Integration of multi-omics data and deep phenotyping provides insights into responses to single and combined abiotic stress in potato
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
H2020-SFS-2019-2
P4-0165
Slovenian Research Agency
Ministry of Education, Youth and Sports of the Czech Republic
CZ.02.1.01/0.0/0.0/16_026/0008446
European Regional Development Fund-Project
PubMed
40173380
PubMed Central
PMC12012603
DOI
10.1093/plphys/kiaf126
PII: 8104150
Knihovny.cz E-zdroje
- MeSH
- fenotyp MeSH
- fyziologický stres * genetika MeSH
- hlízy rostlin MeSH
- listy rostlin fyziologie MeSH
- metabolomika MeSH
- multiomika MeSH
- období sucha MeSH
- proteomika MeSH
- regulace genové exprese u rostlin MeSH
- Solanum tuberosum * fyziologie genetika metabolismus MeSH
- transkriptom MeSH
- Publikační typ
- časopisecké články MeSH
Potato (Solanum tuberosum) is highly water and space efficient but susceptible to abiotic stresses such as heat, drought, and flooding, which are severely exacerbated by climate change. Our understanding of crop acclimation to abiotic stress, however, remains limited. Here, we present a comprehensive molecular and physiological high-throughput profiling of potato (Solanum tuberosum, cv. Désirée) under heat, drought, and waterlogging applied as single stresses or in combinations designed to mimic realistic future scenarios. Stress responses were monitored via daily phenotyping and multi-omics analyses of leaf samples comprising proteomics, targeted transcriptomics, metabolomics, and hormonomics at several timepoints during and after stress treatments. Additionally, critical metabolites of tuber samples were analyzed at the end of the stress period. We performed integrative multi-omics data analysis using a bioinformatic pipeline that we established based on machine learning and knowledge networks. Waterlogging produced the most immediate and dramatic effects on potato plants, interestingly activating ABA responses similar to drought stress. In addition, we observed distinct stress signatures at multiple molecular levels in response to heat or drought and to a combination of both. In response to all treatments, we found a downregulation of photosynthesis at different molecular levels, an accumulation of minor amino acids, and diverse stress-induced hormones. Our integrative multi-omics analysis provides global insights into plant stress responses, facilitating improved breeding strategies toward climate-adapted potato varieties.
Department of Biosciences Durham University South Road Durham DH1 3LE UK
PSI spol s r o Prumyslova 470 CZ 664 24 Drásov Czech Republic
School for Viticulture and Enology University of Nova Gorica Gladni trg 8 5271 Vipava Slovenia
Vienna Metabolomics Center University Vienna Djerassiplatz 1 1030 Vienna Austria
Zobrazit více v PubMed
Abdelhakim LOA, Palma CFF, Zhou R, Wollenweber B, Ottosen CO, Rosenqvist E. The effect of individual and combined drought and heat stress under elevated CO2 on physiological responses in spring wheat genotypes. Plant Physiol Biochem. 2021a:162:301–314. 10.1016/j.plaphy.2021.02.015 PubMed DOI
Abdelhakim LOA, Pleskacová B, Rodriguez-Granados NY, Sasidharan R, Perez-Borroto LS, Sonnewald S, Gruden K, Vothknecht UC, Teige M, Panzarová K. High throughput image-based phenotyping for determining morphological and physiological responses to single and combined stresses in potato. J Vis Exp. 2024:208:e66255. 10.3791/66255 PubMed DOI
Abdelhakim LOA, Rosenqvist E, Wollenweber B, Spyroglou I, Ottosen C-O, Panzarová K. Investigating combined drought- and heat stress effects in wheat under controlled conditions by dynamic image-based phenotyping. Agronomy. 2021b:11(2):364. 10.3390/agronomy11020364 DOI
Abelenda JA, Bergonzi S, Oortwijn M, Sonnewald S, Du M, Visser RGF, Sonnewald U, Bachem CWB. Source-sink regulation is mediated by interaction of an FT homolog with a SWEET protein in potato. Curr Biol. 2019:29(7):1178–1186.e6. 10.1016/j.cub.2019.02.018 PubMed DOI
Abelenda JA, Cruz-Oró E, Franco-Zorrilla JM, Prat S. Potato StCONSTANS-like1 suppresses storage organ formation by directly activating the FT-like StSP5G repressor. Curr Biol. 2016:26(7):872–881. 10.1016/j.cub.2016.01.066 PubMed DOI
Akbudak MA, Yildiz S, Filiz E. Pathogenesis related protein-1 (PR-1) genes in tomato (Solanum lycopersicum L.): bioinformatics analyses and expression profiles in response to drought stress. Genomics. 2020:112(6):4089–4099. 10.1016/j.ygeno.2020.07.004 PubMed DOI
Awlia M, Nigro A, Fajkus J, Schmoeckel SM, Negrão S, Santelia D, Trtílek M, Tester M, Julkowska MM, Panzarová K. High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in Arabidopsis thaliana. Front Plant Sci. 2016:7:1414. 10.3389/fpls.2016.01414 PubMed DOI PMC
Bachmann A, Hause B, Maucher H, Garbe E, Vörös K, Weichert H, Wasternack C, Feussner I. Jasmonate-induced lipid peroxidation in barley leaves initiated by distinct 13-LOX forms of chloroplasts. Biol Chem. 2002:383(10):1645–1657. 10.1515/BC.2002.185 PubMed DOI
Baebler Š, Svalina M, Petek M, Stare K, Rotter A, Pompe-Novak M, Gruden K. quantGenius: implementation of a decision support system for qPCR-based gene quantification. BMC Bioinformatics. 2017:18(1):276. 10.1186/s12859-017-1688-7 PubMed DOI PMC
Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI. Genetic strategies for improving crop yields. Nature. 2019:575(7781):109–118. 10.1038/s41586-019-1679-0 PubMed DOI PMC
Balfagón D, Sengupta S, Gómez-Cadenas A, Fritschi FB, Azad RK, Mittler R, Zandalinas SI. Jasmonic acid is required for plant acclimation to a combination of high light and heat stress. Plant Physiol. 2019:181(4):1668–1682. 10.1104/pp.19.00956 PubMed DOI PMC
Benitez-Alfonso Y, Soanes BK, Zimba S, Sinanaj B, German L, Sharma V, Bohra A, Kolesnikova A, Dunn JA, Martin AC, et al. Enhancing climate change resilience in agricultural crops. Curr Biol. 2023:33(23):R1246–R1261. 10.1016/j.cub.2023.10.028 PubMed DOI
Bittner A, Cieśla A, Gruden K, Lukan T, Mahmud S, Teige M, Vothknecht UC, Wurzinger B. Organelles and phytohormones: a network of interactions in plant stress responses. J Exp Bot. 2022:73(21):7165–7181. 10.1093/jxb/erac384 PubMed DOI PMC
Bleker C, Ramšak Ž, Bittner A, Podpečan V, Zagorščak M, Wurzinger B, Baebler Š, Petek M, Križnik M, van Dieren A, et al. Stress knowledge map: a knowledge graph resource for systems biology analysis of plant stress responses. Plant Commun. 2024:5(6):100920. 10.1016/j.xplc.2024.100920 PubMed DOI PMC
Cembrowska-Lech D, Krzeminska A, Miller T, Nowakowska A, Adamski C, Radaczynska M, Mikiciuk G, Mikiciuk M. An integrated multi-omics and artificial intelligence framework for advance plant phenotyping in horticulture. Biology (Basel). 2023:12(10):1298. 10.3390/biology12101298 PubMed DOI PMC
Chaturvedi P, Doerfler H, Jegadeesan S, Ghatak A, Pressman E, Castillejo MA, Wienkoop S, Egelhofer V, Firon N, Weckwerth W. Heat-treatment-responsive proteins in different developmental stages of tomato pollen detected by targeted mass accuracy precursor alignment (tMAPA). J Proteome Res. 2015:14(11):4463–4471. 10.1021/pr501240n PubMed DOI
Chaturvedi P, Ischebeck T, Egelhofer V, Lichtscheidl I, Weckwerth W. Cell-specific analysis of the tomato pollen proteome from pollen mother cell to mature pollen provides evidence for developmental priming. J Proteome Res. 2013:12(11):4892–4903. 10.1021/pr400197p PubMed DOI
Chen Q, Hu T, Li X, Song CP, Zhu JK, Chen L, Zhao Y. Phosphorylation of SWEET sucrose transporters regulates plant root:shoot ratio under drought. Nat Plants. 2022:8(1):68–77. 10.1038/s41477-021-01040-7 PubMed DOI
Clarke SM, Cristescu SM, Miersch O, Harren FJM, Wasternack C, Mur LAJ. Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol. 2009:182(1):175–187. 10.1111/j.1469-8137.2008.02735.x PubMed DOI
Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol. 2010:61:651–679. 10.1146/annurev-arplant-042809-112122 PubMed DOI
Dahal K, Li XQ, Tai H, Creelman A, Bizimungu B. Improving potato stress tolerance and tuber yield under a climate change scenario—a current overview. Front Plant Sci. 2019:10:563. 10.3389/fpls.2019.00563 PubMed DOI PMC
Demirel U, Morris WL, Ducreux LJM, Yavuz C, Asim A, Tindas I, Campbell R, Morris JA, Verrall SR, Hedley PE, et al. Physiological, biochemical, and transcriptional responses to single and combined abiotic stress in stress-tolerant and stress-sensitive potato genotypes. Front Plant Sci. 2020:11:169. 10.3389/fpls.2020.00169 PubMed DOI PMC
FAO . The impact of disasters on agriculture and food security 2023—avoiding and reducing losses through investment in resilience. Rome, Italy: FAO; 2023. p. #168.
Findurová H, Veselá B, Panzarová K, Pytela J, Trtílek M, Klem K. Phenotyping drought tolerance and yield performance of barley using a combination of imaging methods. Environ Exp Bot. 2023:209:105314. 10.1016/j.envexpbot.2023.105314 DOI
Floková K, Tarkowská D, Miersch O, Strnad M, Wasternack C, Novák O. UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry. 2014:105:147–157. 10.1016/j.phytochem.2014.05.015 PubMed DOI
Gautam T, Dutta M, Jaiswal V, Zinta G, Gahlaut V, Kumar S. Emerging roles of SWEET sugar transporters in plant development and abiotic stress responses. Cells. 2022:11(8):1303. 10.3390/cells11081303 PubMed DOI PMC
Geldhof B, Pattyn J, Van de Poel B. From a different angle: genetic diversity underlies differentiation of waterlogging-induced epinasty in tomato. Front Plant Sci. 2023:14:1178778. 10.3389/fpls.2023.1178778 PubMed DOI PMC
Ghatak A, Chaturvedi P, Bachmann G, Valledor L, Ramšak Ž, Bazargani MM, Bajaj P, Jegadeesan S, Li W, Sun X, et al. Physiological and proteomic signatures reveal mechanisms of superior drought resilience in pearl millet compared to wheat. Front Plant Sci. 2020:11:600278. 10.3389/fpls.2020.600278 PubMed DOI PMC
Ghatak A, Chaturvedi P, Nagler M, Roustan V, Lyon D, Bachmann G, Postl W, Schröfl A, Desai N, Varshney RK, et al. Comprehensive tissue-specific proteome analysis of drought stress responses in Pennisetum glaucum (L.) R. Br. (Pearl millet). J Proteomics. 2016:143:122–135. 10.1016/j.jprot.2016.02.032 PubMed DOI
Grieco M, Roustan V, Dermendjiev G, Rantala S, Jain A, Leonardelli M, Neumann K, Berger V, Engelmeier D, Bachmann G, et al. Adjustment of photosynthetic activity to drought and fluctuating light in wheat. Plant Cell Environ. 2020:43(6):1484–1500. 10.1111/pce.13756 PubMed DOI PMC
Guihur A, Rebeaud ME, Goloubinoff P. How do plants feel the heat and survive? Trends Biochem Sci. 2022:47(10):824–838. 10.1016/j.tibs.2022.05.004 PubMed DOI
Hall RD, D'Auria JC, Silva Ferreira AC, Gibon Y, Kruszka D, Mishra P, van de Zedde R. High-throughput plant phenotyping: a role for metabolomics? Trends Plant Sci. 2022:27(6):549–563. 10.1016/j.tplants.2022.02.001 PubMed DOI
Hancock RD, Morris WL, Ducreux LJ, Morris JA, Usman M, Verrall SR, Fuller J, Simpson CG, Zhang R, Hedley PE, et al. Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. Plant Cell Environ. 2014:37(2):439–450. 10.1111/pce.12168 PubMed DOI
Hastilestari BR, Lorenz J, Reid S, Hofmann J, Pscheidt D, Sonnewald U, Sonnewald S. Deciphering source and sink responses of potato plants (Solanum tuberosum L.) to elevated temperatures. Plant Cell Environ. 2018:41(11):2600–2616. 10.1111/pce.13366 PubMed DOI
Hoehenwarter W, van Dongen JT, Wienkoop S, Steinfath M, Hummel J, Erban A, Sulpice R, Regierer B, Kopka J, Geigenberger P, et al. A rapid approach for phenotype-screening and database independent detection of cSNP/protein polymorphism using mass accuracy precursor alignment. Proteomics. 2008:8(20):4214–4225. 10.1002/pmic.200701047 PubMed DOI
Jackson MB, Campbell DJ. Waterlogging and petiole epinasty in tomato: the role of ethylene and low oxygen. New Phytol. 1976:76(1):21–29. 10.1111/j.1469-8137.1976.tb01434.x DOI
Jackson MB, Hall KC. Early stomatal closure in waterlogged pea plants is mediated by abscisic acid in the absence of foliar water deficits. Plant Cell Environ. 1987:10(2):121–130. 10.1111/1365-3040.ep11602085 DOI
Jamil IN, Remali J, Azizan KA, Nor Muhammad NA, Arita M, Goh HH, Aizat WM. Systematic multi-omics integration (MOI) approach in plant systems biology. Front Plant Sci. 2020:11:944. 10.3389/fpls.2020.00944 PubMed DOI PMC
Joshi S, Patil S, Shaikh A, Jamla M, Kumar V. Modern omics toolbox for producing combined and multifactorial abiotic stress tolerant plants. Plant Stress. 2024:11:100301. 10.1016/j.stress.2023.100301 DOI
Jovović Z, Broćić Z, Velimirović A, Dolijanović Ž, Komnenić A. The influence of flooding on the main parameters of potato productivity. In: VIII South-Eastern Europe symposium on vegetables and potatoes 1320. Leuven, Belgium: International Society for Horticultural Science (ISHS); 2021. p. 133–138.
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017:45(D1):D353–D361. 10.1093/nar/gkw1092 PubMed DOI PMC
Koch L, Lehretz GG, Sonnewald U, Sonnewald S. Yield reduction caused by elevated temperatures and high nitrogen fertilization is mitigated by SP6A overexpression in potato (Solanum tuberosum L.). Plant J. 2024:117(6):1702–1715. 10.1111/tpj.16679 PubMed DOI
Kohl M. MKinfer: inferential statistics. R package version 1.2. 2024. https://github.com/stamats/MKinfer.
Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M, Niyogi KK, Long SP. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science. 2016:354(6314):857–861. 10.1126/science.aai8878 PubMed DOI
Kuhn M. Building predictive models in R using the caret package. J Statist Soft. 2008:28(5):1–26. 10.18637/jss.v028.i05 DOI
Lal MK, Tiwari RK, Kumar A, Dey A, Kumar R, Kumar D, Jaiswal A, Changan SS, Raigond P, Dutt S, et al. Mechanistic concept of physiological, biochemical, and molecular responses of the potato crop to heat and drought stress. Plants (Basel). 2022:11(21):2857. 10.3390/plants11212857 PubMed DOI PMC
Lee AH, Shannon CP, Amenyogbe N, Bennike TB, Diray-Arce J, Idoko OT, Gill EE, Ben-Othman R, Pomat WS, van Haren SD, et al. Dynamic molecular changes during the first week of human life follow a robust developmental trajectory. Nat Commun. 2019:10(1):1092. 10.1038/s41467-019-08794-x PubMed DOI PMC
Leeggangers HACF, Rodriguez-Granados NY, Macias-Honti MG, Sasidharan R. A helping hand when drowning: the versatile role of ethylene in root flooding resilience. Environ Exp Bot. 2023:213:105422. 10.1016/j.envexpbot.2023.105422 DOI
Lehretz GG, Sonnewald S, Lugassi N, Granot D, Sonnewald U. Future-proofing potato for drought and heat tolerance by overexpression of hexokinase and SP6A. Front Plant Sci. 2020:11:614534. 10.3389/fpls.2020.614534 PubMed DOI PMC
Li B, Zeng Y, Cao W, Zhang W, Cheng L, Yin H, Wu Q, Wang X, Huang Y, Lau WCY, et al. A distinct giant coat protein complex II vesicle population in Arabidopsis thaliana. Nat Plants. 2021:7(10):1335–1346. 10.1038/s41477-021-00997-9 PubMed DOI
Liu T, Salguero P, Petek M, Martinez-Mira C, Balzano-Nogueira L, Ramšak Ž, McIntyre L, Gruden K, Tarazona S, Conesa A. PaintOmics 4: new tools for the integrative analysis of multi-omics datasets supported by multiple pathway databases. Nucleic Acids Res. 2022:50(W1):W551–W559. 10.1093/nar/gkac352 PubMed DOI PMC
Lothier J, Diab H, Cukier C, Limami AM, Tcherkez G. Metabolic responses to waterlogging differ between roots and shoots and reflect phloem transport alteration in Medicago truncatula. Plants (Basel). 2020:9(10):1373. 10.3390/plants9101373 PubMed DOI PMC
Lozano-Elena F, Fàbregas N, Coleto-Alcudia V, Caño-Delgado AI. Analysis of metabolic dynamics during drought stress in Arabidopsis plants. Sci Data. 2022:9(1):90. 10.1038/s41597-022-01161-4 PubMed DOI PMC
Lozano-Juste J, Cutler SR. Hormone signalling: ABA has a breakdown. Nat Plants. 2016:2(9):16137. 10.1038/nplants.2016.137 PubMed DOI
Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. In: Proceedings of the 31st international conference on neural information processing systems. Long Beach, California, USA: Curran Associates Inc.; 2017. p. 4768–4777.
Mahmud S, Ullah C, Kortz A, Bhattacharyya S, Yu P, Gershenzon J, Vothknecht UC. Constitutive expression of JASMONATE RESISTANT 1 induces molecular changes that prime the plants to better withstand drought. Plant Cell Environ. 2022:45(10):2906–2922. 10.1111/pce.14402 PubMed DOI
Manjunath KK, Krishna H, Devate NB, Sunilkumar VP, Patil SP, Chauhan D, Singh S, Kumar S, Jain N, Singh GP, et al. QTL mapping: insights into genomic regions governing component traits of yield under combined heat and drought stress in wheat. Front Genet. 2023:14:1282240. 10.3389/fgene.2023.1282240 PubMed DOI PMC
Mathur S, Agrawal D, Jajoo A. Photosynthesis: response to high temperature stress. J Photochem Photobiol B. 2014:137:116–126. 10.1016/j.jphotobiol.2014.01.010 PubMed DOI
Mishra S, Srivastava AK, Khan AW, Tran LP, Nguyen HT. The era of panomics-driven gene discovery in plants. Trends Plant Sci. 2024:29(9):995–1005. 10.1016/j.tplants.2024.03.007 PubMed DOI
Mittler R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006:11(1):15–19. 10.1016/j.tplants.2005.11.002 PubMed DOI
Nakamura Y, Mithöfer A, Kombrink E, Boland W, Hamamoto S, Uozumi N, Tohma K, Ueda M. 12-hydroxyjasmonic acid glucoside is a COI1-JAZ-independent activator of leaf-closing movement in Samanea saman. Plant Physiol. 2011:155(3):1226–1236. 10.1104/pp.110.168617 PubMed DOI PMC
Navarro C, Abelenda JA, Cruz-Oró E, Cuéllar CA, Tamaki S, Silva J, Shimamoto K, Prat S. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature. 2011:478(7367):119–122. 10.1038/nature10431 PubMed DOI
Núñez-Lillo G, Ponce E, Arancibia-Guerra C, Carpentier S, Carrasco-Pancorbo A, Olmo-García L, Chirinos R, Campos D, Campos-Vargas R, Meneses C, et al. A multiomics integrative analysis of color de-synchronization with softening of ‘hass’ avocado fruit: a first insight into a complex physiological disorder. Food Chem. 2023:408:135215. 10.1016/j.foodchem.2022.135215 PubMed DOI
Núñez-Lillo G, Ponce E, Beyer CP, Álvaro JE, Meneses C, Pedreschi R. A first omics data integration approach in hass avocados to evaluate rootstock–scion interactions: from aerial and root plant growth to fruit development. Plants (Basel). 2024:13(5):603. 10.3390/plants13050603 PubMed DOI PMC
Obata T, Klemens PAW, Rosado-Souza L, Schlereth A, Gisel A, Stavolone L, Zierer W, Morales N, Mueller LA, Zeeman SC, et al. Metabolic profiles of six African cultivars of cassava (Manihot esculenta crantz) highlight bottlenecks of root yield. Plant J. 2020:102(6):1202–1219. 10.1111/tpj.14693 PubMed DOI
Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P, Hara O, Solymos R, Stevens P, Szöcs H, et al. vegan: Community Ecology Package. R package version 2.6-2. 2022. https://github.com/vegandevs/vegan, https://vegandevs.github.io/vegan/
Paoletti AC, Parmely TJ, Tomomori-Sato C, Sato S, Zhu D, Conaway RC, Conaway JW, Florens L, Washburn MP. Quantitative proteomic analysis of distinct mammalian mediator complexes using normalized spectral abundance factors. Proc Natl Acad Sci U S A. 2006:103(50):18928–18933. 10.1073/pnas.0606379103 PubMed DOI PMC
Park JS, Park SJ, Kwon SY, Shin AY, Moon KB, Park JM, Cho HS, Park SU, Jeon JH, Kim HS, et al. Temporally distinct regulatory pathways coordinate thermo-responsive storage organ formation in potato. Cell Rep. 2022:38(13):110579. 10.1016/j.celrep.2022.110579 PubMed DOI
Petek M, Rotter A, Kogovšek P, Baebler S, Mithöfer A, Gruden K. Potato virus Y infection hinders potato defence response and renders plants more vulnerable to Colorado potato beetle attack. Mol Ecol. 2014:23(21):5378–5391. 10.1111/mec.12932 PubMed DOI PMC
Petek M, Zagorščak M, Ramšak Ž, Sanders S, Tomaž Š, Tseng E, Zouine M, Coll A, Gruden K. Cultivar-specific transcriptome and pan-transcriptome reconstruction of tetraploid potato. Sci Data. 2020:7(1):249. 10.1038/s41597-020-00581-4 PubMed DOI PMC
Ployet R, Veneziano Labate MT, Regiani Cataldi T, Christina M, Morel M, San Clemente H, Denis M, Favreau B, Tomazello Filho M, Laclau J-P, et al. A systems biology view of wood formation in Eucalyptus grandis trees submitted to different potassium and water regimes. New Phytol. 2019:223(2):766–782. 10.1111/nph.15802 PubMed DOI
Quint M, Delker C, Franklin KA, Wigge PA, Halliday KJ, van Zanten M. Molecular and genetic control of plant thermomorphogenesis. Nat Plants. 2016:2(1):15190. 10.1038/nplants.2015.190 PubMed DOI
Renziehausen T, Frings S, Schmidt-Schippers R. ‘Against all floods’: plant adaptation to flooding stress and combined abiotic stresses. Plant J. 2024:117(6):1836–1855. 10.1111/tpj.16614 PubMed DOI
Rivero RM, Mittler R, Blumwald E, Zandalinas SI. Developing climate-resilient crops: improving plant tolerance to stress combination. Plant J. 2022:109(2):373–389. 10.1111/tpj.15483 PubMed DOI
Rohart F, Gautier B, Singh A, Lê Cao KA. mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol. 2017:13(11):e1005752. 10.1371/journal.pcbi.1005752 PubMed DOI PMC
Sato H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. Complex plant responses to drought and heat stress under climate change. Plant J. 2024:117(6):1873–1892. 10.1111/tpj.16612 PubMed DOI
Sauter M. Root responses to flooding. Curr Opin Plant Biol. 2013:16(3):282–286. 10.1016/j.pbi.2013.03.013 PubMed DOI
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003:13:2498–2504. PubMed PMC
Singh A, Shannon CP, Gautier B, Rohart F, Vacher M, Tebbutt SJ, Lê Cao KA. DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays. Bioinformatics. 2019:35(17):3055–3062. 10.1093/bioinformatics/bty1054 PubMed DOI PMC
Sinha R, Peláez-Vico MA, Shostak B, Nguyen TT, Pascual LS, Ogden AM, Lyu Z, Zandalinas SI, Joshi T, Fritschi FB, et al. The effects of multifactorial stress combination on rice and maize. Plant Physiol. 2024:194(3):1358–1369. 10.1093/plphys/kiad557 PubMed DOI
Široká J, Brunoni F, Pěnčík A, Mik V, Žukauskaitė A, Strnad M, Novák O, Floková K. High-throughput interspecies profiling of acidic plant hormones using miniaturised sample processing. Plant Methods. 2022:18(1):122. 10.1186/s13007-022-00954-3 PubMed DOI PMC
Smith AM, Zeeman SC. Quantification of starch in plant tissues. Nat Protoc. 2006:1(3):1342–1345. 10.1038/nprot.2006.232 PubMed DOI
Stael S, Kmiecik P, Willems P, Van Der Kelen K, Coll NS, Teige M, Van Breusegem F. Plant innate immunity–sunny side up? Trends Plant Sci. 2015:20(1):3–11. 10.1016/j.tplants.2014.10.002 PubMed DOI PMC
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005:102:15545–15550. 10.1073/pnas.0506580102 PubMed DOI PMC
Tang R, Niu S, Zhang G, Chen G, Haroon M, Yang Q, Rajora OP, Li X-Q. Physiological and growth responses of potato cultivars to heat stress. Botany. 2018:96(12):897–912. 10.1139/cjb-2018-0125 DOI
Trapero-Mozos A, Morris WL, Ducreux LJM, McLean K, Stephens J, Torrance L, Bryan GJ, Hancock RD, Taylor MA. Engineering heat tolerance in potato by temperature-dependent expression of a specific allele of HEAT-SHOCK COGNATE 70. Plant Biotechnol J. 2018:16(1):197–207. 10.1111/pbi.12760 PubMed DOI PMC
von Gehren P, Bomers S, Tripolt T, Söllinger J, Prat N, Redondo B, Vorss R, Teige M, Kamptner A, Ribarits A. Farmers feel the climate change: variety choice as an adaptation strategy of European potato farmers. Climate. 2023:11(9):189. 10.3390/cli11090189 DOI
Wasternack C, Feussner I. The oxylipin pathways: biochemistry and function. Annu Rev Plant Biol. 2018:69(1):363–386. 10.1146/annurev-arplant-042817-040440 PubMed DOI
Weckwerth W, Ghatak A, Bellaire A, Chaturvedi P, Varshney RK. PANOMICS meets germplasm. Plant Biotechnol J. 2020:18(7):1507–1525. 10.1111/pbi.13372 PubMed DOI PMC
Weng JK, Ye M, Li B, Noel JP. Co-evolution of hormone metabolism and signaling networks expands plant adaptive plasticity. Cell. 2016:166(4):881–893. 10.1016/j.cell.2016.06.027 PubMed DOI
Wu Q, Su N, Huang X, Cui J, Shabala L, Zhou M, Yu M, Shabala S. Hypoxia-induced increase in GABA content is essential for restoration of membrane potential and preventing ROS-induced disturbance to ion homeostasis. Plant Commun. 2021:2(3):100188. 10.1016/j.xplc.2021.100188 PubMed DOI PMC
Yang W, Feng H, Zhang X, Zhang J, Doonan JH, Batchelor WD, Xiong L, Yan J. Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives. Mol Plant. 2020:13(2):187–214. 10.1016/j.molp.2020.01.008 PubMed DOI
Yoshida T, Fernie AR. Hormonal regulation of plant primary metabolism under drought. J Exp Bot. 2024:75(6):1714–1725. 10.1093/jxb/erad358 PubMed DOI
Yoshihara T, Omir E-SA, Koshino H, Sakamura S, Kkuta Y, Koda Y. Structure of a tuber-inducing stimulus from potato leaves (Solanum tuberosum L.). Agric Biol Chem. 1989:53(10):2835–2837. 10.1080/00021369.1989.10869712 DOI
Zagoršcak M, Blejec A, Ramšak Ž, Petek M, Stare T, Gruden K. DiNAR: revealing hidden patterns of plant signalling dynamics using Differential Network Analysis in R. Plant Methods. 2018:14:78. PubMed PMC
Zaki HEM, Radwan KSA. Response of potato (Solanum tuberosum L.) cultivars to drought stress under in vitro and field conditions. Chem Biol Technol Agric. 2022:9(1):1. 10.1186/s40538-021-00266-z DOI
Zandalinas SI, Fritschi FB, Mittler R. Global warming, climate change, and environmental pollution: recipe for a multifactorial stress combination disaster. Trends Plant Sci. 2021:26(6):588–599. 10.1016/j.tplants.2021.02.011 PubMed DOI
Zandalinas SI, Peláez-Vico MA, Sinha R, Pascual LS, Mittler R. The impact of multifactorial stress combination on plants, crops, and ecosystems: how should we prepare for what comes next? Plant J. 2023:117(6):1800–1814. 10.1111/tpj.16557 PubMed DOI
Zeng ZL, Wang XQ, Zhang SB, Huang W. Mesophyll conductance limits photosynthesis in fluctuating light under combined drought and heat stresses. Plant Physiol. 2024:194(3):1498–1511. 10.1093/plphys/kiad605 PubMed DOI
Zhang H, Sonnewald U. Differences and commonalities of plant responses to single and combined stresses. Plant J. 2017:90(5):839–855. 10.1111/tpj.13557 PubMed DOI
Zhang H, Zhu J, Gong Z, Zhu JK. Abiotic stress responses in plants. Nat Rev Genet. 2022a:23(2):104–119. 10.1038/s41576-021-00413-0 PubMed DOI
Zhang R, Zhang C, Yu C, Dong J, Hu J. Integration of multi-omics technologies for crop improvement: status and prospects. Front Bioinform. 2022b:2:1027457. 10.3389/fbinf.2022.1027457 PubMed DOI PMC
Zhang X, Smits AH, Van Tilburg GB, Ovaa H, Huber W, Vermeulen M. Proteome-wide identification of ubiquitin interactions using UbIA-MS. Nat Protoc. 2018:13:530–550. 10.1038/nprot.2017.147 PubMed DOI
Zhao Y, Zhang W, Abou-Elwafa SF, Shabala S, Xu L. Understanding a mechanistic basis of ABA involvement in plant adaptation to soil flooding: the current standing. Plants (Basel). 2021:10(10):1982. 10.3390/plants10101982 PubMed DOI PMC