Effect of the Winter Wheat Cheyenne 5A Substituted Chromosome on Dynamics of Abscisic Acid and Cytokinins in Freezing-Sensitive Chinese Spring Genetic Background

. 2017 ; 8 () : 2033. [epub] 20171129

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29238355

The effect of short- and long-term cold treatment on the abscisic acid (ABA) and cytokinin (CK) metabolism, and their main biosynthesis- and signaling-related genes were investigated in freezing-sensitive and freezing-tolerant wheat genotypes. Varieties Cheyenne and Chinese Spring substituted with the 5A Cheyenne chromosome, which represented freezing-tolerant genotypes, were compared with the freezing-sensitive Chinese Spring. Hormone levels and gene expression data indicated that the short- and long-term cold treatments are associated with specific regulation of the accumulation of cold-protective proteins and phytohormone levels, as well as the expression profiles of the hormone-related genes. The significant differences were observed between the genotypes, and between their leaf and crown tissues, too. The level of dehydrins, including WCS120 protein, and expression of WCS120 gene were considerably higher in the freezing-tolerant genotypes after 21 days of cold treatment. Expression of Cor14b and CBF14, cold-responsive regulator genes, was increased by cold treatment in all genotypes, to higher extent in freezing-tolerant genotypes. Cluster analysis revealed that the tolerant genotypes had a similar response to cold treatment, regarding expression of the ABA and CK metabolic genes, as well as hormone levels in leaves. As far as hormone levels in crowns are concerned, however, the strongly freezing-tolerant Cheyenne variety clustered separately from the Chinese Spring and the substitution line, which were more similar to each other after both 1 and 21 days of cold treatment than to Cheyenne. Based on these results we concluded that the 5A chromosome of wheat might have both a direct and an indirect impact on the phytohormone-dependent cold-induced freezing tolerance. Based on the gene expression data, novel genetic markers could be developed, which may be used to determine the freezing tolerance level in a wide range of wheat varieties.

Zobrazit více v PubMed

Achard P., Gong F., Cheminant S., Alioua M., Hedden P., Genschik P. (2008). The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20 2117–2129. 10.1105/tpc.108.058941 PubMed DOI PMC

Boldizsár Á., Carrera D. Á., Gulyás Z., Vashegyi I., Novák A., Kalapos B., et al. (2016). Comparison of redox and gene expression changes during vegetative/generative transition in the crowns and leaves of chromosome 5A substitution lines of wheat under low-temperature condition. J. Appl. Genet. 57 1–13. 10.1007/s13353-015-0297-2 PubMed DOI

Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 248–254. 10.1016/0003-2697(76)90527-3 PubMed DOI

Cahalan C., Law C. N. (1979). The genetical control of cold resistance and vernalisation requirement in wheat. Heredity (Edinb). 42 125–132. 10.1038/hdy.1979.16 DOI

Campoli C., Matus-Cádiz M. A., Pozniak C. J., Cattivelli L., Fowler D. B. (2009). Comparative expression of Cbf genes in the Triticeae under different acclimation induction temperatures. Mol. Genet. Genomics 282 141–152. 10.1007/s00438-009-0451-9 PubMed DOI PMC

Cattivelli L., Baldi P., Crosatti C., Di Fonzo N., Faccioli P., Grossi M., et al. (2002). Chromosome regions and stressed-realted sequences involved in resitance to abiotic stress in Triticeae. Plant Mol. Biol. 48 649–665. 10.1023/A:101482440 PubMed DOI

Checker V. G., Chhibbar A. K., Khurana P. (2012). Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress. Transgenic Res. 21 939–957. 10.1007/s11248-011-9577-8 PubMed DOI

Chen Y., Carver B. F., Wang S., Zhang F., Yan L. (2009). Genetic loci associated with stem elongation and winter dormancy release in wheat. Theor. Appl. Genet. 118 881–889. 10.1007/s00122-008-0946-5 PubMed DOI

Chen Y. S., Lo S. F., Sun P. K., Lu C. A., Ho T. H. D., Yu S. M. (2015). A late embryogenesis abundant protein HVA1 regulated by an inducible promoter enhances root growth and abiotic stress tolerance in rice without yield penalty. Plant Biotechnol. J. 13 105–116. 10.1111/pbi.12241 PubMed DOI

Chernys J. T., Zeevaart J. A. (2000). Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado. Plant Physiol. 124 343–353. 10.1104/pp.124.1.343 PubMed DOI PMC

Crosatti C., Marè C., Mazzucotelli E., Belloni S., Barilli S., Bassi R., et al. (2003). Genetic analysis of the expression of the cold-regulated gene cor14b: a way toward the identification of components of the cold response signal transduction in Triticeae. Can. J. Bot. 81 1162–1167. 10.1139/b03-114 DOI

Crosatti C., Nevo E., Stanca A. M., Cattivelli L. (1996). Genetic analysis of the accumulation of COR 14 proteins in wild (Hordeum spontaneum) and cultivated (Hordeum vulgare) barley. Theor. Appl. Genet. 93 975–981. 10.1007/BF00224101 PubMed DOI

Crosatti C., Polverino de Laureto P., Bassi R., Cattivelli L. (1999). The interaction between cold and light controls the expression of the cold-regulated barley gene cor14b and the accumulation of the corresponding protein. Plant Physiol. 119 671–680. 10.1104/pp.119.2.671 PubMed DOI PMC

Dhillon T., Pearce S. P., Stockinger E. J., Distelfeld A., Li C., Knox A. K., et al. (2010). Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. Plant Physiol. 153 1846–1858. 10.1104/pp.110.159079 PubMed DOI PMC

Dhillon T., Stockinger E. J. (2013). Cbf14 copy number variation in the A, B, and D genomes of diploid and polyploid wheat. Theor. Appl. Genet. 126 2777–2789. 10.1007/s00122-013-2171-0 PubMed DOI

Dobrev P. I., Kamínek M. (2002). Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A 950 21–29. 10.1016/S0021-9673(02)00024-9 PubMed DOI

Dobrev P. I., Vankova R. (2012). “Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues,” in Plant Salt Tolerance: Methods and Protocols, Methods in Molecular Biology eds Shabala S., Cuin T. A. (New York City, NY: Humana Press; ) 251–261. 10.1007/978-1-61779-986-0 PubMed DOI

Du X., Zhao X., Li X., Guo C., Lu W., Gu J., et al. (2013). Overexpression of TaSRK2C1, a wheat SNF1-related protein kinase 2 gene, increases tolerance to dehydration, salt, and low temperature in transgenic tobacco. Plant Mol. Biol. Rep. 31 810–821. 10.1007/s11105-012-0548-x DOI

Dubcovsky J., Dvorak J. (2007). Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316 1862–1866. 10.1126/science.1143986 PubMed DOI PMC

Eagles H. A., Cane K., Trevaskis B. (2011). Veery wheats carry an allele of Vrn-A1 that has implications for freezing tolerance in winter wheats. Plant Breed. 130 413–418. 10.1111/j.1439-0523.2011.01856.x DOI

Fricano A., Rizza F., Faccioli P., Pagani D., Pavan P., Stella A., et al. (2009). Genetic variants of HvCbf14 are statistically associated with frost tolerance in a European germplasm collection of Hordeum vulgare. Theor. Appl. Genet. 119 1335–1348. 10.1007/s00122-009-1138-7 PubMed DOI PMC

Galiba G., Vanková R., Tari I., Bánfalvi Z., Poór P., Dobrev P., et al. (2013). “Hormones, NO, antioxidants and metabolites as key players in plant cold acclimation,” in Plant and Microbe Adaptations to Cold in a Changing World eds Imai R., Yoshida M., Matsumoto N. (New York, NY: Springer; ) 73–87. 10.1007/978-1-4614-8253-6_7 DOI

Gonzalez-Guzman M., Pizzio G. A., Antoni R., Vera-Sirera F., Merilo E., Bassel G. W., et al. (2012). Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. Plant Cell 24 2483–2496. 10.1105/tpc.112.098574 PubMed DOI PMC

Gulyás Z., Boldizsár A., Novák A., Szalai G., Pál M., Galiba G., et al. (2014). Central role of the flowering repressor ZCCT2 in the redox control of freezing tolerance and the initial development of flower primordia in wheat. BMC Plant Biol. 14:91. 10.1186/1471-2229-14-91 PubMed DOI PMC

Ha S., Vankova R., Yamaguchi-Shinozaki K., Shinozaki K., Tran L. S. P. (2012). Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci. 17 172–179. 10.1016/j.tplants.2011.12.005 PubMed DOI

Hoffman L., DaCosta M., Ebdon J. S., Watkins E. (2010). Physiological changes during cold acclimation of perennial ryegrass accessions differing in freeze tolerance. Crop Sci. 50 1037–1047. 10.2135/cropsci2009.06.0293 DOI

Holková L., Prášil I. T., Bradáčová M., Vítamvás P., Chloupek O. (2009). Screening for frost tolerance in wheat using the expression of dehydrine genes Wcs120 and Wdhnl3 at 17°C. Plant Breed. 128 420–422. 10.1111/j.1439-0523.2008.01606.x DOI

Jeon J., Kim N. Y., Kim S., Kang N. Y., Novák O., Ku S. J., et al. (2010). A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J. Biol. Chem. 285 23371–23386. 10.1074/jbc.M109.096644 PubMed DOI PMC

Juhász Z., Boldizsár Á., Nagy T., Kocsy G., Marincs F., Galiba G.et al. (2015). Pleiotropic effect of chromosome 5A and the mvp mutation on the metabolite profile during cold acclimation and the vegetative/generative transition in wheat. BMC Plant Biol. 15:57. 10.1186/s12870-014-0363-7 PubMed DOI PMC

Kalapos B., Dobrev P., Nagy T., Vítámvás P., Györgyey J., Kocsy G., et al. (2016). Transcript and hormone analyses reveal the involvement of ABA-signalling, hormone crosstalk and genotype-specific biological processes in cold-shock response in wheat. Plant Sci. 253 86–97. 10.1016/j.plantsci.2016.09.017 PubMed DOI

Kim H., Lee K., Hwang H., Bhatnagar N., Kim D. Y., Yoon I. S., et al. (2014). Overexpression of PYL5 in rice enhances drought tolerance, inhibits growth, and modulates gene expression. J. Exp. Bot. 65 453–464. 10.1093/jxb/ert397 PubMed DOI PMC

Knox A. K., Li C., Vágújfalvi A., Galiba G., Stockinger E. J., Dubcovsky J. (2008). Identification of candidate CBF genes for the frost tolerance locus Fr-A m2 in Triticum monococcum. Plant Mol. Biol. 67 257–270. 10.1007/s11103-008-9316-6 PubMed DOI

Kocsy G., Athmer B., Perovic D., Himmelbach A., Szűcs A., Vashegyi I., et al. (2010). Regulation of gene expression by chromosome 5A during cold hardening in wheat. Mol. Genet. Genomics 283 351–363. 10.1007/s00438-010-0520-0 PubMed DOI

Kosová K., Prášil I. T., Vítámvás P., Dobrev P., Motyka V., Floková K., et al. (2012). Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. J. Plant Physiol. 169 567–576. 10.1016/j.jplph.2011.12.013 PubMed DOI

Kosová K., Vítámvás P., Planchon S., Renaut J., Vanková R., Prášil I. T. (2013). Proteome analysis of cold response in spring and winter wheat (Triticum aestivum) crowns reveals similarities in stress adaptation and differences in regulatory processes between the growth habits. J. Proteome Res. 12 4830–4845. 10.1021/pr400600g PubMed DOI

Laemmli U. K. (1970). Cleavage of structural proteins during assembly of head of bacteriophage T4. Nature 227 680–685. 10.1038/227680a0 PubMed DOI

Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K., et al. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10 1391–1406. PubMed PMC

Mao X., Zhang H., Tian S., Chang X., Jing R. (2010). TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. J. Exp. Bot. 61 683–696. 10.1093/jxb/erp331 PubMed DOI PMC

Miller A. K., Galiba G., Dubcovsky J. (2006). A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-Am2 in Triticum monococcum. Mol. Genet. Genomics 275 193–203. 10.1007/s00438-005-0076-6 PubMed DOI

Paolacci A. R., Tanzarella O. A., Porceddu E., Ciaffi M. (2009). Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol. Biol. 10:11. 10.1186/1471-2199-10-11 PubMed DOI PMC

Park C., Seo Y., Park C. (2015). Heat shock proteins: a review of the molecular chaperones for plant immunity. Plant Pathol. J. 31 323–333. 10.5423/PPJ.RW.08.2015.0150 PubMed DOI PMC

Park S.-Y., Fung P., Nishimura N., Jensen D. R., Fujii H., Zhao Y., et al. (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324 1068–1071. 10.1126/science.1173041 PubMed DOI PMC

Pearce S., Zhu J., Boldizsár Á, Vágújfalvi A., Burke A., Garland-Campbell K., et al. (2013). Large deletions in the CBF gene cluster at the Fr-B2 locus are associated with reduced frost tolerance in wheat. Theor. Appl. Genet. 126 2683–2697. 10.1007/s00122-013-2165-y PubMed DOI PMC

Pecchioni N., Kosová K., Vítámvás P., Prášil I. T., Milc J. A., Francia E., et al. (2014). “Genomics of low-temperature tolerance for an increased sustainability of wheat and barley production,” in Genomics of Plant Genetic Resources eds Tuberosa R., Graner A., Frison E. (Dordrecht: Springer; ) 149–183. 10.1007/978-94-007-7575-6_6 DOI

Perez-Llamas C., Lopez-Bigas N. (2011). Gitools: analysis and visualisation of genomic data using interactive heat-maps. PLOS ONE 6:e19541. 10.1371/journal.pone.0019541 PubMed DOI PMC

Ried J. L., Walker-Simmons M. K. (1993). Group 3 late embryogenesis abundant proteins in desiccation-tolerant seedlings of wheat (Triticum aestivum L.). Plant Physiol. 102 125–131. 10.1104/pp.102.1.125 PubMed DOI PMC

Roberts D. W. A. (1986). Chromosomes in cadet and rescue wheats carrying loci for cold hardiness and vernalization response. Can. J. Genet. Cytol. 28 991–997. 10.1139/g86-137 DOI

Santiago J., Rodrigues A., Saez A., Rubio S., Antoni R., Dupeux F., et al. (2009). Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J. 60 575–588. 10.1111/j.1365-313X.2009.03981.x PubMed DOI

Sarhan F., Ouellet F., Vazquez-Tello A. (1997). Minireview the wheat wcsl20 gene family. A useful model to understand the molecular genetics of freezing tolerance in cereals. Physiol. Plant. 101 439–446. 10.1111/j.1399-3054.1997.tb01019.x DOI

Sears E. R. (1953). Nullisomic analysis in common wheat. Am. Nat. 87 245–252. 10.1086/281780 DOI

Shen Q., Chen C. N., Brands A., Pan S. M., David Ho T. H. (2001). The stress- and abscisic acid-induced barley gene HVA22: developmental regulation and homologues in diverse organisms. Plant Mol. Biol. 45 327–340. 10.1023/A:1006460231978 PubMed DOI

Shen Q., Uknes S. J., Ho T. D. (1993). Hormone response complex in a novel abscisic acid and cycloheximide-inducible barley gene. J. Biol. Chem. 268 23652–23660. PubMed

Soltész A., Smedley M., Vashegyi I., Galiba G., Harwood W., Vágújfalvi A. (2013). Transgenic barley lines prove the involvement of TaCBF14 and TaCBF15 in the cold acclimation process and in frost tolerance. J. Exp. Bot. 64 1849–1862. 10.1093/jxb/ert050 PubMed DOI PMC

Stockinger E. J., Gilmour S. J., Thomashow M. F. (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. U.S.A. 94 1035–1040. 10.1073/pnas.94.3.1035 PubMed DOI PMC

Sutka J. (1981). Genetic studies of frost resistance in wheat. Theor. Appl. Genet. 59 145–152. 10.1007/BF00264968 PubMed DOI

Sutka J., Kovács G., Veisz O. (1986). Substitution analysis of the frost resistance and winter hardiness of wheat under natural and artificial conditions. Cereal Res. Commun. 14 49–53.

Sutton F., Ding X., Kenefick D. G. (1992). Group 3 LEA Gene HVA1 regulation by cold acclimation and deacclimation in two barley cultivars with varying freeze resistance. Plant Physiol. 99 338–340. 10.1104/pp.99.1.338 PubMed DOI PMC

Tian S., Mao X., Zhang H., Chen S., Zhai C., Yang S., et al. (2013). Cloning and characterization of TaSnRK2.3, a novel SnRK2 gene in common wheat. J. Exp. Bot. 64 2063–2080. 10.1093/jxb/ert072 PubMed DOI PMC

Tóth B., Galiba G., Fehér E., Sutka J., Snape J. W. (2003). Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theor. Appl. Genet. 107 509–514. 10.1007/s00122-003-1275-3 PubMed DOI

Vágújfalvi A., Aprile A., Miller A., Dubcovsky J., Delugu G., Galiba G., et al. (2005). The expression of several Cbf genes at the Fr-A2 locus is linked to frost resistance in wheat. Mol. Genet. Genomics 274 506–514. 10.1007/s00438-005-0047-y PubMed DOI

Vágújfalvi A., Crosatti C., Galiba G., Dubcovsky J., Cattivelli L. (2000). Two loci on wheat chromosome 5A regulate the differential cold-dependent expression of the cor14b gene in frost-tolerant and frost-sensitive genotypes. Mol. Gen. Genet. 263 194–200. 10.1007/s004380051160 PubMed DOI

Vágújfalvi A., Galiba G., Cattivelli L., Dubcovsky J. (2003). The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A. Mol. Genet. Genomics 269 60–67. 10.1007/s00438-003-0806-6 PubMed DOI PMC

Vágújfalvi A., Kerepesi I., Galiba G., Tischner T., Sutka J. (1999). Frost hardiness depending on carbohydrate changes during cold acclimation in wheat. Plant Sci. 144 85–92. 10.1016/S0168-9452(99)00058-8 DOI

Vanková R., Kosová K., Dobrev P., Vítámvás P., Trávníčková A., Cvikrová M., et al. (2014). Dynamics of cold acclimation and complex phytohormone responses in Triticum monococcum lines G3116 and DV92 differing in vernalization and frost tolerance level. Environ. Exp. Bot. 101 12–25. 10.1016/j.envexpbot.2014.01.002 DOI

Vazquez-Tello A., Ouellet F., Sarhan F. (1998). Low temperature-stimulated phosphorylation regulates the binding of nuclear factors to the promoter of Wcs120, a cold-specific gene in wheat. Mol. Gen. Genet. 257 157–166. 10.1007/s004380050635 PubMed DOI

Veisz O., Sutka J. (1989). The relationships of hardening period and the expression of frost resistance in chromosome substitution lines of wheat. Euphytica 43 41–45. 10.1007/BF00037894 DOI

Vítámvás P., Kosová K., Prášilová P., Prášil I. T. (2010). Accumulation of WCS120 protein in wheat cultivars grown at 9°C or 17°C in relation to their winter survival. Plant Breed. 129 611–616. 10.1111/j.1439-0523.2010.01783.x DOI

Vítámvás P., Saalbach G., Prášil T., Čapková V., Opatrná J., Ahmed J. (2007). WCS120 protein family and proteins soluble upon boiling in cold-acclimated winter wheat. J. Plant Physiol. 164 1197–1207. 10.1016/j.jplph.2006.06.011 PubMed DOI

Vogel J. T., Zarka D. G., Van Buskirk H. A., Fowler S. G., Thomashow M. F. (2005). Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J. 41 195–211. 10.1111/j.1365-313X.2004.02288.x PubMed DOI

Wu J., Zhang Y., Yin L., Qu J., Lu J. (2014). Linkage of cold acclimation and disease resistance through plant-pathogen interaction pathway in Vitis amurensis grapevine. Funct. Integr. Genomics 14 741–755. 10.1007/s10142-014-0392-1 PubMed DOI

Xian L., Sun P., Hu S., Wu J., Liu J. H. (2014). Molecular cloning and characterization of CrNCED1, a gene encoding 9-cis-epoxycarotenoid dioxygenase in Citrus reshni, with functions in tolerance to multiple abiotic stresses. Planta 239 61–77. 10.1007/s00425-013-1963-4 PubMed DOI

Xiong L., Lee H., Ishitani M., Zhu J. K. (2002). Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. J. Biol. Chem. 277 8588–8596. 10.1074/jbc.M109275200 PubMed DOI

Xu D., Duan X., Wang B., Hong B., Ho T., Wu R. (1996). Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110 249–257. 10.1104/pp.110.1.249 PubMed DOI PMC

Zhang H., Li W., Mao X., Jing R., Jia H. (2016). Differential activation of the wheat SnRK2 family by abiotic stresses. Front. Plant Sci. 7:420. 10.3389/fpls.2016.00420 PubMed DOI PMC

Zhang Z., Wang Y., Chang L., Zhang T., An J., Liu Y., et al. (2016). MsZEP, a novel zeaxanthin epoxidase gene from alfalfa (Medicago sativa), confers drought and salt tolerance in transgenic tobacco. Plant Cell Rep. 35 439–453. 10.1007/s00299-015-1895-5 PubMed DOI

Zhang H., Mao X., Jing R., Chang X., Xie H. (2011). Characterization of a common wheat (Triticum aestivum L.) TaSnRK2.7 gene involved in abiotic stress responses. J. Exp. Bot. 62 975–988. 10.1093/jxb/erq328 PubMed DOI PMC

Zhang H., Mao X., Wang C., Jing R. (2010). Overexpression of a common wheat gene Tasnrk2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLOS ONE 5:e16041. 10.1371/journal.pone.0016041 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...