The Impact of Far-Red Light Supplementation on Hormonal Responses to Cold Acclimation in Barley

. 2021 Mar 17 ; 11 (3) : . [epub] 20210317

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33802867

Grantová podpora
K 128575 National Research, Development and Innovation Office
EFOP-3.6.3-VEKOP-16-2017-00008 European Social Fund
CZ.02.1.01/0.0/0.0/16_019/0000738 Ministry of Education, Youth and Sports of CR from European Regional Development Fund-Project

Cold acclimation, the necessary prerequisite for promotion of freezing tolerance, is affected by both low temperature and enhanced far-red/red light (FR/R) ratio. The impact of FR supplementation to white light, created by artificial LED light sources, on the hormone levels, metabolism, and expression of the key hormone metabolism-related genes was determined in winter barley at moderate (15 °C) and low (5 °C) temperature. FR-enhanced freezing tolerance at 15 °C was associated with promotion of abscisic acid (ABA) levels, and accompanied by a moderate increase in indole-3-acetic acid (IAA) and cis-zeatin levels. The most prominent impact on the plants' freezing tolerance was found after FR pre-treatment at 15 °C (for 10 days) followed by cold treatment at FR supplementation (7 days). The response of ABA was diminished in comparison with white light treatment, probably due to the elevation of stress tolerance during FR pre-treatment. Jasmonic acid (JA) and salicylic acid (SA) were transiently reduced. When the plants were exposed directly to a combination of cold (5 °C) and FR supplementation, ABA increase was higher than in white light, and was associated with enhanced elevation of JA and, in the longer term (after 7 days), with IAA and cis-zeatin increase, which indicates a stronger stress response and better acclimation. Cold hardening was more efficient when FR light was applied in the early developmental stage of the barley plants (three-leaf stage, 18 days), rather than in later stages (28-days). The dynamics of the phytohormone changes are well supported by the expression profiles of the key hormone metabolism-related genes. This series of treatments serves as evidence for the close relationship between plant hormones, light quality, and low temperature at the beginning of cold acclimation. Besides the timing of the FR treatments, plant age also represents a key factor during light spectrum-dependent cold acclimation.

Zobrazit více v PubMed

Foyer C.H., Noctor G. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell. 2005;17:1866–1875. doi: 10.1105/tpc.105.033589. PubMed DOI PMC

Fujita M., Fujita Y., Noutoshi Y., Takahashi F., Narusaka Y., Yamaguchi-Shinozaki K., Shinozaki K. Crosstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol. 2006;9:436–442. doi: 10.1016/j.pbi.2006.05.014. PubMed DOI

Kurepin L.V., Dahal K.P., Savitch L.V., Singh J., Bode R., Ivanov A.G., Hurry V., Hüner N.P.A. Role of CBFs as integrators of chloroplast redox, phytochrome and plant hormone signaling during cold acclimation. Int. J. Mol. Sci. 2013;14:12729–12763. doi: 10.3390/ijms140612729. PubMed DOI PMC

Galiba G., Vanková R., Tari I., Bánfalvi Z., Poór P. In: Plant and Microbe Adaptations to Cold in a Changing World. Imai R., Yoshida M., Matsumoto N., editors. Springer; New York, NY, USA: 2013.

Kosová K., Prášil I.T., Vítámvás P., Dobrev P., Motyka V., Floková K., Novák O., Turečková V., Rolčik J., Pešek B., et al. Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. J. Plant Physiol. 2012;169:567–576. doi: 10.1016/j.jplph.2011.12.013. PubMed DOI

Gusta L.V., Trischuk R., Weiser C.J. Plant cold acclimation: The role of abscisic acid. J. Plant Growth Regul. 2005;24:308–318. doi: 10.1007/s00344-005-0079-x. DOI

Galiba G., Tuberosa R., Kocsy G., Sutka J. Involvement of Chromosomes 5A and 5D in Cold-Induced Abscisic Acid Accumulation in and Frost Tolerance of Wheat Calli. Plant Breed. 1993;110:237–242. doi: 10.1111/j.1439-0523.1993.tb00583.x. DOI

Vanková R., Kosová K., Dobrev P., Vítámvás P., Trávníčková A., Cvikrová M., Pešek B., Gaudinová A., Prerostová S., Musilová J., et al. Dynamics of cold acclimation and complex phytohormone responses in Triticum monococcum lines G3116 and DV92 differing in vernalization and frost tolerance level. Environ. Exp. Bot. 2014;101:12–25. doi: 10.1016/j.envexpbot.2014.01.002. DOI

Marin E., Nussaume L., Quesada A., Gonneau M., Sotta B., Hugueney P., Frey A., Marion-Poll A. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J. 1996;15:2331–2342. doi: 10.1002/j.1460-2075.1996.tb00589.x. PubMed DOI PMC

Seiler C., Harshavardhan V.T., Rajesh K., Reddy P.S., Strickert M., Rolletschek H., Scholz U., Wobus U., Sreenivasulu N. ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. J. Exp. Bot. 2011;62:2615–2632. doi: 10.1093/jxb/erq446. PubMed DOI

Schwartz S.H. Specific Oxidative Cleavage of Carotenoids by VP14 of Maize. Science. 1997;276:1872–1874. doi: 10.1126/science.276.5320.1872. PubMed DOI

Nambara E., Marion-Poll A. Abscisic Acid Biosynthesis and Catabolism. Annu. Rev. Plant Biol. 2005;56:165–185. doi: 10.1146/annurev.arplant.56.032604.144046. PubMed DOI

Lefebvre V., North H., Frey A., Sotta B., Seo M., Okamoto M., Nambara E., Marion-Poll A. Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. Plant J. 2006;45:309–319. doi: 10.1111/j.1365-313X.2005.02622.x. PubMed DOI

Kalapos B., Dobrev P., Nagy T., Vítámvás P., Györgyey J., Kocsy G., Marincs F., Galiba G. Transcript and hormone analyses reveal the involvement of ABA-signalling, hormone crosstalk and genotype-specific biological processes in cold-shock response in wheat. Plant Sci. 2016;253:86–97. doi: 10.1016/j.plantsci.2016.09.017. PubMed DOI

Cheng W.H., Endo A., Zhou L., Penney J., Chen H.C., Arroyo A., Leon P., Nambara E., Asami T., Seo M., et al. A unique short-chain dehydrogenase/reductase in arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell. 2002;14:2723–2743. doi: 10.1105/tpc.006494. PubMed DOI PMC

González-Guzmán A.M., Apostolova N., Bellés J.M., Barrero J.M., Belles J.M., Barrero J.M., Piqueras P., Ponce M.R., Micoi J.L., Serrano R., et al. The Short-Chain Alcohol Dehydrogenase ABA2 Catalyzes the Conversion of Xanthoxin to Abscisic Aldehyde. Plant Cell. 2012;14:1833–1846. doi: 10.1105/tpc.002477. PubMed DOI PMC

Seo M., Aoki H., Koiwai H., Kamiya Y., Nambara E., Koshiba T. Comparative studies on the Arabidopsis aldehyde oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seeds. Plant Cell Physiol. 2004;45:1694–1703. doi: 10.1093/pcp/pch198. PubMed DOI

Miura K., Tada Y. Regulation of water, salinity, and cold stress responses by salicylic acid. Front. Plant Sci. 2014;5:1–12. doi: 10.3389/fpls.2014.00004. PubMed DOI PMC

Mutlu S., Karadaǧoǧlu Ö., Atici Ö., Taşǧin E., Nalbantoǧlu B. Time-dependent effect of salicylic acid on alleviating cold damage in two barley cultivars differing in cold tolerance. Turk. J. Bot. 2013;37:343–349.

Mutlu S., Karadaǧoǧlu Ö., Atici Ö., Nalbantoǧlu B. Protective role of salicylic acid applied before cold stress on antioxidative system and protein patterns in barley apoplast. Biol. Plant. 2013;57:507–513. doi: 10.1007/s10535-013-0322-4. DOI

Janda T., Szalai G., Tari I., Páldi E. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta. 1999;208:175–180. doi: 10.1007/s004250050547. DOI

Horváth E., Janda T., Szalai G., Páldi E. In vitro salicylic acid inhibition of catalase activity in maize: Differences between the isozymes and a possible role in the induction of chilling tolerance. Plant Sci. 2002;163:1129–1135. doi: 10.1016/S0168-9452(02)00324-2. DOI

Yang Y., Qi M., Mei C. Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J. 2004;40:909–919. doi: 10.1111/j.1365-313X.2004.02267.x. PubMed DOI

Dempsey D.A., Vlot A.C., Wildermuth M.C., Klessig D.F. Salicylic Acid Biosynthesis and Metabolism. Arab. B. 2011;9:e0156. doi: 10.1199/tab.0156. PubMed DOI PMC

Kim D.S., Hwang B.K. An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. J. Exp. Bot. 2014;65:2295–2306. doi: 10.1093/jxb/eru109. PubMed DOI PMC

Dixon R.A., Paiva N.L. Stress-induced phenylpropanoid metabolism. Plant Cell. 1995;7:1085–1097. doi: 10.2307/3870059. PubMed DOI PMC

Dong C., Li L., Cao N., Shang Q., Zhang Z. Roles of phenylalanine ammonia-lyase in low temperature tolerance in cucumber seedlings. J. Appl. Ecol. 2015;26:2041–2049. PubMed

Gaudet D.A., Laroche A., Frick M., Davoren J., Puchalski B., Ergon Å. Expression of plant defence-related (PR-protein) transcripts during hardening and dehardening of winter wheat. Physiol. Mol. Plant Pathol. 2000;57:15–24. doi: 10.1006/pmpp.2000.0275. DOI

Olenichenko N.A., Zagoskina N.V. Response of winter wheat to cold: Production of phenolic compounds and L-phenylalanine ammonia-lyase activity. Prikl. Biokhimiia Mikrobiol. 2005;41:681–685. doi: 10.1007/s10438-005-0109-2. PubMed DOI

Avanci N.C., Luche D.D., Goldman G.H., Goldman M.H. Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genet. Mol. Res. 2010;9:484–505. doi: 10.4238/vol9-1gmr754. PubMed DOI

Taniguchi S., Hosokawa-Shinonaga Y., Tamaoki D., Yamada S., Akimitsu K., Gomi K. Jasmonate induction of the monoterpene linalool confers resistance to rice bacterial blight and its biosynthesis is regulated by JAZ protein in rice. Plant Cell Environ. 2014;37:451–461. doi: 10.1111/pce.12169. PubMed DOI

Du H., Liu H., Xiong L. Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front. Plant Sci. 2013;4:397. doi: 10.3389/fpls.2013.00397. PubMed DOI PMC

Djilianov D.L., Dobrev P.I., Moyankova D.P., Vankova R., Georgieva D.T., Gajdošová S., Motyka V. Dynamics of Endogenous Phytohormones during Desiccation and Recovery of the Resurrection Plant Species Haberlea rhodopensis. J. Plant Growth Regul. 2013;32:564–574. doi: 10.1007/s00344-013-9323-y. DOI

Göbel C., Feussner I. Methods for the analysis of oxylipins in plants. Phytochemistry. 2009;70:1485–1503. doi: 10.1016/j.phytochem.2009.07.040. PubMed DOI

Sharma M., Laxmi A. Jasmonates: Emerging Players in Controlling Temperature Stress Tolerance. Front. Plant Sci. 2016;6:1129. doi: 10.3389/fpls.2015.01129. PubMed DOI PMC

Kazemi-Shahandashti S.S., Maali-Amiri R., Zeinali H., Khazaei M., Talei A., Ramezanpour S.S. Effect of short-term cold stress on oxidative damage and transcript accumulation of defense-related genes in chickpea seedlings. J. Plant Physiol. 2014;171:1106–1116. doi: 10.1016/j.jplph.2014.03.020. PubMed DOI

Copolovici L., Kännaste A., Pazouki L., Niinemets Ü. Emissions of green leaf volatiles and terpenoids from Solanum lycopersicum are quantitatively related to the severity of cold and heat shock treatments. J. Plant Physiol. 2012;169:664–672. doi: 10.1016/j.jplph.2011.12.019. PubMed DOI

Hannah M.A., Heyer A.G., Hincha D.K. A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet. 2005;1:e26. doi: 10.1371/journal.pgen.0010026. PubMed DOI PMC

Jain M., Khurana J.P. Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J. 2009;276:3148–3162. doi: 10.1111/j.1742-4658.2009.07033.x. PubMed DOI

Eremina M., Rozhon W., Poppenberger B. Hormonal control of cold stress responses in plants. Cell. Mol. Life Sci. 2016;73:797–810. doi: 10.1007/s00018-015-2089-6. PubMed DOI PMC

González-Lamothe R., El Oirdi M., Brisson N., Bouarab K. The conjugated auxin indole-3-acetic acid-aspartic acid promotes plant disease development. Plant Cell. 2012;24:672–777. doi: 10.1105/tpc.111.095190. PubMed DOI PMC

Weijers D., Nemhauser J., Yang Z. Auxin: Small molecule, big impact. J. Exp. Bot. 2018;69:133–136. doi: 10.1093/jxb/erx463. PubMed DOI PMC

Zhao Y. Auxin Biosynthesis. Arab. B. 2014;12:e0173. doi: 10.1199/tab.0173. PubMed DOI PMC

Ryu H., Cho Y.G. Plant hormones in salt stress tolerance. J. Plant Biol. 2015;58:147–155. doi: 10.1007/s12374-015-0103-z. DOI

Prerostova S., Černý M., Dobrev P.I., Motyka V., Hluskova L., Zupkova B., Gaudinova A., Knirsch V., Janda T., Brzobohatý B., et al. Light Regulates the Cytokinin-Dependent Cold Stress Responses in Arabidopsis. Front. Plant Sci. 2021;11:608711. doi: 10.3389/fpls.2020.608711. PubMed DOI PMC

Argueso C.T., Ferreira F.J., Kieber J.J. Environmental perception avenues: The interaction of cytokinin and environmental response pathways. Plant Cell Environ. 2009;32:1147–1160. doi: 10.1111/j.1365-3040.2009.01940.x. PubMed DOI

Gajdošová S., Spíchal L., Kamínek M., Hoyerová K., Novák O., Dobrev P.I., Galuszka P., Klíma P., Gaudinová A., Žižková E., et al. Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J. Exp. Bot. 2011;62:2827–2840. doi: 10.1093/jxb/erq457. PubMed DOI

Sakakibara H. CYTOKININS: Activity, Biosynthesis, and Translocation. Annu. Rev. Plant Biol. 2006;57:431–449. doi: 10.1146/annurev.arplant.57.032905.105231. PubMed DOI

Schäfer M., Brütting C., Meza-Canales I.D., Großkinsky D.K., Vankova R., Baldwin I.T., Meldau S. The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J. Exp. Bot. 2015;66:4873–4884. doi: 10.1093/jxb/erv214. PubMed DOI PMC

Alabadí D., Blázquez M.A. Molecular interactions between light and hormone signaling to control plant growth. Plant Mol. Biol. 2009;69:409–417. doi: 10.1007/s11103-008-9400-y. PubMed DOI

Lau O.S., Deng X.W. Plant hormone signaling lightens up: Integrators of light and hormones. Curr. Opin. Plant Biol. 2010;13:571–577. doi: 10.1016/j.pbi.2010.07.001. PubMed DOI

Franklin K.A., Whitelam G.C. Phytochromes and shade-avoidance responses in plants. Ann. Bot. 2005;96:169–175. doi: 10.1093/aob/mci165. PubMed DOI PMC

Zhou Y., Zhang D., An J., Yin H., Fang S., Chu J., Zhao Y., Li J. TCP transcription factors regulate shade avoidance via directly mediating the expression of both Phytochrome Interacting Factors and auxin biosynthetic genes. Plant Physiol. 2018;176:1850–1861. doi: 10.1104/pp.17.01566. PubMed DOI PMC

Carabelli M., Possenti M., Sessa G., Ciolfi A., Sassi M., Morelli G., Ruberti I. Canopy shade causes a rapid and transient arrest in leaf development through auxin-induced cytokinin oxidase activity. Genes Dev. 2007;21:1863–1868. doi: 10.1101/gad.432607. PubMed DOI PMC

Zhang R., Zhang X., Wang J., Letham D.S., McKinney S.A., Higgins T.J.V. The effect of auxin on cytokinin levels and metabolism in transgenic tobacco tissue expressing an ipt gene. Planta. 1995;196:84–94. doi: 10.1007/BF00193221. DOI

Moreno J.E., Tao Y., Chory J., Ballaré C.L. Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity. Proc. Natl. Acad. Sci. USA. 2009;106:4935–4940. doi: 10.1073/pnas.0900701106. PubMed DOI PMC

Yang C., Li L. Hormonal regulation in shade avoidance. Front. Plant Sci. 2017;8:1527. doi: 10.3389/fpls.2017.01527. PubMed DOI PMC

Holmes M.G., Smith H. the Function of Phytochrome in the Natural Environment—I. Characterization of Daylight for Studies in Photomorphogenesis and Photoperiodism. Photochem. Photobiol. 1977;25:533–538. doi: 10.1111/j.1751-1097.1977.tb09124.x. DOI

Linkosalo T., Lechowicz M.J. Twilight far-red treatment advances leaf bud burst of silver birch (Betula pendula) Tree Physiol. 2006;26:1249–1256. doi: 10.1093/treephys/26.10.1249. PubMed DOI

Olsen J.E., Junttila O. Far red end-of-day treatment restores wild type-like plant length in hybrid aspen overexpressing phytochrome A. Physiol. Plant. 2002;115:448–457. doi: 10.1034/j.1399-3054.2002.1150315.x. PubMed DOI

Novák A., Boldizsár Á., Ádám É., Kozma-Bognár L., Majláth I., Båga M., Tóth B., Chibbar R., Galiba G. Light-quality and temperature-dependent CBF14 gene expression modulates freezing tolerance in cereals. J. Exp. Bot. 2016;67:1285–1295. doi: 10.1093/jxb/erv526. PubMed DOI

Ahres M., Gierczik K., Boldizsár Á., Vítámvás P., Galiba G. Temperature and light-quality-dependent regulation of freezing tolerance in barley. Plants. 2020;9:83. doi: 10.3390/plants9010083. PubMed DOI PMC

Franklin K.A., Whitelam G.C. Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Nat. Genet. 2007;39:1410–1413. doi: 10.1038/ng.2007.3. PubMed DOI

Franklin K.A., Quail P.H. Phytochrome functions in Arabidopsis development. J. Exp. Bot. 2010;61:11–24. doi: 10.1093/jxb/erp304. PubMed DOI PMC

Gierczik K., Novák A., Ahres M., Székely A., Soltész A., Boldizsár Á., Gulyás Z., Kalapos B., Monostori I., Kozma-Bognár L., et al. Circadian and light regulated expression of CBFs and their upstream signalling genes in barley. Int. J. Mol. Sci. 2017;18:1828. doi: 10.3390/ijms18081828. PubMed DOI PMC

Jiang B., Shi Y., Peng Y., Jia Y., Yan Y., Dong X., Li H., Dong J., Li J., Gong Z., et al. Cold-Induced CBF–PIF3 Interaction Enhances Freezing Tolerance by Stabilizing the phyB Thermosensor in Arabidopsis. Mol. Plant. 2020;13:894–906. doi: 10.1016/j.molp.2020.04.006. PubMed DOI

Wang F., Guo Z., Li H., Wang M., Onac E., Zhou J., Xia X., Shi K., Yu J., Zhou Y. Phytochrome a and b function antagonistically to regulate cold tolerance via abscisic acid-dependent jasmonate signaling 1. Plant Physiol. 2016;170:459–471. doi: 10.1104/pp.15.01171. PubMed DOI PMC

Kovács T., Ahres M., Pálmai T., Kovács L., Uemura M., Crosatti C., Galiba G. Decreased r:Fr ratio in incident white light affects the composition of barley leaf lipidome and freezing tolerance in a temperature-dependent manner. Int. J. Mol. Sci. 2020;21:7557. doi: 10.3390/ijms21207557. PubMed DOI PMC

Zadoks J.C., Board E. Data sheet highlights close coupled pumps. World Pumps. 1999;1999:9.

Webb M.S., Uemura M., Steponkus P.L. A comparison of freezing injury in oat and rye: Two cereals at the extremes of freezing tolerance. Plant Physiol. 1994;104:467–478. doi: 10.1104/pp.104.2.467. PubMed DOI PMC

Ivanov Dobrev P., Kamínek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A. 2002;950:21–29. doi: 10.1016/S0021-9673(02)00024-9. PubMed DOI

Dobrev P.I., Vankova R. Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. Methods Mol. Biol. 2012;913:251–261. PubMed

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Gururani M.A., Venkatesh J., Ganesan M., Strasser R.J., Han Y., Kim J.-I., Lee H.Y., Song P.S. In Vivo assessment of cold tolerance through chlorophyll-a fluorescence in transgenic zoysiagrass expressing mutant phytochrome A. PLoS ONE. 2015;10:e0127200. doi: 10.1371/journal.pone.0127200. PubMed DOI PMC

Ganesan M., Han Y.J., Bae T.W., Hwang O.J., Chandrasekhar T., Shin A.Y., Goh C.H., Nishiguchi S., Song I.J., Lee H.Y., et al. Overexpression of phytochrome A and its hyperactive mutant improves shade tolerance and turf quality in creeping bentgrass and zoysiagrass. Planta. 2012;236:1135–1150. doi: 10.1007/s00425-012-1662-6. PubMed DOI

Klem K., Gargallo-Garriga A., Rattanapichai W., Oravec M., Holub P., Veselá B., Sardans J., Peñuelas J., Urban O. Distinct Morphological, Physiological, and Biochemical Responses to Light Quality in Barley Leaves and Roots. Front. Plant Sci. 2019;10:1026. doi: 10.3389/fpls.2019.01026. PubMed DOI PMC

Ballaré C.L., Pierik R. The shade-avoidance syndrome: Multiple signals and ecological consequences. Plant Cell Environ. 2017;40:2530–2543. doi: 10.1111/pce.12914. PubMed DOI

Panigrahy M., Majeed N., Panigrahi K.C.S. Low-light and its effects on crop yield: Genetic and genomic implications. J. Biosci. 2020;45:102. doi: 10.1007/s12038-020-00070-1. PubMed DOI

Xu D., Li J., Gangappa S.N., Hettiarachchi C., Lin F., Andersson M.X., Jiang Y., Deng X.W., Holm M. Convergence of Light and ABA Signaling on the ABI5 Promoter. PLoS Genet. 2014;10:e1004197. doi: 10.1371/journal.pgen.1004197. PubMed DOI PMC

Seo M., Nambara E., Choi G., Yamaguchi S. Interaction of light and hormone signals in germinating seeds. Plant Mol. Biol. 2009;69:463–472. doi: 10.1007/s11103-008-9429-y. PubMed DOI

Reddy S.K., Holalu S.V., Casal J.J., Finlayson S.A. Abscisic acid regulates axillary bud outgrowth responses to the ratio of red to far-red light. Plant Physiol. 2013;163:1047–1058. doi: 10.1104/pp.113.221895. PubMed DOI PMC

Francis D., Sorrell D.A. The interface between the cell cycle and plant growth regulators: A mini review. Plant Growth Regul. 2001;33:1–12. doi: 10.1023/A:1010762111585. DOI

Voitsekhovskaja O.V. Phytochromes and Other (Photo)Receptors of Information in Plants. Russ. J. Plant Physiol. 2019;66:351–364. doi: 10.1134/S1021443719030154. DOI

Leone M., Keller M.M., Cerrudo I., Ballaré C.L. To grow or defend? Low red: Far-red ratios reduce jasmonate sensitivity in Arabidopsis seedlings by promoting DELLA degradation and increasing JAZ10 stability. New Phytol. 2014;204:355–367. doi: 10.1111/nph.12971. PubMed DOI

Ballaré C.L. Light Regulation of Plant Defense. Annu. Rev. Plant Biol. 2014;65:335–363. doi: 10.1146/annurev-arplant-050213-040145. PubMed DOI

De Wit M., Spoel S.H., Sanchez-Perez G.F., Gommers C.M.M., Pieterse C.M.J., Voesenek L.A.C.J., Pierik R. Perception of low red: Far-red ratio compromises both salicylic acid- and jasmonic acid-dependent pathogen defences in Arabidopsis. Plant J. 2013;75:90–103. doi: 10.1111/tpj.12203. PubMed DOI

Kohnen M.V., Schmid-Siegert E., Trevisan M., Petrolati L.A., Sénéchal F., Müller-Moulé P., Maloof J., Xenarios I., Fankhauser C. Neighbor detection induces organ-specific transcriptomes, revealing patterns underlying hypocotyl-specific growth. Plant Cell. 2016;28:2889–2904. doi: 10.1105/tpc.16.00463. PubMed DOI PMC

Ma L., Li G. Auxin-dependent cell elongation during the shade avoidance response. Front. Plant Sci. 2019;10:914. doi: 10.3389/fpls.2019.00914. PubMed DOI PMC

Eklöf S., Åstot C., Blackwell J., Moritz T., Olsson O., Sandberg G. Auxin-cytokinin interactions in wild-type and transgenic tobacco. Plant Cell Physiol. 1997;38:225–235. doi: 10.1093/oxfordjournals.pcp.a029157. DOI

Kurepin L.V., Emery R.J.N., Pharis R.P., Reid D.M. The interaction of light quality and irradiance with gibberellins, cytokinins and auxin in regulating growth of Helianthus annuus hypocotyls. Plant Cell Environ. 2007;30:147–155. doi: 10.1111/j.1365-3040.2006.01612.x. PubMed DOI

Kalapos B., Novák A., Dobrev P., Vítámvás P., Marincs F., Galiba G., Vanková R. Effect of the winter wheat cheyenne 5A substituted chromosome on dynamics of abscisic acid and cytokinins in freezing-sensitive Chinese spring genetic background. Front. Plant Sci. 2017;8:2033. doi: 10.3389/fpls.2017.02033. PubMed DOI PMC

Tuteja N. Abscisic acid and abiotic stress signaling. Plant Signal. Behav. 2007;2:135–138. doi: 10.4161/psb.2.3.4156. PubMed DOI PMC

Hu Y., Jiang Y., Han X., Wang H., Pan J., Yu D. Jasmonate regulates leaf senescence and tolerance to cold stress: Crosstalk with other phytohormones. J. Exp. Bot. 2017;68:1361–1369. doi: 10.1093/jxb/erx004. PubMed DOI

Monostori I., Heilmann M., Kocsy G., Rakszegi M., Ahres M., Altenbach S.B., Szalai G., Pál M., Toldi D., Simon-Sarkadi L., et al. LED lighting—Modification of growth, metabolism, yield and flour composition in wheat by spectral quality and intensity. Front. Plant Sci. 2018;9:605. doi: 10.3389/fpls.2018.00605. PubMed DOI PMC

Watson A., Ghosh S., Williams M.J., Cuddy W.S., Simmonds J., Rey M.D., Asyraf Md Hatta M., Hinchliffe A., Steed A., Reynolds D., et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants. 2018;4:23–29. doi: 10.1038/s41477-017-0083-8. PubMed DOI

Monteagudo A., Kiss T., Mayer M., Casas A.M., Igartua E., Karsai I. Genetic diversity in developmental responses to light spectral quality in barley (Hordeum vulgare L.) BMC Plant Biol. 2020;20:207. doi: 10.1186/s12870-020-02416-1. PubMed DOI PMC

Pociecha E., Płazek A., Janowiak F., Zwierzykowski Z. ABA level, proline and phenolic concentration, and PAL activity induced during cold acclimation in androgenic Festulolium forms with contrasting resistance to frost and pink snow mould (Microdochium nivale) Physiol. Mol. Plant Pathol. 2008;73:126–132. doi: 10.1016/j.pmpp.2009.03.005. DOI

Hura K., Hura T., Rapacz M., Płazek A. Effects of low-temperature hardening on the biochemical response of winter oilseed rape seedlings inoculated with the spores of Leptosphaeria maculans. Biology. 2015;70:1011–1018. doi: 10.1515/biolog-2015-0129. DOI

Liu J.Y., Zhang C., Shao Q., Tang Y.F., Cao S.X., Guo X.O., Jin Y.Z., Qi H.Y. Effects of abiotic stress and hormones on the expressions of five 13-CmLOXs and enzyme activity in oriental melon (Cucumis melo var. makuwa Makino) J. Integr. Agric. 2016;15:326–338. doi: 10.1016/S2095-3119(15)61135-2. DOI

Bravo L.A., Zuniga G.E., Alberdi M., Corcuera L.J. The role of ABA in freezing tolerance and cold acclimation in barley. Physiol. Plant. 1998;103:17–23. doi: 10.1034/j.1399-3054.1998.1030103.x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace