The Effect of White Light Spectrum Modifications by Excess of Blue Light on the Frost Tolerance, Lipid- and Hormone Composition of Barley in the Early Pre-Hardening Phase

. 2022 Dec 22 ; 12 (1) : . [epub] 20221222

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36616169

Grantová podpora
K 128575 National Research, Development and Innovation Office
PD 139131 National Research, Development and Innovation Office

It is well established that cold acclimation processes are highly influenced, apart from cold ambient temperatures, by light-dependent environmental factors. In this study we investigated whether an extra blue (B) light supplementation would be able to further improve the well-documented freezing tolerance enhancing effect of far-red (FR) enriched white (W) light. The impact of B and FR light supplementation to white light (WFRB) on hormone levels and lipid contents were determined in winter barley at moderate (15 °C) and low (5 °C) temperatures. Low R:FR ratio effectively induced frost tolerance in barley plantlets, but additional B light further enhanced frost hardiness at both temperatures. Supplementation of WFR (white light enriched with FR light) with B had a strong positive effect on abscisic acid accumulation while the suppression of salicylic acid and jasmonic acid levels were observed at low temperature which resembles the shade avoidance syndrome. We also observed clear lipidomic differences between the individual light and temperature treatments. WFRB light changed the total lipid content negatively, but monogalactosyldiacylglycerol (MGDG) content was increased, nonetheless. Our results prove that WFRB light can greatly influence phytohormone dynamics and lipid contents, which eventually leads to more efficient pre-hardening to avoid frost damage.

Zobrazit více v PubMed

Thomashow M.F. Plant Cold Acclimation: Freezing Tolerance Genes and Regulatory Mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999;50:571–599. doi: 10.1146/annurev.arplant.50.1.571. PubMed DOI

Shi S., Li S., Asim M., Mao J., Xu D., Ullah Z., Liu G., Wang Q., Liu H. The Arabidopsis Calcium-Dependent Protein Kinases (CDPKs) and Their Roles in Plant Growth Regulation and Abiotic Stress Responses. Int. J. Mol. Sci. 2018;19:1900. doi: 10.3390/ijms19071900. PubMed DOI PMC

Kovács T., Ahres M., Pálmai T., Kovács L., Uemura M., Crosatti C., Galiba G. Decreased R:FR Ratio in Incident White Light Affects the Composition of Barley Leaf Lipidome and Freezing Tolerance in a Temperature-Dependent Manner. Int. J. Mol. Sci. 2020;21:7557. doi: 10.3390/ijms21207557. PubMed DOI PMC

Roeber V.M., Bajaj I., Rohde M., Schmülling T., Cortleven A. Light Acts as a Stressor and Influences Abiotic and Biotic Stress Responses in Plants. Plant Cell Environ. 2021;44:645–664. doi: 10.1111/pce.13948. PubMed DOI

Ahres M., Pálmai T., Gierczik K., Dobrev P., Vanková R., Galiba G. The Impact of Far-Red Light Supplementation on Hormonal Responses to Cold Acclimation in Barley. Biomolecules. 2021;11:450. doi: 10.3390/biom11030450. PubMed DOI PMC

Novák A., Boldizsár Á., Gierczik K., Vágújfalvi A., Ádám É., Kozma-Bognár L., Galiba G. Light and Temperature Signalling at the Level of CBF14 Gene Expression in Wheat and Barley. Plant Mol. Biol. Rep. 2017;35:399–408. doi: 10.1007/s11105-017-1035-1. PubMed DOI PMC

Jaglo-Ottosen K.R., Gilmour S.J., Zarka D.G., Schabenberger O., Thomashow M.F. Arabidopsis CBF1 Overexpression Induces COR Genes and Enhances Freezing Tolerance. Science. 1998;280:104–106. doi: 10.1126/science.280.5360.104. PubMed DOI

Novák A., Boldizsár Á., Ádám É., Kozma-Bognár L., Majláth I., Båga M., Tóth B., Chibbar R., Galiba G. Light-Quality and Temperature-Dependent CBF14 Gene Expression Modulates Freezing Tolerance in Cereals. J. Exp. Bot. 2016;67:1285–1295. doi: 10.1093/jxb/erv526. PubMed DOI

Ahres M., Gierczik K., Boldizsár Á., Vítámvás P., Galiba G. Temperature and Light-Quality-Dependent Regulation of Freezing Tolerance in Barley. Plants. 2020;9:83. doi: 10.3390/plants9010083. PubMed DOI PMC

Franklin K.A., Whitelam G.C. Light-Quality Regulation of Freezing Tolerance in Arabidopsis Thaliana. Nat. Genet. 2007;39:1410–1413. doi: 10.1038/ng.2007.3. PubMed DOI

Bakht J., Bano A., Dominy P. The Role of Abscisic Acid and Low Temperature in Chickpea (Cicer arietinum) Cold Tolerance. II. Effects on Plasma Membrane Structure and Function. J. Exp. Bot. 2006;57:3707–3715. doi: 10.1093/jxb/erl120. PubMed DOI

Barrero-Sicilia C., Silvestre S., Haslam R.P., Michaelson L.V. Lipid Remodelling: Unravelling the Response to Cold Stress in Arabidopsis and Its Extremophile Relative Eutrema salsugineum. Plant Sci. 2017;263:194–200. doi: 10.1016/j.plantsci.2017.07.017. PubMed DOI PMC

Perlikowski D., Kierszniowska S., Sawikowska A., Krajewski P. Remodeling of Leaf Cellular Glycerolipid Composition under Drought and Re-Hydration Conditions in Grasses from the Lolium-Festuca Complex. Front. Plant Sci. 2016;7:1027. doi: 10.3389/fpls.2016.01027. PubMed DOI PMC

Welti R., Li W., Li M., Sang Y., Biesiada H., Zhou H.E., Rajashekar C.B., Williams T.D., Wang X. Profiling Membrane Lipids in Plant Stress Responses: Role of Phospholipase Dα in Freezing-Induced Lipid Changes in Arabidopsis. J. Biol. Chem. 2002;277:31994–32002. doi: 10.1074/jbc.M205375200. PubMed DOI

Aubert A., Marion J., Boulogne C., Bourge M., Abreu S., Bellec Y., Faure J.D., Satiat-Jeunemaitre B. Sphingolipids Involvement in Plant Endomembrane Differentiation: The BY2 Case. Plant J. 2011;65:958–971. doi: 10.1111/j.1365-313X.2011.04481.x. PubMed DOI

Dutilleul C., Benhassaine-Kesri G., Demandre C., Rézé N., Launay A., Pelletier S., Renou J., Zachowski A., Baudouin E., Guillas I. Phytosphingosine-Phosphate Is a Signal for AtMPK6 Activation and Arabidopsis Response to Chilling. New Phytol. 2012;194:181–191. doi: 10.1111/j.1469-8137.2011.04017.x. PubMed DOI

Cacas J.L., Furt F., Le Guédard M., Schmitter J.M., Buré C., Gerbeau-Pissot P., Moreau P., Bessoule J.J., Simon-Plas F., Mongrand S. Lipids of Plant Membrane Rafts. Prog. Lipid Res. 2012;51:272–299. doi: 10.1016/j.plipres.2012.04.001. PubMed DOI

Guillas I., Guellim A., Rezé N., Baudouin E. Long Chain Base Changes Triggered by a Short Exposure of Arabidopsis to Low Temperature Are Altered by AHb1 Non-Symbiotic Haemoglobin Overexpression. Plant Physiol. Biochem. 2013;63:191–195. doi: 10.1016/j.plaphy.2012.11.020. PubMed DOI

Simon-Plas F., Perraki A., Bayer E., Gerbeau-Pissot P., Mongrand S. An Update on Plant Membrane Rafts. Curr. Opin. Plant Biol. 2011;14:642–649. doi: 10.1016/j.pbi.2011.08.003. PubMed DOI

Yang H., Richter G.L., Wang X., Młodzińska E., Carraro N., Ma G., Jenness M., Chao D.Y., Peer W.A., Murphy A.S. Sterols and Sphingolipids Differentially Function in Trafficking of the Arabidopsis ABCB19 Auxin Transporter. Plant J. 2013;74:37–47. doi: 10.1111/tpj.12103. PubMed DOI

Arisz S.A., Heo J.Y., Koevoets I.T., Zhao T., van Egmond P., Meyer A.J., Zeng W., Niu X., Wang B., Mitchell-Olds T., et al. Diacylglycerol Acyltransferase1 Contributes to Freezing Tolerance. Plant Physiol. 2018;177:1410–1424. doi: 10.1104/pp.18.00503. PubMed DOI PMC

Franklin K.A., Toledo-Ortiz G., Pyott D.E., Halliday K.J. Interaction of Light and Temperature Signalling. J. Exp. Bot. 2014;65:2859–2871. doi: 10.1093/jxb/eru059. PubMed DOI

Fujita M., Fujita Y., Noutoshi Y., Takahashi F., Narusaka Y., Yamaguchi-Shinozaki K., Shinozaki K. Crosstalk between Abiotic and Biotic Stress Responses: A Current View from the Points of Convergence in the Stress Signaling Networks. Curr. Opin. Plant Biol. 2006;9:436–442. doi: 10.1016/j.pbi.2006.05.014. PubMed DOI

Kurepin L.V., Dahal K.P., Savitch L.V., Singh J., Bode R., Ivanov A.G., Hurry V., Hüner N.P.A. Role of CBFs as Integrators of Chloroplast Redox, Phytochrome and Plant Hormone Signaling during Cold Acclimation. Int. J. Mol. Sci. 2013;14:12729–12763. doi: 10.3390/ijms140612729. PubMed DOI PMC

Sah S.K., Reddy K.R., Li J. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. Front. Plant Sci. 2016;7:571. doi: 10.3389/fpls.2016.00571. PubMed DOI PMC

Gusta L.V., Trischuk R., Weiser C.J. Plant Cold Acclimation: The Role of Abscisic Acid. J. Plant Growth Regul. 2005;24:308–318. doi: 10.1007/s00344-005-0079-x. DOI

Galiba G., Tuberosa R., Kocsy G., Sutka J. Involvement of Chromosomes 5A and 5D in Cold-Induced Abscisic Acid Accumulation in and Frost Tolerance of Wheat Calli. Plant Breed. 1993;110:237–242. doi: 10.1111/j.1439-0523.1993.tb00583.x. DOI

Yang Z., Liu J., Poree F., Schaeufele R., Helmke H., Frackenpohl J., Lehr S., Döring P.V.K., Christmann A., Schnyder H., et al. Abscisic Acid Receptors and Coreceptors Modulate Plant Water Use Efficiency and Water Productivity. Plant Physiol. 2019;180:1066–1080. doi: 10.1104/pp.18.01238. PubMed DOI PMC

Nadarajah K., Abdul Hamid N.W., Abdul Rahman N.S.N. SA-Mediated Regulation and Control of Abiotic Stress Tolerance in Rice. Int. J. Mol. Sci. 2021;22:5591. doi: 10.3390/ijms22115591. PubMed DOI PMC

Horváth E., Szalai G., Janda T. Induction of Abiotic Stress Tolerance by Salicylic Acid Signaling. J. Plant Growth Regul. 2007;26:290–300. doi: 10.1007/s00344-007-9017-4. DOI

Miura K., Tada Y. Regulation of Water, Salinity, and Cold Stress Responses by Salicylic Acid. Front. Plant Sci. 2014;5:1–12. doi: 10.3389/fpls.2014.00004. PubMed DOI PMC

Ali M.S., Baek K.H. Jasmonic Acid Signaling Pathway in Response to Abiotic Stresses in Plants. Int. J. Mol. Sci. 2020;21:621. doi: 10.3390/ijms21020621. PubMed DOI PMC

Taniguchi S., Hosokawa-Shinonaga Y., Tamaoki D., Yamada S., Akimitsu K., Gomi K. Jasmonate Induction of the Monoterpene Linalool Confers Resistance to Rice Bacterial Blight and Its Biosynthesis Is Regulated by JAZ Protein in Rice. Plant Cell Environ. 2014;37:451–461. doi: 10.1111/pce.12169. PubMed DOI

Du H., Liu H., Xiong L. Endogenous Auxin and Jasmonic Acid Levels Are Differentially Modulated by Abiotic Stresses in Rice. Front. Plant Sci. 2013;4:397. doi: 10.3389/fpls.2013.00397. PubMed DOI PMC

De Wit M., Spoel S.H., Sanchez-Perez G.F., Gommers C.M.M., Pieterse C.M.J., Voesenek L.A.C.J., Pierik R. Perception of Low Red: Far-Red Ratio Compromises Both Salicylic Acid- and Jasmonic Acid-Dependent Pathogen Defences in Arabidopsis. Plant J. 2013;75:90–103. doi: 10.1111/tpj.12203. PubMed DOI

Kosová K., Prášil I.T., Vítámvás P., Dobrev P., Motyka V., Floková K., Novák O., Turečková V., Rolčik J., Pešek B., et al. Complex Phytohormone Responses during the Cold Acclimation of Two Wheat Cultivars Differing in Cold Tolerance, Winter Samanta and Spring Sandra. J. Plant Physiol. 2012;169:567–576. doi: 10.1016/j.jplph.2011.12.013. PubMed DOI

Smith H., Whitelam G.C. The Shade Avoidance Syndrome: Multiple Responses Mediated by Multiple Phytochromes. Plant Cell Environ. 1997;20:840–844. doi: 10.1046/j.1365-3040.1997.d01-104.x. DOI

Pierik R., Testerink C. The Art of Being Flexible: How to Escape from Shade, Salt, And Drought1. Plant Physiol. 2014;166:5–22. doi: 10.1104/pp.114.239160. PubMed DOI PMC

Alabadí D., Blázquez M.A. Molecular Interactions between Light and Hormone Signaling to Control Plant Growth. Plant Mol. Biol. 2009;69:409–417. doi: 10.1007/s11103-008-9400-y. PubMed DOI

Carabelli M., Possenti M., Sessa G., Ciolfi A., Sassi M., Morelli G., Ruberti I. Canopy Shade Causes a Rapid and Transient Arrest in Leaf Development through Auxin-Induced Cytokinin Oxidase Activity. Genes Dev. 2007;21:1863–1868. doi: 10.1101/gad.432607. PubMed DOI PMC

Yang C., Li L. Hormonal Regulation in Shade Avoidance. Front. Plant Sci. 2017;8:1527. doi: 10.3389/fpls.2017.01527. PubMed DOI PMC

Zhou Y., Zhang D., An J., Yin H., Fang S., Chu J., Zhao Y., Li J. TCP Transcription Factors Regulate Shade Avoidance via Directly Mediating the Expression of Both Phytochrome Interacting Factors and Auxin Biosynthetic Genes. Plant Physiol. 2018;176:1850–1861. doi: 10.1104/pp.17.01566. PubMed DOI PMC

Ishii T., Otani K., Takashima T., Xue Y. Solar Spectral Influence on the Performance of Photovoltaic (PV) Modules under Fine Weather and Cloudy Weather Conditions. Prog. Photovoltaics Res. Appl. 2011;21:481–489. doi: 10.1002/pip.1210. DOI

Parisi A.V., Igoe D.P., Amar A., Downs N.J. Solar Blue Light Radiation Enhancement during Mid to Low Solar Elevation Periods under Cloud Affected Skies. Sensors. 2020;20:4105. doi: 10.3390/s20154105. PubMed DOI PMC

Ma L., Li G. Auxin-Dependent Cell Elongation during the Shade Avoidance Response. Front. Plant Sci. 2019;10:914. doi: 10.3389/fpls.2019.00914. PubMed DOI PMC

Kameniarová M., Černý M., Novák J., Ondrisková V., Hrušková L., Berka M., Vankova R., Brzobohatý B. Light Quality Modulates Plant Cold Response and Freezing Tolerance. Front. Plant Sci. 2022;13:1–17. doi: 10.3389/fpls.2022.887103. PubMed DOI PMC

Imai H., Kawamura Y., Nagatani A., Uemura M. Effects of the Blue Light-Cryptochrome System on the Early Process of Cold Acclimation of Arabidopsis thaliana. Environ. Exp. Bot. 2021;183:104340. doi: 10.1016/j.envexpbot.2020.104340. DOI

Li Y., Shi Y., Li M., Fu D., Wu S., Li J., Gong Z., Liu H., Yang S. The CRY2-COP1-HY5-BBX7/8 Module Regulates Blue Light-Dependent Cold Acclimation in Arabidopsis. Plant Cell. 2021;33:3555–3573. doi: 10.1093/plcell/koab215. PubMed DOI PMC

Crosatti C., De Laureto P.P., Bassi R., Cattivelli L. The Interaction between Cold and Light Controls the Expression of the Cold-Regulated Barley Gene Cor14b and the Accumulation of the Corresponding Protein. Plant Physiol. 1999;119:671–680. doi: 10.1104/pp.119.2.671. PubMed DOI PMC

Lee C.M., Thomashow M.F. Photoperiodic Regulation of the C-Repeat Binding Factor (CBF) Cold Acclimation Pathway and Freezing Tolerance in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2012;109:15054–15059. doi: 10.1073/pnas.1211295109. PubMed DOI PMC

Kim H.J., Kim Y.K., Park J.Y., Kim J. Light Signalling Mediated by Phytochrome Plays an Important Role in Cold-Induced Gene Expression through the C-Repeat/Dehydration Responsive Element (C/DRE) in Arabidopsis thaliana. Plant J. 2002;29:693–704. doi: 10.1046/j.1365-313X.2002.01249.x. PubMed DOI

Webb M.S., Uemura M., Steponkus P.L. A Comparison of Freezing Injury in Oat and Rye: Two Cereals at the Extremes of Freezing Tolerance. Plant Physiol. 1994;104:467–478. doi: 10.1104/pp.104.2.467. PubMed DOI PMC

Minami A., Tominaga Y., Furuto A., Kondo M., Kawamura Y., Uemura M. Arabidopsis Dynamin-Related Protein 1E in Sphingolipid-Enriched Plasma Membrane Domains Is Associated with the Development of Freezing Tolerance. Plant J. 2015;83:501–514. doi: 10.1111/tpj.12907. PubMed DOI

Wang F., Guo Z., Li H., Wang M., Onac E., Zhou J., Xia X., Shi K., Yu J., Zhou Y. Phytochrome A and B Function Antagonistically to Regulate Cold Tolerance via Abscisic Acid-Dependent Jasmonate Signaling. Plant Physiol. 2016;170:459–471. doi: 10.1104/pp.15.01171. PubMed DOI PMC

Prerostova S., Černý M., Dobrev P.I., Motyka V., Hluskova L., Zupkova B., Gaudinova A., Knirsch V., Janda T., Brzobohatý B., et al. Light Regulates the Cytokinin-Dependent Cold Stress Responses in Arabidopsis. Front. Plant Sci. 2021;11:608711. doi: 10.3389/fpls.2020.608711. PubMed DOI PMC

Hoang H.H., Sechet J., Bailly C., Leymarie J., Corbineau F. Inhibition of Germination of Dormant Barley (Hordeum vulgare, L.) Grains by Blue Light as Related to Oxygen and Hormonal Regulation. Plant Cell Environ. 2014;37:1393–1403. doi: 10.1111/pce.12239. PubMed DOI

Voitsekhovskaja O.V. Phytochromes and Other (Photo)Receptors of Information in Plants. Russ. J. Plant Physiol. 2019;66:351–364. doi: 10.1134/S1021443719030154. DOI

Kohnen M.V., Schmid-Siegert E., Trevisan M., Petrolati L.A., Sénéchal F., Müller-Moulé P., Maloof J., Xenarios I., Fankhauser C. Neighbor Detection Induces Organ-Specific Transcriptomes, Revealing Patterns Underlying Hypocotyl-Specific Growth. Plant Cell. 2016;28:2889–2904. doi: 10.1105/tpc.16.00463. PubMed DOI PMC

Vandenbussche F., Habricot Y., Condiff A.S., Maldiney R., Van Der Straeten D., Ahmad M. HY5 Is a Point of Convergence between Cryptochrome and Cytokinin Signalling Pathways in Arabidopsis thaliana. Plant J. 2007;49:428–441. doi: 10.1111/j.1365-313X.2006.02973.x. PubMed DOI

Wang F., Zhang L., Chen X., Wu X., Xiang X., Zhou J., Xia X., Shi K., Yu J., Foyer C.H., et al. SlHY5 Integrates Temperature, Light, and Hormone Signaling to Balance Plant Growth and Cold Tolerance. Plant Physiol. 2019;179:749–760. doi: 10.1104/pp.18.01140. PubMed DOI PMC

Novák J., Černý M., Roignant J., Skalák J., Saiz-Fernández I., Luklová M., Skaláková P., Ondrisková V., Novák O., Pěnčík A., et al. Limited Light Intensity and Low Temperature: Can Plants Survive Freezing in Light Conditions That More Accurately Replicate the Cold Season in Temperate Regions? Environ. Exp. Bot. 2021;190:104581. doi: 10.1016/j.envexpbot.2021.104581. DOI

Degenkolbe T., Giavalisco P., Zuther E., Seiwert B., Hincha D.K., Willmitzer L. Differential Remodeling of the Lipidome during Cold Acclimation in Natural Accessions of Arabidopsis thaliana. Plant J. 2012;72:972–982. doi: 10.1111/tpj.12007. PubMed DOI

Gigon A., Matos A.R., Laffray D., Zuily-Fodil Y., Pham-Thi A.T. Effect of Drought Stress on Lipid Metabolism in the Leaves of Arabidopsis thaliana (Ecotype Columbia) Ann. Bot. 2004;94:345–351. doi: 10.1093/aob/mch150. PubMed DOI PMC

Uemura M., Joseph R.A., Steponkus P.L. Cold Acclimation of Arabidopsis thaliana (Effect on Plasma Membrane Lipid Composition and Freeze-Induced Lesions) Plant Physiol. 1995;109:15–30. doi: 10.1104/pp.109.1.15. PubMed DOI PMC

Uemura M., Steponkus P.L. A Contrast of the Plasma Membrane Lipid Composition of Oat and Rye Leaves in Relation to Freezing Tolerance. Plant Physiol. 1994;104:479–496. doi: 10.1104/pp.104.2.479. PubMed DOI PMC

Bohn M., Lüthje S., Sperling P., Heinz E., Dörffling K. Plasma Membrane Lipid Alterations Induced by Cold Acclimation and Abscisic Acid Treatment of Winter Wheat Seedlings Differing in Frost Resistance. J. Plant Physiol. 2007;164:146–156. doi: 10.1016/j.jplph.2005.12.008. PubMed DOI

Wada H., Murata N. Lipids in Photosynthesis: Essential and Regulatory Functions. Springer; Dordrecht, The Netherlands: 2009.

Wang X., Devaiah S.P., Zhang W., Welti R. Signaling Functions of Phosphatidic Acid. Prog. Lipid Res. 2006;45:250–278. doi: 10.1016/j.plipres.2006.01.005. PubMed DOI

Yu W., Liu C., Liu Y., Zhang N., Xu W. Mannan-Modified Solid Lipid Nanoparticles for Targeted Gene Delivery to Alveolar Macrophages. Pharm. Res. 2010;27:1584–1596. doi: 10.1007/s11095-010-0149-z. PubMed DOI

Ruelland E., Pokotylo I., Djafi N., Cantrel C., Repellin A., Zachowski A. Salicylic Acid Modulates Levels of Phosphoinositide Dependent-Phospholipase C Substrates and Products to Remodel the Arabidopsis Suspension Cell Transcriptome. Front. Plant Sci. 2014;5:608. doi: 10.3389/fpls.2014.00608. PubMed DOI PMC

Zheng G., Li L., Li W. Glycerolipidome Responses to Freezing- and Chilling-Induced Injuries: Examples in Arabidopsis and Rice. BMC Plant Biol. 2016;16:70. doi: 10.1186/s12870-016-0758-8. PubMed DOI PMC

Moellering E.R., Muthan B., Benning C. Freezing Tolerance in Plants Requires Lipid Remodeling at the Outer Chloroplast Membrane. Science. 2010;330:226–228. doi: 10.1126/science.1191803. PubMed DOI

Skupień J., Wójtowicz J., Kowalewska Ł., Mazur R., Garstka M., Gieczewska K., Mostowska A. Dark-Chilling Induces Substantial Structural Changes and Modifies Galactolipid and Carotenoid Composition during Chloroplast Biogenesis in Cucumber (Cucumis sativus, L.) Cotyledons. Plant Physiol. Biochem. 2017;111:107–118. doi: 10.1016/j.plaphy.2016.11.022. PubMed DOI

Kenchanmane Raju S.K., Barnes A.C., Schnable J.C., Roston R.L. Low-Temperature Tolerance in Land Plants: Are Transcript and Membrane Responses Conserved? Plant Sci. 2018;276:73–86. doi: 10.1016/j.plantsci.2018.08.002. PubMed DOI

Takahashi D., Imai H., Kawamura Y., Uemura M. Lipid Profiles of Detergent Resistant Fractions of the Plasma Membrane in Oat and Rye in Association with Cold Acclimation and Freezing Tolerance. Cryobiology. 2016;72:123–134. doi: 10.1016/j.cryobiol.2016.02.003. PubMed DOI PMC

Jia Y., Li W. Characterisation of Lipid Changes in Ethylene-Promoted Senescence and Its Retardation by Suppression of Phospholipase Dδ in Arabidopsis Leaves. Front. Plant Sci. 2015;6:1045. doi: 10.3389/fpls.2015.01045. PubMed DOI PMC

Falcone D.L., Ogas J.P., Somerville C.R. Regulation of Membrane Fatty Acid Composition by Temperature in Mutants of Arabidopsis with Alterations in Membrane Lipid Composition. BMC Plant Biol. 2004;4:17. doi: 10.1186/1471-2229-4-17. PubMed DOI PMC

Harwood J.L., Jones A.L. Lipid Metabolism in Algae. Adv. Bot. Res. 1989;16:1–53. doi: 10.1016/S0065-2296(08)60238-4. DOI

Gombos Z., Wada H., Murata N. The Recovery of Photosynthesis from Low-Temperature Photoinhibition Is Accelerated by the Unsaturation of Membrane Lipids: A Mechanism of Chilling Tolerance. Proc. Natl. Acad. Sci. USA. 1994;91:8787–8791. doi: 10.1073/pnas.91.19.8787. PubMed DOI PMC

Alberdi M., Corcuera L.J., Maldónado C., Barrientos M., Fernández J., Henríquez O. Cold Acclimation in Cultivars of Avena sativa. Phytochemistry. 1993;33:57–60. doi: 10.1016/0031-9422(93)85396-9. DOI

Lichtenthaler F.W. Karl Freudenberg, Burckhardt Helferich, Hermann O.L. Fischer A Centennial Tribute. Carbohydr. Res. 1987;164:1–22. doi: 10.1016/0008-6215(87)80114-3. PubMed DOI

Zuniga G.E., Fernandez J., Cristi R., Alberdi M., Corcuera L.J. Lipid Changes in Barley Seedlings Subjected to Water and Cold Stress. Phytochemistry. 1990;29:3087–3090. doi: 10.1016/0031-9422(90)80162-A. DOI

Murelli C., Rizza F., Albini F.M., Dulio A., Terzi V., Cattivelli L. Metabolic Changes Associated with Cold-Acclimation in Contrasting Cultivars of Barley. Physiol. Plant. 1995;94:87–93. doi: 10.1111/j.1399-3054.1995.tb00788.x. DOI

Smith H. Light Quality, Photoperception, and Plant Strategy. Annu. Rev. Plant Physiol. 1982;33:481–518. doi: 10.1146/annurev.pp.33.060182.002405. DOI

Prášil I., Zámečník J. The Use of a Conductivity Measurement Method for Assessing Freezing Injury. Environ. Exp. Bot. 1998;40:1–10. doi: 10.1016/S0098-8472(98)00010-0. DOI

Dobrev P.I., Vankova R. Quantification of Abscisic Acid, Cytokinin, and Auxin Content in Salt-Stressed Plant Tissues. Methods Mol. Biol. 2012;913:251–261. doi: 10.1007/978-1-61779-986-0_17. PubMed DOI

Dobrev P.I., Kamínek M. Fast and Efficient Separation of Cytokinins from Auxin and Abscisic Acid and Their Purification Using Mixed-Mode Solid-Phase Extraction. J. Chromatogr. A. 2002;950:21–29. doi: 10.1016/S0021-9673(02)00024-9. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...