Light Quantity Impacts Early Response to Cold and Cold Acclimation in Young Leaves of Arabidopsis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Funding for this study was provided by the Czech Science Foundation (grant number 20-26232S) and the Ministry of Education, Youth and Sports of the Czech Republic with support from the European Regional Development Fund (grant no. CZ.02.1.01/0.0/0.0/16_019/0000738, project name "Centre for Experimental Plant Biology").
PubMed
40148745
PubMed Central
PMC12131964
DOI
10.1111/pce.15481
Knihovny.cz E-zdroje
- Klíčová slova
- acclimation, freezing tolerance, jasmonic acid, leaf development, lipidome, proteome, transcriptome,
- MeSH
- aklimatizace * fyziologie účinky záření MeSH
- Arabidopsis * fyziologie účinky záření genetika MeSH
- fotosyntéza MeSH
- listy rostlin * fyziologie účinky záření genetika MeSH
- nízká teplota * MeSH
- proteiny huseníčku metabolismus genetika MeSH
- proteom MeSH
- regulace genové exprese u rostlin MeSH
- světlo * MeSH
- transkriptom MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny huseníčku MeSH
- proteom MeSH
Plant reactions to stress vary with development stage and fitness. This study assessed the relationship between light and chilling stress in Arabidopsis acclimation. By analysing the transcriptome and proteome responses of expanding leaves subjected to varying light intensity and cold, 2251 and 2064 early response genes and proteins were identified, respectively. Many of these represent as a yet unknown part of the early response to cold, illustrating a development-dependent response to stress and duality in plant adaptations. While standard light promoted photosynthetic upregulation, plastid maintenance, and increased resilience, low light triggered a unique metabolic shift, prioritizing ribosome biogenesis and lipid metabolism and attenuating the expression of genes associated with plant immunity. The comparison of early response in young leaves with that in expanded ones showed striking differences, suggesting a sacrifice of expanded leaves to support young ones. Validations of selected DEGs in mutant background confirmed a role of HSP90-1, transcription factor FLZ13, and Phospholipase A1 (PLIP) in response to cold, and the PLIP family emerged as crucial in promoting acclimation and freezing stress tolerance. The findings highlight the dynamic mechanisms that enable plants to adapt to challenging environments and pave the way for the development of genetically modified crops with enhanced freezing tolerance.
Zobrazit více v PubMed
Agarwal, M. , Hao Y., Kapoor A., et al. 2006. “A R2R3 Type Myb Transcription Factor Is Involved in the Cold Regulation of CBF Genes and in Acquired Freezing Tolerance.” Journal of Biological Chemistry 281: 37636–37645. PubMed
Alabadí, D. , Oyama T., Yanovsky M. J., Harmon F. G., Más P., and Kay S. A.. 2001. “Reciprocal Regulation Between TOC1 and LHY/CCA1 Within the Arabidopsis Circadian Clock.” Science 293: 880–883. PubMed
Arisz, S. A. , van Wijk R., Roels W., Zhu J. K., Haring M. A., and Munnik T.. 2013. “Rapid Phosphatidic Acid Accumulation in Response to Low Temperature Stress in Arabidopsis Is Generated Through Diacylglycerol Kinase.” Frontiers in Plant Science 4: 1. PubMed PMC
Baruah, A. , Šimková K., Hincha D. K., Apel K., and Laloi C.. 2009. “Modulation of 1O2‐mediated Retrograde Signaling by the Pleiotropic Response Locus 1 (PRL1) Protein, a Central Integrator of Stress and Energy Signaling.” Plant Journal 60: 22–32. PubMed
Bell, E. W. , Schwartz J. H., Freddolino P. L., and Zhang Y.. 2022. “PEPPI: Whole‐Proteome Protein‐Protein Interaction Prediction Through Structure and Sequence Similarity, Functional Association, and Machine Learning.” Journal of Molecular Biology 434: 167530. PubMed PMC
Bussell, J. D. , Reichelt M., Wiszniewski A. A. G., Gershenzon J., and Smith S. M.. 2014. “Peroxisomal ATP‐Binding Cassette Transporter COMATOSE and the Multifunctional Protein Abnormal Inflorescence Meristem Are Required for the Production of Benzoylated Metabolites in Arabidopsis Seeds.” Plant Physiology 164: 48–54. PubMed PMC
Cai, Q. , Qiao L., Wang M., et al. 2018. “Plants Send Small RNAs in Extracellular Vesicles to Fungal Pathogen to Silence Virulence Genes.” Science 360: 1126–1129. PubMed PMC
Calixto, C. P. G. , Guo W., James A. B., et al. 2018. “Rapid and Dynamic Alternative Splicing Impacts the Arabidopsis Cold Response Transcriptome.” Plant Cell 30: 1424–1444. PubMed PMC
Chang, T. G. , and Zhu X. G.. 2017. “Source–Sink Interaction: A Century Old Concept Under the Light of Modern Molecular Systems Biology.” Journal of Experimental Botany 68: 4417–4431. PubMed
Chinnusamy, V. , Ohta M., Kanrar S., et al. 2003. “ICE1: A Regulator of Cold‐Induced Transcriptome and Freezing Tolerance in Arabidopsis.” Genes & Development 17: 1043–1054. PubMed PMC
Chinnusamy, V. , Zhu J., and Zhu J. K.. 2007. “Cold Stress Regulation of Gene Expression in Plants.” Trends in Plant Science 12: 444–451. PubMed
Cho, M.‐H. , Corea O. R. A., Yang H., et al. 2007. “Phenylalanine Biosynthesis in Arabidopsis thaliana .” Journal of Biological Chemistry 282: 30827–30835. PubMed
Choe, S. , Dilkes B. P., Gregory B. D., et al. 1999. “The Arabidopsis dwarf1 Mutant is Defective in the Conversion of 24‐Methylenecholesterol to Campesterol in Brassinosteroid Biosynthesis.” Plant Physiology 119: 897–908. PubMed PMC
Culbertson, A. T. , Ehrlich J. J., Choe J.‐Y., Honzatko R. B., and Zabotina O. A.. 2018. “Structure of Xyloglucan Xylosyltransferase 1 Reveals Simple Steric Rules That Define Biological Patterns of Xyloglucan Polymers.” Proceedings of the National Academy of Sciences 115: 6064–6069. PubMed PMC
Ding, Y. , Li H., Zhang X., Xie Q., Gong Z., and Yang S.. 2015. “OST1 Kinase Modulates Freezing Tolerance by Enhancing ICE1 Stability in Arabidopsis.” Developmental Cell 32: 278–289. PubMed
Doherty, C. J. , Van Buskirk H. A., Myers S. J., and Thomashow M. F.. 2009. “Roles for Arabidopsis CAMTA Transcription Factors in Cold‐Regulated Gene Expression and Freezing Tolerance.” Plant Cell 21: 972–984. PubMed PMC
Dufková, H. , Berka M., Psota V., Brzobohatý B., and Černý M.. 2023. “Environmental Impacts on Barley Grain Composition and Longevity.” Journal of Experimental Botany 74: 1609–1628. PubMed
Esteve‐Bruna, D. , Carrasco‐López C., Blanco‐Touriñán N., et al. 2020. “Prefoldins Contribute to Maintaining the Levels of the Spliceosome LSM2–8 Complex Through Hsp90 in Arabidopsis.” Nucleic Acids Research 48: 6280–6293. PubMed PMC
Farinas, B. , and Mas P.. 2011. “Histone Acetylation and the Circadian Clock.” Plant Signaling & Behavior 6: 541–543. PubMed PMC
Fowler, S. G. , Cook D., and Thomashow M. F.. 2005. “Low Temperature Induction of Arabidopsis CBF1, 2, and 3 Is Gated by the Circadian Clock.” Plant Physiology 137: 961–968. PubMed PMC
Fraser, C. M. , and Chapple C.. 2011. “The Phenylpropanoid Pathway in Arabidopsis.” Arabidopsis Book 9: e0152. PubMed PMC
Gao, L. , Jiang H., Li M., et al. 2024. “Genetic and Lipidomic Analyses Reveal the Key Role of Lipid Metabolism for Cold Tolerance in Maize.” Journal of Genetics and Genomics 51, no. 3: 326–337. PubMed
Gentleman, R. C. , Carey V. J., Bates D. M., et al. 2004. “Bioconductor: Open Software Development for Computational Biology and Bioinformatics.” Genome Biology 2004 5:10 5: 80. PubMed PMC
Goldstein, G. , Melcher P., Heraux J., Drake D. R., and Giambelluca T. W.. 1996. “Photosynthetic Gas Exchange and Temperature‐Induced Damage In Seedlings of the Tropical Alpine Species Argyroxiphium sandwicense .” Oecologia 106: 298–307. PubMed
Hawamda, A. I. M. , Reichert S., Ali M. A., et al. 2022. “Characterization of an Arabidopsis Defensin‐Like Gene Conferring Resistance Against Nematodes.” Plants 11: 280. PubMed PMC
Hazen, S. P. , Schultz T. F., Pruneda‐Paz J. L., Borevitz J. O., Ecker J. R., and Kay S. A.. 2005. “Lux Arrhythmo Encodes a Myb Domain Protein Essential for Circadian Rhythms.” Proceedings of the National Academy of Sciences 102: 10387–10392. PubMed PMC
Henry, L. K. , Gutensohn M., Thomas S. T., Noel J. P., and Dudareva N.. 2015. “Orthologs of the Archaeal Isopentenyl Phosphate Kinase Regulate Terpenoid Production in Plants.” Proceedings of the National Academy of Sciences 112: 10050–10055. PubMed PMC
Himmelbach, A. 2002. “Homeodomain Protein ATHB6 Is a Target of the Protein Phosphatase ABI1 and Regulates Hormone Responses in Arabidopsis.” EMBO Journal 21: 3029–3038. PubMed PMC
Hincha, D. K. , and Zuther E.. 2020. “Introduction: Plant Cold Acclimation and Winter Survival.” Methods in Molecular Biology 2156: 1–7. PubMed
Hutin, C. , Nussaume L., Moise N., Moya I., Kloppstech K., and Havaux M.. 2003. “Early Light‐Induced Proteins Protect Arabidopsis From Photooxidative Stress.” Proceedings of the National Academy of Sciences 100: 4921–4926. PubMed PMC
Hwarari, D. , Guan Y., Ahmad B., et al. 2022. “ICE‐CBF‐COR Signaling Cascade and Its Regulation in Plants Responding to Cold Stress.” International Journal of Molecular Sciences 23: 1549. PubMed PMC
Ishitani, M. , Xiong L., Lee H., Stevenson B., and Zhu J. K.. 1998. “HOS1, A Genetic Locus Involved in Cold‐Responsive Gene Expression in Arabidopsis.” Plant Cell 10: 1151–1161. PubMed PMC
Izumi, M. , Hidema J., Wada S., et al. 2015. “Establishment of Monitoring Methods for Autophagy in Rice Reveals Autophagic Recycling of Chloroplasts and Root Plastids During Energy Limitation.” Plant Physiology 167: 1307–1320. PubMed PMC
Jamsheer K, M. , Shukla B. N., Jindal S., Gopan N., Mannully C. T., and Laxmi A.. 2018. “The FCS‐Like Zinc Finger Scaffold of the Kinase SnRK1 Is Formed by the Coordinated Actions of the FLZ Domain and Intrinsically Disordered Regions.” Journal of Biological Chemistry 293: 13134–13150. PubMed PMC
Jiang, B. , Shi Y., Peng Y., et al. 2020. “Cold‐Induced CBF–PIF3 Interaction Enhances Freezing Tolerance by Stabilizing the PhyB Thermosensor in Arabidopsis.” Molecular Plant 13: 894–906. PubMed
Jimenez‐Jimenez, S. , Hashimoto K., Santana O., Aguirre J., Kuchitsu K., and Cárdenas L.. 2019. “Emerging Roles of Tetraspanins in Plant Inter‐Cellular and Inter‐Kingdom Communication.” Plant Signaling & Behavior 14: 1581559. PubMed PMC
John, A. , Keller I., Ebel K. W., and Neuhaus H. E.. 2025. “Two Critical Membranes: How Does the Chloroplast Envelope Affect Plant Acclimation Properties?” Journal of Experimental Botany 76: 214–227. PubMed
Jung, J. H. , Barbosa A. D., Hutin S., et al. 2020. “A Prion‐Like Domain in ELF3 Functions as a Thermosensor in Arabidopsis.” Nature 2020 585:7824 585: 256–260. PubMed
Kameniarová, M. , Černý M., Novák J., et al. 2022. “Light Quality Modulates Plant Cold Response and Freezing Tolerance.” Frontiers in Plant Science 13: 887103. PubMed PMC
Kaplan, F. , and Guy C. L.. 2005. “RNA Interference of Arabidopsis beta‐amylase8 Prevents Maltose Accumulation Upon Cold Shock and Increases Sensitivity of PSII Photochemical Efficiency to Freezing Stress.” Plant Journal 44: 730–743. PubMed
Karady, M. , Hladík P., Cermanová K., et al. 2024. “Profiling of 1‐Aminocyclopropane‐1‐Carboxylic Acid and Selected Phytohormones in Arabidopsis Using Liquid Chromatography‐Tandem Mass Spectrometry.” Plant Methods 20: 41. PubMed PMC
Kazan, K. , and Manners J. M.. 2011. “The Interplay Between Light and Jasmonate Signalling During Defence and Development.” Journal of Experimental Botany 62: 4087–4100. PubMed
Kerbler, S. M. , and Wigge P. A.. 2023. “Temperature Sensing in Plants.” Annual Review of Plant Biology 74: 341–366. 10.1146/annurev-arplant-102820-102235. PubMed DOI
Kidokoro, S. , Konoura I., Soma F., et al. 2023. “Clock‐Regulated Coactivators Selectively Control Gene Expression in Response to Different Temperature Stress Conditions in Arabidopsis.” Proceedings of the National Academy of Sciences 120: e2216183120. PubMed PMC
Kim, H. , Go Y. S., and Suh M. C.. 2018. “DEWAX2 Transcription Factor Negatively Regulates Cuticular Wax Biosynthesis in Arabidopsis Leaves.” Plant and Cell Physiology 59: 966–977. PubMed
Kim, Y. J. , Kim W. Y., and Somers D. E.. 2024. “HOS15‐Mediated Turnover of PRR7 Enhances Freezing Tolerance.” New Phytologist 244: 798–810. PubMed PMC
Klepikova, A. V. , Kulakovskiy I. V., Kasianov A. S., Logacheva M. D., and Penin A. A.. 2019. “An Update to Database TraVA: Organ‐Specific Cold Stress Response in Arabidopsis thaliana .” BMC Plant Biology 19: 49. PubMed PMC
Knight, H. , and Knight M. R.. 2000. “Imaging Spatial and Cellular Characteristics of Low Temperature Calcium Signature After Cold Acclimation in Arabidopsis.” Journal of Experimental Botany 51: 1679–1686. PubMed
Koh, S. , Wiles A. M., Sharp J. S., Naider F. R., Becker J. M., and Stacey G.. 2002. “An Oligopeptide Transporter Gene Family in Arabidopsis.” Plant Physiology 128: 21–29. PubMed PMC
Kopecká, R. , Kameniarová M., Černý M., Brzobohatý B., and Novák J.. 2023. “Abiotic Stress in Crop Production.” International Journal of Molecular Sciences 24: 6603. PubMed PMC
Kosová, K. , Klíma M., Prášil I. T., and Vítámvás P.. 2021. “COR/LEA Proteins as Indicators of Frost Tolerance in Triticeae: A Comparison of Controlled Versus Field Conditions.” Plants 10: 789. PubMed PMC
Kosová, K. , Nešporová T., Vítámvás P., et al. 2025. “How to Survive Mild Winters: Cold Acclimation, Deacclimation, and Reacclimation in Winter Wheat and Barley.” Plant Physiology and Biochemistry 220: 109541. PubMed
Kozeko, L. Y. 2019. “The Role of HSP90 Chaperones in Stability and Plasticity of Ontogenesis of Plants Under Normal and Stressful Conditions (Arabidopsis thaliana).” Cytology and Genetics 53: 143–161.
Larkin, R. M. , Stefano G., Ruckle M. E., et al. 2016. “Reduced Chloroplast Coverage Genes From Arabidopsis thaliana Help to Establish the Size of the Chloroplast Compartment.” Proceedings of the National Academy of Sciences 113: E1116–E1125. PubMed PMC
Lee, E. S. , Park J. H., Wi S. D., et al. 2021. “Redox‐Dependent Structural Switch and CBF Activation Confer Freezing Tolerance In Plants.” Nature Plants 7: 914–922. PubMed
Li, N. , Gügel I. L., Giavalisco P., et al. 2015. “FAX1, a Novel Membrane Protein Mediating Plastid Fatty Acid Export.” PLoS Biology 13: e1002053. PubMed PMC
Liu, H. , Xin W., Wang Y., et al. 2022. “An Integrated Analysis of the Rice Transcriptome and Lipidome Reveals Lipid Metabolism Plays a Central Role in Rice Cold Tolerance.” BMC Plant Biology 22: 91. PubMed PMC
Liu, X. , Wei J., Li S., et al. 2024. “ MdHY5 Positively Regulates Cold Tolerance in Apple by Integrating the Auxin and Abscisic Acid Pathways.” New Phytologist, ahead of print, December 10. 10.1111/nph.20333. PubMed DOI
Liu, Y. , Dang P., Liu L., and He C., 2019. “Cold Acclimation by the CBF‐COR Pathway in a Changing Climate: Lessons From Arabidopsis Thaliana.” Plant Cell Reports 38, no. 5: 511–519. PubMed PMC
Luklová, M. , Novák J., Kopecká R., et al. 2022. “Phytochromes and Their Role in Diurnal Variations of ROS Metabolism and Plant Proteome.” International Journal of Molecular Sciences 23: 14134. PubMed PMC
Ma, Y. , Dai X., Xu Y., et al. 2015. “COLD1 Confers Chilling Tolerance In Rice.” Cell 160: 1209–1221. PubMed
Maréchal, A. , Parent J. S., Véronneau‐Lafortune F., Joyeux A., Lang B. F., and Brisson N.. 2009. “Whirly Proteins Maintain Plastid Genome Stability in Arabidopsis.” Proceedings of the National Academy of Sciences 106: 14693–14698. PubMed PMC
Matsushika, A. , Makino S., Kojima M., and Mizuno T.. 2000. “Circadian Waves of Expression of the APRR1/TOC1 Family of Pseudo‐Response Regulators in Arabidopsis thaliana: Insight Into the Plant Circadian Clock.” Plant and Cell Physiology 41: 1002–1012. PubMed
Minibayeva, F. , Mazina A., Gazizova N., Dmitrieva S., Ponomareva A., and Rakhmatullina D.. 2023. “Nitric Oxide Induces Autophagy in Triticum aestivum Roots.” Antioxidants 12: 1655. PubMed PMC
Mir, R. , Hernández M. L., Abou‐Mansour E., et al. 2013. “Pathogen and Circadian Controlled 1 (PCC1) Regulates Polar Lipid Content, ABA‐Related Responses, and Pathogen Defence in Arabidopsis thaliana .” Journal of Experimental Botany 64: 3385–3395. PubMed
Miura, K. , and Ohta M.. 2010. “SIZ1, a Small Ubiquitin‐Related Modifier Ligase, Controls Cold Signaling Through Regulation of Salicylic Acid Accumulation.” Journal of Plant Physiology 167: 555–560. PubMed
Mizoguchi, T. , Wheatley K., Hanzawa Y., et al. 2002. “LHY and CCA1 Are Partially Redundant Genes Required to Maintain Circadian Rhythms in Arabidopsis.” Developmental Cell 2: 629–641. PubMed
Moellering, E. R. , Muthan B., and Benning C.. 2010. “Freezing Tolerance in Plants Requires Lipid Remodeling at the Outer Chloroplast Membrane.” Science 330: 226–228. PubMed
Moore, L. R. , Caspi R., Boyd D., et al. 2024. “Revisiting the Y‐Ome of Escherichia coli .” Nucleic Acids Research 52: 12201–12207. PubMed PMC
Mølhøj, M. , Verma R., and Reiter W.‐D.. 2004. “The Biosynthesis of d‐Galacturonate in Plants. Functional Cloning and Characterization of a Membrane‐Anchored UDP‐D‐Glucuronate 4‐Epimerase From Arabidopsis.” Plant Physiology 135: 1221–1230. PubMed PMC
Nagel, M. , Pence V., Ballesteros D., Lambardi M., Popova E., and Panis B.. 2024. “Plant Cryopreservation: Principles, Applications, and Challenges of Banking Plant Diversity at Ultralow Temperatures.” Annual Review of Plant Biology 75: 797–824. PubMed
Nechushtai, R. , Conlan A. R., Harir Y., et al. 2012. “Characterization of Arabidopsis NEET Reveals an Ancient Role for NEET Proteins in Iron Metabolism.” Plant Cell 24: 2139–2154. PubMed PMC
Nelson, D. C. , Lasswell J., Rogg L. E., Cohen M. A., and Bartel B.. 2000. “FKF1, a Clock‐Controlled Gene That Regulates the Transition to Flowering in Arabidopsis.” Cell 101: 331–340. PubMed
Nietzsche, M. , Landgraf R., Tohge T., and Börnke F.. 2016. “A Protein–Protein Interaction Network Linking the Energy‐Sensor Kinase SnRK1 to Multiple Signaling Pathways in Arabidopsis thaliana .” Current Plant Biology 5: 36–44.
Novák, J. , Černý M., Roignant J., et al. 2021. “Limited Light Intensity and Low Temperature: Can Plants Survive Freezing in Light Conditions That More Accurately Replicate the Cold Season in Temperate Regions?” Environmental and Experimental Botany 190: 104581.
Pajoro, A. , Severing E., Angenent G. C., and Immink R. G. H.. 2017. “Histone H3 Lysine 36 Methylation Affects Temperature‐Induced Alternative Splicing and Flowering In Plants.” Genome Biology 18: 102. PubMed PMC
Palmieri, L. , Picault N., Arrigoni R., Besin E., Palmieri F., and Hodges M.. 2008. “Molecular Identification of Three Arabidopsis thaliana Mitochondrial Dicarboxylate Carrier Isoforms: Organ Distribution, Bacterial Expression, Reconstitution Into Liposomes and Functional Characterization.” Biochemical Journal 410: 621–629. PubMed
Pang, Z. , Chong J., Zhou G., et al. 2021. “Metaboanalyst 5.0: Narrowing the Gap Between Raw Spectra and Functional Insights.” Nucleic Acids Research 49: W388–W396. PubMed PMC
Park, J. , Lee S., Park G., et al. 2021. “Cytokinin‐Responsive Growth Regulator Regulates Cell Expansion and Cytokinin‐Mediated Cell Cycle Progression.” Plant Physiology 186: 1734–1746. PubMed PMC
Park, S. , Gilmour S. J., Grumet R., and Thomashow M. F.. 2018. “CBF‐Dependent and CBF‐Independent Regulatory Pathways Contribute to the Differences in Freezing Tolerance and Cold‐Regulated Gene Expression of Two Arabidopsis Ecotypes Locally Adapted to Sites in Sweden and Italy.” PLoS One 13: e0207723. PubMed PMC
Park, S. , Lee C. M., Doherty C. J., Gilmour S. J., Kim Y., and Thomashow M. F.. 2015. “Regulation of the Arabidopsis CBF Regulon by a Complex Low‐Temperature Regulatory Network.” Plant Journal 82: 193–207. PubMed
Patro, R. , Duggal G., Love M. I., Irizarry R. A., and Kingsford C.. 2017. “Salmon Provides Fast and Bias‐Aware Quantification of Transcript Expression.” Nature Methods 14: 417–419. PubMed PMC
Peck, S. , and Mittler R.. 2020. “Plant Signaling in Biotic and Abiotic Stress.” Journal of Experimental Botany 71, no. 5: 1649–1651. 10.1093/jxb/eraa051. PubMed DOI
Perea‐Resa, C. , Catalá R., and Salinas J.. 2020. “Identification of Arabidopsis Mutants With Altered Freezing Tolerance.” Methods in Molecular Biology 2156: 85–97. PubMed
Perez‐Riverol, Y. , Bai J., Bandla C., et al. 2022. “The PRIDE Database Resources in 2022: A Hub for Mass Spectrometry‐Based Proteomics Evidences.” Nucleic Acids Research 50: D543–D552. PubMed PMC
Prerostova, S. , Zupkova B., Petrik I., et al. 2021. “Hormonal Responses Associated With Acclimation to Freezing Stress in Lolium perenne .” Environmental and Experimental Botany 182: 104295.
Qian, W. , Miki D., Lei M., et al. 2014. “Regulation of Active DNA Demethylation by an α‐Crystallin Domain Protein in Arabidopsis.” Molecular Cell 55: 361–371. PubMed PMC
Rajashekar, C. B. , Zhou H. E., Zhang Y., Li W., and Wang X.. 2006. “Suppression of Phospholipase Dα1 Induces Freezing Tolerance in Arabidopsis: Response of Cold‐Responsive Genes and Osmolyte Accumulation.” Journal of Plant Physiology 163: 916–926. PubMed
Rankenberg, T. , Geldhof B., van Veen H., Holsteens K., Van de Poel B., and Sasidharan R.. 2021. “Age‐Dependent Abiotic Stress Resilience in Plants.” Trends in Plant Science 26: 692–705. PubMed
Ravindran, N. , Ramachandran H., Job N., Yadav A., Vaishak K. P., and Datta S.. 2021. “B‐Box Protein BBX32 Integrates Light and Brassinosteroid Signals to Inhibit Cotyledon Opening.” Plant Physiology 187: 446–461. PubMed PMC
Rawat, R. , Schwartz J., Jones M. A., et al. 2009. “REVEILLE1, a Myb‐Like Transcription Factor, Integrates the Circadian Clock and Auxin Pathways.” Proceedings of the National Academy of Sciences 106: 16883–16888. PubMed PMC
Rawat, R. , Takahashi N., Hsu P. Y., et al. 2011. “REVEILLE8 and Pseudo‐Reponse Regulator5 Form a Negative Feedback Loop Within the Arabidopsis Circadian Clock.” PLoS Genetics 7: e1001350. PubMed PMC
Ren, L. , Ma H., Chao D., et al. 2023. “Sep2, a Light‐Harvesting Complex‐Like Protein, is Involved in Light Stress Response by Binding to Free Chlorophylls.” Environmental and Experimental Botany 213: 105429.
Rieu, I. , Ruiz‐Rivero O., Fernandez‐Garcia N., et al. 2008. “The Gibberellin Biosynthetic Genes AtGA20ox1 and AtGA20ox2 Act, Partially Redundantly, to Promote Growth and Development Throughout the Arabidopsis Life Cycle.” Plant Journal 53: 488–504. PubMed
Robinson, M. D. , McCarthy D. J., and Smyth G. K.. 2009. “Edger: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data.” Bioinformatics 26: 139–140. PubMed PMC
Romani, I. , Tadini L., Rossi F., et al. 2012. “Versatile Roles of Arabidopsis Plastid Ribosomal Proteins in Plant Growth and Development.” Plant Journal 72: 922–934. PubMed
Ruelland, E. , Vaultier M.‐N., Zachowski A., and Hurry V.. 2009. “Chapter 2 Cold Signalling and Cold Acclimation in Plants.” Advances in Botanical Research 49: 35–150.
Schena, M. , Lloyd A. M., and Davis R. W.. 1993. “The HAT4 Gene of Arabidopsis Encodes a Developmental Regulator.” Genes & Development 7: 367–379. PubMed
Schippers, J. H. M. , Schmidt R., Wagstaff C., and Jing H.‐C.. 2015. “Living to Die and Dying to Live: The Survival Strategy Behind Leaf Senescence.” Plant Physiology 169: 914–930. PubMed PMC
Schlaen, R. G. , Mancini E., Sanchez S. E., et al. 2015. “The Spliceosome Assembly Factor GEMIN2 Attenuates the Effects of Temperature on Alternative Splicing and Circadian Rhythms.” Proceedings of the National Academy of Sciences 112: 9382–9387. PubMed PMC
Schneider, C. A. , Rasband W. S., and Eliceiri K. W.. 2012. “NIH Image to ImageJ: 25 Years of Image Analysis.” Nature Methods 2012 9:7 9: 671–675. PubMed PMC
Seo, P. J. , Kim M. J., Park J. Y., et al. 2010. “Cold Activation of a Plasma Membrane‐Tethered NAC Transcription Factor Induces a Pathogen Resistance Response in Arabidopsis.” Plant Journal 61: 661–671. PubMed
Sheoran, N. , Kumar A., Munjal V., Nadakkakath A. V., and Eapen S. J.. 2016. “Pseudomonas Putida BP25 Alters Root Phenotype and Triggers Salicylic Acid Signaling as a Feedback Loop in Regulating Endophytic Colonization in Arabidopsis thaliana .” Physiological and Molecular Plant Pathology 93: 99–111.
Shi, Y. , Huang J., Sun T., et al. 2017. “The Precise Regulation of Different COR Genes by Individual CBF Transcription Factors in Arabidopsis thaliana .” Journal of Integrative Plant Biology 59: 118–133. PubMed
Shi, Y. , Tian S., Hou L., et al. 2012. “Ethylene Signaling Negatively Regulates Freezing Tolerance by Repressing Expression of CBF and Type‐A ARR Genes in Arabidopsis.” Plant Cell 24: 2578–2595. PubMed PMC
Sperdouli, I. , and Moustakas M.. 2014. “Leaf Developmental Stage Modulates Metabolite Accumulation and Photosynthesis Contributing to Acclimation of Arabidopsis thaliana to Water Deficit.” Journal of Plant Research 127: 481–489. PubMed
Strand, Å , Hurry V., Henkes S., et al. 1999. “Acclimation of Arabidopsis Leaves Developing at Low Temperatures. Increasing Cytoplasmic Volume Accompanies Increased Activities of Enzymes in the Calvin Cycle and in the Sucrose‐Biosynthesis Pathway.” Plant Physiology 119: 1387–1398. PubMed PMC
Sugita, K. , Takahashi S., Uemura M., and Kawamura Y.. 2024. “Freezing Treatment Uunder Light Conditions Leads to a Dramatic Enhancement of Freezing Tolerance in Cold‐Acclimated Arabidopsis .” Plant, Cell & Environment 47: 2971–2985. PubMed
Sun, L. , Dong S., Ge Y., et al. 2019. “Divenn: An Interactive and Integrated Web‐Based Visualization Tool for Comparing Gene Lists.” Frontiers in Genetics 10: 452359. PubMed PMC
Szklarczyk, D. , Gable A. L., Lyon D., et al. 2019. “STRING v11: Protein–Protein Association Networks With Increased Coverage, Supporting Functional Discovery in Genome‐Wide Experimental Datasets.” Nucleic Acids Research 47: D607–D613. PubMed PMC
Široká, J. , Brunoni F., Pěnčík A., et al. 2022. “High‐Throughput Interspecies Profiling of Acidic Plant Hormones Using Miniaturised Sample Processing.” Plant Methods 18: 122. PubMed PMC
Takase, T. , Kakikubo Y., Nakasone A., et al. 2011. “Characterization and Transgenic Study of CONSTANS‐LIKE8 (COL8) Gene In Arabidopsis thaliana: Expression of 35S:COL8 Delays Flowering Under Long‐Day Conditions.” Plant Biotechnology 28: 439–446.
Teh, J. T. , Leitz V., Holzer V. J. C., et al. 2023. “NTRC Regulates CP12 to Activate Calvin–Benson Cycle During Cold Acclimation.” Proceedings of the National Academy of Sciences of the United States of America 120, no.33: e2306338120. PubMed PMC
Tsunoyama, Y. , Ishizaki Y., Morikawa K., et al. 2004. “Blue Light‐Induced Transcription of Plastid‐Encoded psbD Gene Is Mediated by a Nuclear‐Encoded Transcription Initiation Factor, AtSig5.” Proceedings of the National Academy of Sciences 101: 3304–3309. PubMed PMC
Umezawa, T. , Okamoto M., Kushiro T., et al. 2006. “CYP707A3, a Major ABA 8’‐Hydroxylase Involved in Dehydration and Rehydration Response in Arabidopsis thaliana .” Plant Journal 46: 171–182. PubMed
Venables, W. N. , and Ripley B. D.. 2002. Modern Applied Statistics With S. New York, NY: Springer.
Wang, D. Z. , Jin Y. N., Ding X. H., et al. 2017. “Gene Regulation and Signal Transduction in the ICE–CBF–COR Signaling Pathway During Cold Stress In Plants.” Biochemistry 82: 1103–1117. PubMed
Wang, H. , Zhu Y., Fujioka S., Asami T., Li J., and Li J.. 2009. “Regulation of Arabidopsis Brassinosteroid Signaling by Atypical Basic Helix‐Loop‐Helix Proteins.” Plant Cell 21: 3781–3791. PubMed PMC
Wang, K. , Froehlich J. E., Zienkiewicz A., Hersh H. L., and Benning C.. 2017. “A Plastid Phosphatidylglycerol Lipase Contributes to the Export of Acyl Groups From Plastids for Seed Oil Biosynthesis.” Plant Cell 29: 1678–1696. PubMed PMC
Wang, K. , Guo Q., Froehlich J. E., et al. 2018. “Two Abscisic Acid‐Responsive Plastid Lipase Genes Involved in Jasmonic Acid Biosynthesis in Arabidopsis thaliana .” Plant Cell 30: 1006–1022. PubMed PMC
Wang, S. , and Blumwald E.. 2015. “Stress‐Induced Chloroplast Degradation in Arabidopsis Is Regulated via a Process Independent of Autophagy and Senescence‐Associated Vacuoles.” Plant Cell 26: 4875–4888. PubMed PMC
Wang, X. Y. , Li D. Z., Li Q., et al. 2016. “Metabolomic Analysis Reveals the Relationship Between AZI1 and Sugar Signaling in Systemic Acquired Resistance of Arabidopsis.” Plant Physiology and Biochemistry 107: 273–287. PubMed
Wei, X. , Liu S., Sun C., Xie G., and Wang L.. 2021. “Convergence and Divergence: Signal Perception and Transduction Mechanisms of Cold Stress in Arabidopsis and Rice.” Plants 10: 1864. PubMed PMC
Weigel, D. , and Mott R.. 2009. “The 1001 Genomes Project for Arabidopsis thaliana .” Genome Biology 10: 107. PubMed PMC
Wickham, H. 2011. “ggplot2.” WIREs Computational Statistics 3: 180–185.
Wu, Y. , Di T., Wu Z., et al. 2024. “CsLHY Positively Regulates Cold Tolerance by Activating CsSWEET17 in Tea Plants.” Plant Physiology and Biochemistry 207: 108341. PubMed
Wu, Z. , Tong M., Tian L., et al. 2020. “Plant E3 Ligases SNIPER1 and SNIPER2 Broadly Regulate the Homeostasis of Sensor NLR Immune Receptors.” EMBO Journal 39, no. 15: e104915. PubMed PMC
Xu, Z. Y. , Zhang X., Schläppi M., and Xu Z. Q.. 2011. “Cold‐Inducible Expression of AZI1 and Its Function in Improvement of Freezing Tolerance of Arabidopsis thaliana and Saccharomyces cerevisiae .” Journal of Plant Physiology 168: 1576–1587. PubMed
Yamazaki, T. , Kawamura Y., Minami A., and Uemura M.. 2009. “Calcium‐Dependent Freezing Tolerance in Arabidopsis Involves Membrane Resealing via Synaptotagmin SYT1.” Plant Cell 20: 3389–3404. PubMed PMC
Yang, R. , Hong Y., Ren Z., et al. 2019. “A Role for PICKLE in the Regulation of Cold and Salt Stress Tolerance in Arabidopsis.” Frontiers in Plant Science 10: 900. 10.3389/fpls.2019.00900. PubMed DOI PMC
Yang, T. , Shad Ali G., Yang L., Du L., Reddy A. S., and Poovaiah B. W.. 2010. “Calcium/Calmodulin‐Regulated Receptor‐Like Kinase CRLK1 Interacts With MEKK1 in Plants.” Plant Signaling & Behavior 5: 991–994. PubMed PMC
Yang, T. H. , Lenglet‐Hilfiker A., Stolz S., Glauser G., and Farmer E. E.. 2020. “Jasmonate Precursor Biosynthetic Enzymes LOX3 and LOX4 Control Wound‐Response Growth Restriction.” Plant Physiology 184: 1172–1180. PubMed PMC
Yao, Y. , Ling Q., Wang H., and Huang H.. 2008. “Ribosomal Proteins Promote Leaf Adaxial Identity.” Development 135: 1325–1334. PubMed
Yin, Y. , Wang Z. Y., Mora‐Garcia S., et al. 2002. “BES1 Accumulates in the Nucleus in Response to Brassinosteroids to Regulate Gene Expression and Promote Stem Elongation.” Cell 109: 181–191. PubMed
Youssef, A. , Laizet Y., Block M. A., et al. 2010. “Plant Lipid‐Associated Fibrillin Proteins Condition Jasmonate Production Under Photosynthetic Stress.” Plant Journal 61: 436–445. PubMed
Zaltsman, A. , Ori N., and Adam Z.. 2005. “Two Types of FtsH Protease Subunits Are Required for Chloroplast Biogenesis and Photosystem II Repair in Arabidopsis .” Plant Cell 17: 2782–2790. PubMed PMC
Zandalinas, S. I. , Fichman Y., Devireddy A. R., Sengupta S., Azad R. K., and Mittler R.. 2020. “Systemic Signaling During Abiotic Stress Combination in Plants.” Proceedings of the National Academy of Sciences 117: 13810–13820. PubMed PMC
Zandalinas, S. I. , Sengupta S., Burks D., Azad R. K., and Mittler R.. 2019. “Identification and Characterization of a Core Set of ROS Wave‐Associated Transcripts Involved in the Systemic Acquired Acclimation Response of Arabidopsis to Excess Light.” Plant Journal 98: 126–141. PubMed PMC
Zhang, H. , and Sonnewald U.. 2017. “Differences and Commonalities of Plant Responses to Single and Combined Stresses. Plant Journal 90: 839–855. PubMed
Zhang, L. , Xiang Z., Li J., et al. 2023. “bHLH57 Confers Chilling Tolerance and Grain Yield Improvement in Rice.” Plant, Cell & Environment 46: 1402–1418. PubMed
Zhang, Y. , Xiao W., Wang M., Khan M., and Liu J. H.. 2024. “A C2H2‐type Zinc Finger Protein ZAT12 of Poncirus trifoliata Acts Downstream of CBF1 to Regulate Cold Tolerance.” Plant Journal 117: 1317–1329. PubMed
Zhao, X. , Li J., Lian B., Gu H., Li Y., and Qi Y.. 2018. “Global Identification of Arabidopsis lncRNAs Reveals the Regulation of MAF4 by a Natural Antisense RNA.” Nature Communications 9: 5056. PubMed PMC
Zhao, Y. , Chan Z., Gao J., et al. 2016. “ABA Receptor PYL9 Promotes Drought Resistance and Leaf Senescence.” Proceedings of the National Academy of Sciences 113: 1949–1954. PubMed PMC
Zhu, H. , Zhang T. J., Zheng J., et al. 2018. “Anthocyanins Function as a Light Attenuator to Compensate for Insufficient Photoprotection Mediated by Nonphotochemical Quenching in Young Leaves of Acmena acuminatissima in Winter.” Photosynthetica 56: 445–454.
Zuther, E. , Schaarschmidt S., Fischer A., et al. 2019. “Molecular Signatures Associated With Increased Freezing Tolerance Due to Low Temperature Memory in Arabidopsis .” Plant, Cell & Environment 42: 854–873. PubMed