: signals in plant stress responses and plant development. Prog. Nucleic Acid Res. Mol. Biol. 2002;72:165–221. PubMed
Ruan J, et al. Jasmonic acid signaling pathway in plants. Int. J. Mol. Sci. 2019;20:2479. doi: 10.3390/ijms20102479. PubMed DOI PMC
Anderson JP, et al. Antagonistic interaction between abscisic acid and jasmonate–ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell. 2004;16:3460–3479. PubMed PMC
Singh PK, Gautam S. Role of salicylic acid on physiological and biochemical mechanism of salinity stress tolerance in plants. Acta Physiol. Plant. 2013;35:2345–2353.
Pedranzani H, et al. Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul. 2003;41:149–158.
Vahala J, Keinänen M, Schützendübel A, Polle A, Kangasjärvi J. Differential effects of elevated ozone on two hybrid aspen genotypes predisposed to chronic ozone fumigation. Role of ethylene and salicylic acid. Plant Physiol. 2003;132(1):196–205. PubMed PMC
Lee JH, Jin ES, Kim WT. Inhibition of auxin-induced ethylene production by salicylic acid in mung bean hypocotyls. J. Plant Biol. 1999;42(1):1–7.
Huang N, Chandler J, Thomas BR, Koizumi N, Rodriguez RL. Metabolic regulation of a-amylase gene expression in transgenic cell culture of rice (Oryza sativa L.) Plant Mol. Biol. 1993;23:737–747. PubMed
Beaudoin N, Serizet C, Gosti F, Giraudet J. Interactions between abscisic acid and ethylene signaling cascades. Plant Cell. 2000;12:1105–1118. PubMed PMC
Hoagland DR, Arnon DI. The water culture method for growing plants without soil. Circ. Calif. Agric. Exp. Stn. 1950;347:1–32.
Arnon DI. Copper enzymes in isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949;24:1–15. PubMed PMC
Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water stress studies. Plant Soil. 1973;39:205–207.
Heath RL, Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968;125:189–198. PubMed
Bradford MM. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of the protein–dye binding. Anal. Biochem. 1976;72:248–254. PubMed
Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971;44:276–287. PubMed
Mika A, Lüthje S. Properties of guaiacol peroxidase activities isolated from corn root plasma membranes. Plant Physiol. 2003;132:1489–1498. PubMed PMC
Aebi H. Catalase in vitro. In: Colowick SP, Kaplan NO, editors. Methods in Enzymology. Orlando: Academic Press; 1984. pp. 114–121. PubMed
Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22:867–880.
Foyer CH, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta. 1976;133:21–25. PubMed
Pencík A, et al. Isolation of novel indole-3-acetic acid conjugates by immunoaffinity extraction. Talanta. 2009;80:651–655. PubMed
Novák O, et al. Quantitative analysis of cytokinins in plants by liquid chromatography/single-quadrupole mass spectrometry. Anal. Chim. Acta. 2003;480:207–218.
Novák O, Hauserová E, Amakorová P, Dolezal K, Strnad M. Cytokinin profiling in plant tissues using ultra-performance liquid chromatography–electrospray tandem mass spectrometry. Phytochemistry. 2008;69:2214–2224. PubMed
Turecková V, Novák O, Strnad M. Profiling ABA metabolites in Nicotiana tabacum L. leaves by ultra-performance liquid chromatography–electrospray tandem mass spectrometry. Talanta. 2009;80:390–399. PubMed
Floková K, et al. UHPLC–MS/MS based target profiling of stress-induced phytohormones. Phytochemistry. 2014;105:147–157. PubMed
Fišerová H, Kula E, Klemš M, Reinöhl V. Phytohormones as indicators of the degree of damage in birch (Betula pendula) Biologia. 2001;56:405–409.