COR/LEA Proteins as Indicators of Frost Tolerance in Triticeae: A Comparison of Controlled versus Field Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
MZe CR RO0418; QK1710302; QK1910269
Ministerstvo Zemědělství
PubMed
33923804
PubMed Central
PMC8073581
DOI
10.3390/plants10040789
PII: plants10040789
Knihovny.cz E-zdroje
- Klíčová slova
- COR14b, cold acclimation, dehydrins, field trials, frost tolerance, growth chambers, vernalisation,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Low temperatures in the autumn induce enhanced expression/relative accumulation of several cold-inducible transcripts/proteins with protective functions from Late-embryogenesis-abundant (LEA) superfamily including dehydrins. Several studies dealing with plants grown under controlled conditions revealed a correlation (significant quantitative relationship) between dehydrin transcript/protein relative accumulation and plant frost tolerance. However, to apply these results in breeding, field experiments are necessary. The aim of the review is to provide a summary of the studies dealing with the relationships between plant acquired frost tolerance and COR/LEA transcripts/proteins relative accumulation in cereals grown in controlled and field conditions. The impacts of cold acclimation and vernalisation processes on the ability of winter-type Triticeae to accumulate COR/LEA proteins are discussed. The factors determining dehydrin relative accumulation under controlled cold acclimation treatments versus field trials during winter seasons are discussed. In conclusion, it can be stated that dehydrins could be used as suitable indicators of winter survival in field-grown winter cereals but only in plant prior to the fulfilment of vernalisation requirement.
Zobrazit více v PubMed
Thomashow M.F. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999;50:571–599. doi: 10.1146/annurev.arplant.50.1.571. PubMed DOI
Chouard P. Vernalization and its relations to dormancy. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1960;11:191–238. doi: 10.1146/annurev.pp.11.060160.001203. DOI
Fowler D.B., Breton G., Limin A.E., Mahfoozi S., Sarhan F. Photoperiod and temperature interactions regulate low-temperature-induced gene expression in barley. Plant Physiol. 2001;127:1676–1681. doi: 10.1104/pp.010483. PubMed DOI PMC
Danyluk J., Kane N.A., Breton G., Limin A.E., Fowler D.B., Sarhan F. TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol. 2003;132:1849–1860. doi: 10.1104/pp.103.023523. PubMed DOI PMC
Francia E., Rizza F., Cattivelli L., Stanca A.M., Galiba G., Toth B., Hayes P.M., Skinner J.S., Pecchioni N. Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’ (winter) × ‘Tremois’ (spring) barley map. Theor. Appl. Genet. 2004;108:670–680. doi: 10.1007/s00122-003-1468-9. PubMed DOI
Knox A.K., Li C.X., Vagujfalvi A., Galilba G., Stockinger E.J., Dubcovsky J. Identification of candidate CBF genes for the frost tolerance locus Fr-A(m)2 in Triticum monococcum. Plant Mol. Biol. 2008;67:257–270. doi: 10.1007/s11103-008-9316-6. PubMed DOI
Dure L., Greenway S.C., Galau G.A. Developmental biochemistry of cottonseed embryogenesis and germination: Changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry. 1981;20:4162–4168. doi: 10.1021/bi00517a033. PubMed DOI
Battaglia M., Olvera-Carrillo Y., Garciarrubio A., Campos F., Covarrubias A.A. The enigmatic LEA proteins and other hydrophilins. Plant Physiol. 2008;148:6–24. doi: 10.1104/pp.108.120725. PubMed DOI PMC
Close T.J., Fenton R.D., Moonan F. A view of plant dehydrins using antibodies specific to the carboxy-terminal peptide. Plant Mol. Biol. 1993;23:279–286. doi: 10.1007/BF00029004. PubMed DOI
Close T.J. Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plant. 1996;97:795–803. doi: 10.1111/j.1399-3054.1996.tb00546.x. DOI
Close T.J. Dehydrins: A commonality in the response of plants to dehydration and low temperature. Physiol. Plant. 1997;100:291–296. doi: 10.1111/j.1399-3054.1997.tb04785.x. DOI
Brini F., Hanin M., Lumbreras V., Irar S., Pages M., Masmoudi K. Functional characterization of DHN-5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat (Triticum durum Desf.) varieties with marked differences in salt and drought tolerance. Plant Sci. 2007;172:20–28. doi: 10.1016/j.plantsci.2006.07.011. DOI
Tompa P. Intrinsically unstructured proteins. Trends Biochem. Sci. 2002;27:527–533. doi: 10.1016/S0968-0004(02)02169-2. PubMed DOI
Hara M. The multifunctionality of dehydrins: An overview. Plant Signal. Behav. 2010;5:503–508. doi: 10.4161/psb.11085. PubMed DOI PMC
Hanin M., Brini F., Ebel C., Toda Y., Takeda S., Masmoudi K. Plant dehydrins and stress tolerance: Versatile proteins for complex mechanisms. Plant Signal. Behav. 2011;6:1503–1509. doi: 10.4161/psb.6.10.17088. PubMed DOI PMC
Graether S.P., Boddington K.F. Disorder and function: A review of the dehydrin protein family. Front. Plant Sci. 2014;5:576. doi: 10.3389/fpls.2014.00576. PubMed DOI PMC
Koag M.C., Wilkens S., Fenton R.D., Resnik J., Vo E., Close T.J. The K-Segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant Physiol. 2009;150:1503–1514. doi: 10.1104/pp.109.136697. PubMed DOI PMC
Houde M., Daniel C., Lachapelle M., Allard F., Laliberte S., Sarhan F. Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant J. 1995;8:583–593. doi: 10.1046/j.1365-313X.1995.8040583.x. PubMed DOI
Bravo L.A., Gallardo J., Navarrete A., Olave N., Martinez J., Alberdi M., Close T.J., Corcuera L.J. Cryoprotective activity of a cold-induced dehydrin purified from barley. Physiol. Plant. 2003;118:262–269. doi: 10.1034/j.1399-3054.2003.00060.x. DOI
Kosová K., Prášil I.T., Vitámvás P. Role of dehydrins in plant stress response. In: Pessarakli M., editor. Handbook of Plant and Crop Stress. 4th ed. CRC Press, Taylor and Francis; Boca Raton, FL, USA: 2019. pp. 239–286.
Danyluk J., Houde M., Rassart E., Sarhan F. Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerant gramineae species. FEBS Lett. 1994;344:20–24. doi: 10.1016/0014-5793(94)00353-X. PubMed DOI
Crosatti C., de Laureto P.P., Bassi R., Cattivelli L. The interaction between cold and light controls the expression of the cold-regulated barley gene cor14b and the accumulation of the corresponding protein. Plant Physiol. 1999;119:671–680. doi: 10.1104/pp.119.2.671. PubMed DOI PMC
Kobayashi F., Takumi S., Nakata M., Ohno R., Nakamura T., Nakamura C. Comparative study of the expression profiles of the Cor/Lea gene family in two wheat cultivars with contrasting levels of freezing tolerance. Physiol. Plant. 2004;120:585–594. doi: 10.1111/j.0031-9317.2004.0293.x. PubMed DOI
Houde M., Dhindsa R.S., Sarhan F. A molecular marker to select for freezing tolerance in Gramineae. Mol. Gen. Genet. 1992;234:43–48. doi: 10.1007/BF00272343. PubMed DOI
Vítámvás P., Saalbach G., Prášil I.T., Čapková V., Opatrná J., Ahmed J. WCS120 protein family and proteins soluble upon boiling in cold-acclimated winter wheat. J. Plant Physiol. 2007;164:1197–1207. doi: 10.1016/j.jplph.2006.06.011. PubMed DOI
Kosová K., Holková L., Prášil I.T., Prášilová P., Bradáčová M., Vitámvás P., Čapková V. Expression of dehydrin 5 during the development of frost tolerance in barley (Hordeum vulgare) J. Plant Physiol. 2008;165:1142–1151. doi: 10.1016/j.jplph.2007.10.009. PubMed DOI
Vítámvás P., Kosová K., Prášilová P., Prášil I.T. Accumulation of WCS120 protein in wheat cultivars grown at 9 °C or 17 °C in relation to their winter survival. Plant Breed. 2010;129:611–616. doi: 10.1111/j.1439-0523.2010.01783.x. DOI
Kosová K., Vitámvás P., Prášilová P., Prášil I.T. Accumulation of WCS120 and DHN5 proteins in differently frost-tolerant wheat and barley cultivars grown under a broad temperature scale. Biol. Plant. 2013;57:105–112. doi: 10.1007/s10535-012-0237-5. DOI
Fowler D.B. Cold acclimation threshold induction temperatures in cereals. Crop Sci. 2008;48:1147–1154. doi: 10.2135/cropsci2007.10.0581. DOI
Vítámvás P., Kosová K., Musilová J., Holková L., Mařík P., Smutná P., Klíma M., Prášil I.T. Relationship between dehydrin accumulation and winter survival in winter wheat and barley grown in the field. Front. Plant Sci. 2019;10:7. doi: 10.3389/fpls.2019.00007. PubMed DOI PMC
Ruelland E., Vaultier M.N., Zachowski A., Hurry V. Cold signalling and cold acclimation in plants. Adv. Bot. Res. 2009;49:35–150.
Janáček J., Prášil I.T. Quantification of plant frost injury by nonlinear fitting of an S-shaped function. Cryo-Lett. 1991;12:47–52.
Prášil I., Zámečník J. The use of a conductivity measurement method for assessing freezing injury I. Influence of leakage time, segment number, size and shape in a sample on evaluation of the degree of injury. Environ. Exp. Bot. 1998;40:1–10. doi: 10.1016/S0098-8472(98)00010-0. DOI
Gray G.R., Chauvin L.P., Sarhan F., Huner N.P.A. Cold acclimation and freezing tolerance—A complex interaction of light and temperature. Plant Physiol. 1997;114:467–474. doi: 10.1104/pp.114.2.467. PubMed DOI PMC
Kumar S.V., Wigge P.A. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell. 2010;140:136–147. doi: 10.1016/j.cell.2009.11.006. PubMed DOI
Janská A., Aprile A., Zámečník J., Cattivelli L., Ovesná J. Transcriptional responses of winter barley to cold indicate nucleosome remodelling as a specific feature of crown tissues. Funct. Integr. Genom. 2011;11:307–325. doi: 10.1007/s10142-011-0213-8. PubMed DOI PMC
Tarkowski L.P., Van den Ende W. Cold tolerance triggered by soluble sugars: A multifaceted countermeasure. Front. Plant Sci. 2015;6:203. doi: 10.3389/fpls.2015.00203. PubMed DOI PMC
Bertrand A., Bipfubusa M., Claessens A., Rocher S., Castonguay Y. Effect of photoperiod prior to cold acclimation on freezing tolerance and carbohydrate metabolism in alfalfa (Medicago sativa L.) Plant Sci. 2017;264:122–128. doi: 10.1016/j.plantsci.2017.09.003. PubMed DOI
Murata N., Los D.A. Membrane fluidity and temperature perception. Plant Physiol. 1997;115:875–879. doi: 10.1104/pp.115.3.875. PubMed DOI PMC
Suzuki I., Los D.A., Kanesaki Y., Mikami K., Murata N. The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J. 2000;19:1327–1334. doi: 10.1093/emboj/19.6.1327. PubMed DOI PMC
Ma Y., Dai X., Xu Y., Luo W., Zheng X., Zeng D., Pan Y., Lin X., Liu H., Zhang D., et al. COLD1 confers chilling tolerance in rice. Cell. 2015;160:1209–1221. doi: 10.1016/j.cell.2015.01.046. PubMed DOI
Choi D.W., Zhu B., Close T.J. The barley (Hordeum vulgare L.) dehydrin multigene family: Sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo. Theor. Appl. Genet. 1999;98:1234–1247. doi: 10.1007/s001220051189. DOI
Tommasini L., Svensson J.T., Rodriguez E.M., Wahid A., Malatrasi M., Kato K., Wanamaker S., Resnik J., Close T.J. Dehydrin gene expression provides an indicator of low temperature and drought stress: Transcriptome-based analysis of barley (Hordeum vulgare L.) Funct. Integr. Genom. 2008;8:387–405. doi: 10.1007/s10142-008-0081-z. PubMed DOI
Zarka D.G., Vogel J.T., Cook D., Thomashow M.F. Cold induction of Arabidopsis CBF genes involves multiple ICE (Inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiol. 2003;133:910–918. doi: 10.1104/pp.103.027169. PubMed DOI PMC
Ding Y.L., Li H., Zhang X.Y., Xie Q., Gong Z.Z., Yang S.H. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev. Cell. 2015;32:278–289. doi: 10.1016/j.devcel.2014.12.023. PubMed DOI
Ohno R., Takumi S., Nakamura C. Kinetics of transcript and protein accumulation of a low-molecular-weight wheat LEA D-11 dehydrin in response to low temperature. J. Plant Physiol. 2003;160:193–200. doi: 10.1078/0176-1617-00925. PubMed DOI
Ganeshan S., Vítámvás P., Fowler D.B., Chibbar R.N. Quantitative expression analysis of selected COR genes reveals their differential expression in leaf and crown tissues of wheat (Triticum aestivum L.) during an extended low temperature acclimation regimen. J. Exp. Bot. 2008;59:2393–2402. doi: 10.1093/jxb/ern112. PubMed DOI PMC
Urban M.O., Klíma M., Vítámvás P., Vašek J., Hilgert-Delgado A.A., Kučera V. Significant relationships among frost tolerance and net photosynthetic rate, water use efficiency and dehydrin accumulation in cold-treated winter oilseed rapes. J. Plant Physiol. 2013;170:1600–1608. doi: 10.1016/j.jplph.2013.07.012. PubMed DOI
Maibam P., Nawkar G.M., Park J.H., Sahi V.P., Lee S.Y., Kang C.H. The influence of light quality, circadian rhythm, and photoperiod on the CBF-mediated freezing tolerance. Int. J. Mol. Sci. 2013;14:11527–11543. doi: 10.3390/ijms140611527. PubMed DOI PMC
Ahres M., Gierczik K., Boldizsár A., Vítámvás P., Galiba G. Temperature and light-quality dependent regulation of freezing tolerance in barley. Plants. 2020;9:83. doi: 10.3390/plants9010083. PubMed DOI PMC
Tondelli A., Francia E., Barabaschi D., Pasquariello M., Pecchioni N. Inside the CBF locus in Poaceae. Plant Sci. 2011;180:39–45. doi: 10.1016/j.plantsci.2010.08.012. PubMed DOI
Kume S., Kobayashi F., Ishibashi M., Ohno R., Nakamura C., Takumi S. Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance. Genes Genet. Syst. 2005;80:185–197. doi: 10.1266/ggs.80.185. PubMed DOI
Vágújfalvi A., Galiba G., Cattivelli L., Dubcovsky J. The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A. Mol. Genet. Genom. 2003;269:60–67. doi: 10.1007/s00438-003-0806-6. PubMed DOI PMC
Campoli C., Matus-Cadiz M.A., Pozniak C.J., Cattivelli L., Fowler D.B. Comparative expression of Cbf genes in the Triticeae under different acclimation induction temperatures. Mol. Genet. Genom. 2009;282:141–152. doi: 10.1007/s00438-009-0451-9. PubMed DOI PMC
Badawi M., Danyluk J., Boucho B., Houde M., Sarhan F. The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs. Mol. Genet. Genom. 2007;277:533–554. doi: 10.1007/s00438-006-0206-9. PubMed DOI PMC
Achard P., Gong F., Cheminant S., Alioua M., Hedden P., Genschik P. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell. 2008;20:2117–2129. doi: 10.1105/tpc.108.058941. PubMed DOI PMC
Kosová K., Prášil I.T., Vítámvás P., Dobrev P., Motyka V., Floková K., Novák O., Turečková V., Rolčik J., Pešek B., et al. Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. J. Plant Physiol. 2012;169:567–576. doi: 10.1016/j.jplph.2011.12.013. PubMed DOI
Vanková R., Kosová K., Dobrev P., Vítámvás P., Trávníčková A., Cvikrová M., Pešek B., Gaudinová A., Přerostová S., Musilová J., et al. Dynamics of cold acclimation and complex phytohormone responses in Triticum monococcum lines G3116 and DV92 differing in vernalization and frost tolerance level. Env. Exp. Bot. 2014;101:12–25. doi: 10.1016/j.envexpbot.2014.01.002. DOI
Kalapos B., Novák A., Dobrev P., Vítámvás P., Marincs F., Galiba G., Vanková R. Effect of the winter wheat Cheyenne 5A substituted chromosome on dynamics of abscisic acid and cytokinins in freezing-sensitive Chinese spring genetic background. Front. Plant Sci. 2017;8:2033. doi: 10.3389/fpls.2017.02033. PubMed DOI PMC
Sung S., Amasino R.M. Remembering winter: Toward a molecular understanding of vernalization. Annu. Rev. Plant Biol. 2005;56:491–508. doi: 10.1146/annurev.arplant.56.032604.144307. PubMed DOI
Yan L., Loukoianov A., Tranquilli G., Helguera M., Fahima T., Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc. Nat. Acad. Sci. USA. 2003;100:6263–6268. doi: 10.1073/pnas.0937399100. PubMed DOI PMC
Yan L., Loukoianov A., Blechl A., Tranquilli G., Ramakrishna W., SanMiguel P., Bennetzen J.L., Echenique V., Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science. 2004;303:1640–1644. doi: 10.1126/science.1094305. PubMed DOI PMC
Von Zitzewitz J., Szücs P., Dubcovsky J., Yan L.L., Francia E., Pecchioni N., Casas A., Chen T.H.H., Hayes P.M., Skinner J.S. Molecular and structural characterization of barley vernalization genes. Plant Mol. Biol. 2005;59:449–467. doi: 10.1007/s11103-005-0351-2. PubMed DOI
Oliver S.N., Finnegan E.J., Dennis E.S., Peacock W.J., Trevaskis B. Vernalization induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proc. Natl. Acad. Sci. USA. 2009;106:8386–8391. doi: 10.1073/pnas.0903566106. PubMed DOI PMC
Kane N.A., Danyluk J., Tardif G., Ouellet F., Laliberté J.F., Limin A.E., Fowler D.B., Sarhan F. TaVRT-2, a member of the StMADS-11 clade of flowering repressors is regulated by vernalization and photoperiod in wheat. Plant Physiol. 2005;138:2354–2363. doi: 10.1104/pp.105.061762. PubMed DOI PMC
Seo E., Lee H., Jeon J., Park H., Kim J., Noh Y.S., Lee I. Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering–time gene SOC1 and its upstream negative regulator FLC. Plant Cell. 2009;21:3185–3197. doi: 10.1105/tpc.108.063883. PubMed DOI PMC
Laudencia-Chingcuanco D., Ganeshan S., You F., Fowler B., Chibbar R., Anderson O. Genome-wide gene expression analysis supports a developmental model of low temperature tolerance gene regulation in wheat (Triticum aestivum L.) BMC Genom. 2011;12:299. doi: 10.1186/1471-2164-12-299. PubMed DOI PMC
Dhillon T., Pearce S.P., Stockinger E.J., Distelfeld A., Li C., Knox A.K., Vashegyi I., Vágújfalvi A., Galiba G., Dubcovsky J. Regulation of freezing tolerance and flowering in cereals: The VRN–1 connection. Plant Physiol. 2010;153:1846–1858. doi: 10.1104/pp.110.159079. PubMed DOI PMC
Deng W.W., Casao M.C., Wang P.H., Sato K., Hayes P.M., Finnegan E.J., Trevaskis B. Direct links between the vernalization response and other key traits of cereal crops. Nat. Commun. 2015;6:5882. doi: 10.1038/ncomms6882. PubMed DOI
Li Q., Byrns B., Badawi M.A., Diallo A.B., Danyluk J., Sarhan F., Laudencia-Chingcuanco D., Zou J., Fowler D.B. Transcriptomic insights into phenological development and cold tolerance of wheat grown in the field. Plant Physiol. 2018;176:2376–2394. doi: 10.1104/pp.17.01311. PubMed DOI PMC
Limin A.E., Fowler D.B. Developmental traits affecting low-temperature tolerance response in near-isogenic lines for the vernalization locus Vrn-A1 in wheat (Triticum aestivum L. em Thell) Ann. Bot. 2002;89:579–585. doi: 10.1093/aob/mcf102. PubMed DOI PMC
Vítámvás P., Prášil I.T. WCS120 protein family and frost tolerance during cold acclimation, deacclimation and reacclimation of winter wheat. Plant Physiol. Biochem. 2008;46:970–976. doi: 10.1016/j.plaphy.2008.06.006. PubMed DOI
Mittler R. Abiotic stress, the field environment and stress combination. Trends Plant. Sci. 2006;11:15–19. doi: 10.1016/j.tplants.2005.11.002. PubMed DOI
Crosatti C., Pagani D., Cattivelli L., Stanca A.M., Rizza F. Effects of growth stage and hardening conditions on the association between frost resistance and the expression of the cold-induced protein COR14b in barley. Environ. Exp. Bot. 2008;62:93–100. doi: 10.1016/j.envexpbot.2007.07.008. DOI
Pomortsev A., Dorofeev N.V., Katysheva N.B., Peshkova A.A. Changes in dehydrin composition in winter cereal crowns during winter survival. Biol. Plant. 2017;61:394–398. doi: 10.1007/s10535-016-0673-8. DOI
Ganeshan S., Denesik T., Fowler D.B., Chibbar R.N. Quantitative expression analysis of selected low temperature-induced genes in autumn-seeded wheat (Triticum aestivum L.) reflects changes in soil temperature. Environ. Exp. Bot. 2009;66:46–53. doi: 10.1016/j.envexpbot.2008.12.013. DOI
Giorni E., Crosatti C., Baldi P., Grossi M., Mare C., Stanca A.M., Cattivelli L. Cold-regulated gene expression during winter in frost tolerant and frost susceptible barley cultivars grown under field conditions. Euphytica. 1999;106:149–157. doi: 10.1023/A:1003564503628. DOI
Rizza F., Pagani D., Gut M., Prášil I.T., Lago C., Tondelli A., Orru L., Mazucotelli E., Francia E., Badeck F.W., et al. Diversity in the response to low temperature in representative barley genotypes cultivated in Europe. Crop Sci. 2011;51:2759–2779. doi: 10.2135/cropsci2011.01.0005. DOI