Light Quality Modulates Plant Cold Response and Freezing Tolerance
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35755673
PubMed Central
PMC9221075
DOI
10.3389/fpls.2022.887103
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana (Arabidopsis), accession, cold, freezing tolerance, light intensity, light quality, photosynthesis, proteome,
- Publikační typ
- časopisecké články MeSH
The cold acclimation process is regulated by many factors like ambient temperature, day length, light intensity, or hormonal status. Experiments with plants grown under different light quality conditions indicate that the plant response to cold is also a light-quality-dependent process. Here, the role of light quality in the cold response was studied in 1-month-old Arabidopsis thaliana (Col-0) plants exposed for 1 week to 4°C at short-day conditions under white (100 and 20 μmol m-2s-1), blue, or red (20 μmol m-2s-1) light conditions. An upregulated expression of CBF1, inhibition of photosynthesis, and an increase in membrane damage showed that blue light enhanced the effect of low temperature. Interestingly, cold-treated plants under blue and red light showed only limited freezing tolerance compared to white light cold-treated plants. Next, the specificity of the light quality signal in cold response was evaluated in Arabidopsis accessions originating from different and contrasting latitudes. In all but one Arabidopsis accession, blue light increased the effect of cold on photosynthetic parameters and electrolyte leakage. This effect was not found for Ws-0, which lacks functional CRY2 protein, indicating its role in the cold response. Proteomics data confirmed significant differences between red and blue light-treated plants at low temperatures and showed that the cold response is highly accession-specific. In general, blue light increased mainly the cold-stress-related proteins and red light-induced higher expression of chloroplast-related proteins, which correlated with higher photosynthetic parameters in red light cold-treated plants. Altogether, our data suggest that light modulates two distinct mechanisms during the cold treatment - red light-driven cell function maintaining program and blue light-activated specific cold response. The importance of mutual complementarity of these mechanisms was demonstrated by significantly higher freezing tolerance of cold-treated plants under white light.
Zobrazit více v PubMed
Ahres M., Gierczik K., Boldizsár Á., Vítámvás P., Galiba G. (2020). Temperature and light-quality-dependent regulation of freezing tolerance in barley. Plants 9, 83. 10.3390/PLANTS9010083 PubMed DOI PMC
Berková V., Kameniarová M., Ondrisková V., Berka M., Menšíková S., Kopecká R., et al. . (2020). Arabidopsis response to inhibitor of cytokinin degradation INCYDE: modulations of cytokinin signaling and plant proteome. Plants 9, 1563. 10.3390/PLANTS9111563 PubMed DOI PMC
Boyes D. C., Zayed A. M., Ascenzi R., Mccaskill A. J., Hoffman N. E., Davis K. R., et al. . (2001). Growth stage-based phenotypic analysis of arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13, 1499–1510. 10.1105/tpc.010011 PubMed DOI PMC
Catalá R., Medina J., Salinas J. (2011). Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 108, 16475–16480. 10.1073/pnas.1107161108 PubMed DOI PMC
Chen J., Burke J. J., Velten J., Xin Z. (2006). FtsH11 protease plays a critical role in Arabidopsis thermotolerance. Plant J. 48, 73–84. 10.1111/J.1365-313X.2006.02855.X PubMed DOI
Chen L. J., Xiang H. Z., Miao Y., Zhang L., Guo Z. F., Zhao X. H., et al. . (2014). An overview of cold resistance in plants. J. Agron. Crop Sci. 200, 237–245. 10.1111/JAC.12082 DOI
Chinnusamy V., Ohta M., Kanrar S., Lee B., Hong X., Agarwal M., et al. . (2003). ICE1: a regulator of cold-induced transcriptome and freezing tolerance in arabidopsis. Genes Dev. 17, 1043–1054. 10.1101/GAD.1077503 PubMed DOI PMC
Chong J., Wishart D. S., Xia J. (2019). Using metaboanalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinforma. 68, e86. 10.1002/CPBI.86 PubMed DOI
Consentino L., Lambert S., Martino C., Jourdan N., Bouchet P. E., Witczak J., et al. . (2015). Blue-light dependent reactive oxygen species formation by Arabidopsis cryptochrome may define a novel evolutionarily conserved signaling mechanism. New Phytol. 206, 1450–1462. 10.1111/NPH.13341 PubMed DOI
Cvetkovic J., Müller K., Baier M. (2017). The effect of cold priming on the fitness of Arabidopsis thaliana accessions under natural and controlled conditions. Sci. Rep. 7, 1–16. 10.1038/srep44055 PubMed DOI PMC
Devireddy A. R., Tschaplinski T. J., Tuskan G. A., Muchero W., Chen J. G. (2021). Role of reactive oxygen species and hormones in plant responses to temperature changes. Int. J. Mol. Sci. 22, 8843. 10.3390/IJMS22168843 PubMed DOI PMC
Dong M. A., Farré E. M., Thomashow M. F. (2011). circadian clock-associated1 and late elongated hypocotyl regulate expression of the c-repeat binding factor (CBF) pathway in arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 108, 7241–7246. 10.1073/PNAS.1103741108 PubMed DOI PMC
El-Esawi M., Arthaut L. D., Jourdan N., D'Harlingue A., Link J., Martino C. F., et al. . (2017). Blue-light induced biosynthesis of ROS contributes to the signaling mechanism of Arabidopsis cryptochrome. Sci. Rep. 7, 1–9. 10.1038/s41598-017-13832-z PubMed DOI PMC
Eremina M., Unterholzner S. J., Rathnayake A. I., Castellanos M., Khan M., Kugler K. G., et al. . (2016). Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants. Proc. Natl. Acad. Sci. U. S. A. 113, E5982–E5991. 10.1073/pnas.1611477113 PubMed DOI PMC
Fang P., Wang Y., Wang M., Wang F., Chi C., Zhou Y., et al. . (2021). Crosstalk between brassinosteroid and redox signaling contributes to the activation of cbf expression during cold responses in tomato. Antioxidants 10, 509. 10.3390/ANTIOX10040509 PubMed DOI PMC
Franklin K. A., Whitelam G. C. (2007). Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Nat. Genet. 39, 1410–1413. 10.1038/ng.2007.3 PubMed DOI
Fujisaki K., Ishikawa M. (2008). Identification of an Arabidopsis thaliana protein that binds to tomato mosaic virus genomic RNA and inhibits its multiplication. Virology 380, 402–411. 10.1016/J.VIROL.2008.07.033 PubMed DOI
Gehan M. A., Park S., Gilmour S. J., An C., Lee C. M., Thomashow M. F. (2015). Natural variation in the C-repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes. Plant J. 84, 682–693. 10.1111/TPJ.13027 PubMed DOI
Gery C., Zuther E., Schulz E., Legoupi J., Chauveau A., McKhann H., et al. . (2011). Natural variation in the freezing tolerance of Arabidopsis thaliana: effects of RNAi-induced CBF depletion and QTL localisation vary among accessions. Plant Sci. 180, 12–23. 10.1016/J.PLANTSCI.2010.07.010 PubMed DOI
Gilmour S. J., Fowler S. G., Thomashow M. F. (2004). Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol. Biol. 54, 767–781. 10.1023/B:PLAN.0000040902.06881.d4 PubMed DOI
Gilmour S. J., Zarka D. G., Stockinger E. J., Salazar M. P., Houghton J. M., Thomashow M. F. (1998). Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 16, 433–442. 10.1046/J.1365-313X.1998.00310.X PubMed DOI
Gray G. R., Chauvin L. P., Sarhan F., Huner N. P. A. (1997). Cold acclimation and freezing tolerance (a complex interaction of light and temperature). Plant Physiol. 114, 467–474. 10.1104/PP.114.2.467 PubMed DOI PMC
Hannah M. A., Heyer A. G., Hincha D. K. (2005). A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLOS Genet. 1, e26. 10.1371/JOURNAL.PGEN.0010026 PubMed DOI PMC
Hannah M. A., Wiese D., Freund S., Fiehn O., Heyer A. G., Hincha D. K. (2006). Natural genetic variation of freezing tolerance in arabidopsis. Plant Physiol. 142, 98. 10.1104/PP.106.081141 PubMed DOI PMC
He Y., Li Y., Cui L., Xie L., Zheng C., Zhou G., et al. . (2016). Phytochrome B negatively affects cold tolerance by regulating OsDREB1 gene expression through phytochrome interacting factor-like protein OsPIL16 in rice. Front. Plant Sci. 7, 63. 10.3389/FPLS.2016.01963 PubMed DOI PMC
Hoffmann M. H. (2002). Biogeography of Arabidopsis thaliana (L.) Heynh. (Brassicaceae). J. Biogeogr. 29, 125–134. 10.1046/J.1365-2699.2002.00647.X PubMed DOI
Huang S. S., Chen J., Dong X. J., Patton J., Pei Z. M., Zheng H. L. (2012). Calcium and calcium receptor CAS promote Arabidopsis thaliana de-etiolation. Physiol. Plant. 144, 73–82. 10.1111/J.1399-3054.2011.01523.X PubMed DOI
Huang X., Hou L., Meng J., You H., Li Z., Gong Z., et al. . (2018). The antagonistic action of abscisic acid and cytokinin signaling mediates drought stress response in arabidopsis. Mol. Plant 11, 970–982. 10.1016/J.MOLP.2018.05.001 PubMed DOI
Imai H., Kawamura Y., Nagatani A., Uemura M. (2021). Effects of the blue light–cryptochrome system on the early process of cold acclimation of Arabidopsis thaliana. Environ. Exp. Bot. 183, 104340. 10.1016/J.ENVEXPBOT.2020.104340 DOI
Janda T., Szalai G., Leskó K., Yordanova R., Apostol S., Popova L. P. (2007). Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light. Phytochemistry 68, 1674–1682. 10.1016/j.phytochem.2007.04.012 PubMed DOI
Jeknić Z., Pillman K. A., Dhillon T., Skinner J. S., Veisz O., Cuesta-Marcos A., et al. . (2014). Hv-CBF2A overexpression in barley accelerates COR gene transcript accumulation and acquisition of freezing tolerance during cold acclimation. Plant Mol. Biol. 84, 67–82. 10.1007/S11103-013-0119-Z PubMed DOI
Jeon J., Kim N. Y., Kim S., Kang N. Y., Novák O., Ku S. J., et al. . (2010). A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in arabidopsis. J. Biol. Chem. 285, 23371–23386. 10.1074/jbc.M109.096644 PubMed DOI PMC
Jia Y., Ding Y., Shi Y., Zhang X., Gong Z., Yang S. (2016). The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in arabidopsis. New Phytol. 212, 345–353. 10.1111/NPH.14088 PubMed DOI
Jiang B., Shi Y., Peng Y., Jia Y., Yan Y., Dong X., et al. . (2020). Cold-Induced CBF–PIF3 interaction enhances freezing tolerance by stabilizing the phyb thermosensor in arabidopsis. Mol. Plant 13, 894–906. 10.1016/j.molp.2020.04.006 PubMed DOI
Jiang B., Shi Y., Zhang X., Xin X., Qi L., Guo H., et al. . (2017). PIF3 is a negative regulator of the CBF pathway and freezing tolerance in arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 114, E6695–E6702. 10.1073/pnas.1706226114 PubMed DOI PMC
John R., Anjum N. A., Sopory S. K., Akram N. A., Ashraf M. (2016). Some key physiological and molecular processes of cold acclimation. Biol. Plant. 60, 603–618. 10.1007/S10535-016-0648-9 PubMed DOI
Kanamaru K., Fujiwara M., Kim M., Nagashima A., Nakazato E., Tanaka K., et al. . (2000). Chloroplast targeting, distribution and transcriptional fluctuation of atmind1, a eubacteria-type factor critical for chloroplast division. Plant Cell Physiol. 41, 1119–1128. 10.1093/PCP/PCD037 PubMed DOI
Koornneef M., Alonso-Blanco C., Vreugdenhil D. (2004). Naturally occurring genetic variation in Arabidopsis thaliana. Annu. Rev. Plant Biol. 55, 141–172. 10.1146/ANNUREV.ARPLANT.55.031903.141605 PubMed DOI
Körner C. (2003). Life under snow: protection and limitation. New York, NY: Alpine Plant Life, Springer, pp. 47–62.
Kupsch C., Ruwe H., Gusewski S., Tillich M., Small I., Schmitz-Linneweber C. (2012). Arabidopsis chloroplast RNA binding proteins CP31A and CP29A associate with large transcript pools and confer cold stress tolerance by influencing multiple chloroplast rna processing steps. Plant Cell 24, 4266–4280. 10.1105/TPC.112.103002 PubMed DOI PMC
Lange T., Krämer C., Lange M. J. P. (2020). The Class III gibberellin 2-oxidases AtGA2ox9 and AtGA2ox10 contribute to cold stress tolerance and fertility. Plant Physiol. 184, 478–486. 10.1104/PP.20.00594 PubMed DOI PMC
Larkin R. M., Alonso J. M., Ecker J. R., Chory J. (2003). GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299, 902–906. 10.1126/SCIENCE.1079978 PubMed DOI
Lee C. M., Thomashow M. F. (2012). Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 109, 15054–15059. 10.1073/pnas.1211295109 PubMed DOI PMC
Lee E. S., Park J. H., Wi S. D., Kang C. H., Chi Y. H., Chae H. B., et al. . (2021). Redox-dependent structural switch and CBF activation confer freezing tolerance in plants. Nat. Plants 7, 914–922. 10.1038/s41477-021-00944-8 PubMed DOI
Legris M., Klose C., Burgie E. S., Rojas C. C., Neme M., Hiltbrunner A., et al. . (2016). Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354, 897–900. 10.1126/SCIENCE.AAF5656 PubMed DOI
Leuendorf J. E., Frank M., Schmülling T. (2020). Acclimation, priming and memory in the response of Arabidopsis thaliana seedlings to cold stress. Sci. Reports 10, 1–11. 10.1038/s41598-019-56797-x PubMed DOI PMC
Li X., Cai J., Liu F., Dai T., Cao W., Jiang D. (2014). Cold priming drives the sub-cellular antioxidant systems to protect photosynthetic electron transport against subsequent low temperature stress in winter wheat. Plant Physiol. Biochem. 82, 34–43. 10.1016/J.PLAPHY.2014.05.005 PubMed DOI
Li Y., Shi Y., Li M., Fu D., Wu S., Li J., et al. . (2021a). The CRY2–COP1–HY5–BBX7/8 module regulates blue light-dependent cold acclimation in Arabidopsis. Plant Cell 33, 3555–3573. 10.1093/PLCELL/KOAB215 PubMed DOI PMC
Li Z., Wang B., Zhang Z., Luo W., Tang Y., Niu Y., et al. . (2021b). OsGRF6 interacts with SLR1 to regulate OsGA2ox1 expression for coordinating chilling tolerance and growth in rice. J. Plant Physiol. 260, 153406. 10.1016/J.JPLPH.2021.153406 PubMed DOI
Liu C. C., Chi C., Jin L. J., Zhu J., Yu J. Q., Zhou Y. H. (2018b). The bZip transcription factor HY5 mediates CRY1a-induced anthocyanin biosynthesis in tomato. Plant Cell Environ. 41, 1762–1775. 10.1111/PCE.13171 PubMed DOI
Liu H., Ouyang B., Zhang J., Wang T., Li H., Zhang Y., et al. . (2012). Differential modulation of photosynthesis, signaling, and transcriptional regulation between tolerant and sensitive tomato genotypes under cold stress. PLoS One 7, e50785. 10.1371/JOURNAL.PONE.0050785 PubMed DOI PMC
Liu Q., Su T., He W., Ren H., Liu S., Chen Y., et al. . (2020b). Photooligomerization determines photosensitivity and photoreactivity of plant cryptochromes. Mol. Plant 13, 398–413. 10.1016/J.MOLP.2020.01.002 PubMed DOI PMC
Liu X., Rodermel S. R., Yu F. (2010). A var2 leaf variegation suppressor locus, suppressor of variegation3, encodes a putative chloroplast translation elongation factor that is important for chloroplast development in the cold. BMC Plant Biol. 10, 1–18. 10.1186/1471-2229-10-287 PubMed DOI PMC
Liu X., Xue C., Kong L., Li R., Xu Z., Hua J. (2020a). Interactive effects of light quality and temperature on Arabidopsis growth and immunity. Plant Cell Physiol. 61, 933–941. 10.1093/PCP/PCAA020 PubMed DOI
Liu X., Zhou Y., Xiao J., Bao F. (2018a). Effects of chilling on the structure, function and development of chloroplasts. Front. Plant Sci. 9, 1715. 10.3389/FPLS.2018.01715 PubMed DOI PMC
Luo P., Li Z., Chen W., Xing W., Yang J., Cui Y. (2020). Overexpression of RmICE1, a bHLH transcription factor from Rosa multiflora, enhances cold tolerance via modulating ROS levels and activating the expression of stress-responsive genes. Environ. Exp. Bot. 178, 104160. 10.1016/J.ENVEXPBOT.2020.104160 DOI
Lv K., Li J., Zhao K., Chen S., Nie J., Zhang W., et al. . (2020). Overexpression of an AP2/ERF family gene, BpERF13, in birch enhances cold tolerance through upregulating CBF genes and mitigating reactive oxygen species. Plant Sci. 292, 110375. 10.1016/J.PLANTSCI.2019.110375 PubMed DOI
Ma L., Li X., Zhao Z., Hao Y., Shang R., Zeng D., et al. . (2021). Light-Response Bric-A-Brack/Tramtrack/Broad proteins mediate cryptochrome 2 degradation in response to low ambient temperature. Plant Cell 33, 3610–3620. 10.1093/PLCELL/KOAB219 PubMed DOI PMC
Mierswa I., Wurst M., Klinkenberg R., Scholz M., Euler T. (2006). YALE: rapid prototyping for complex data mining tasks. Int. Conf. Knowl. Discov. Data Min. 6, 935–940. 10.1145/1150402.1150531 DOI
Mukhopadhyay J., Roychoudhury A. (2018). Cold-induced injuries and signaling responses in plants. Cold Toleran. Plants 8, 1–35. 10.1007/978-3-030-01415-5_1 DOI
Nolte H., MacVicar T. D., Tellkamp F., Krüger M. (2018). Instant clue: a software suite for interactive data visualization and analysis. Sci. Rep. 8, 1–8. 10.1038/s41598-018-31154-6 PubMed DOI PMC
Novák J., Cerný M., Pavlu J., Zemánková J., Skalák J., Plačková L., et al. . (2015). Roles of proteome dynamics and cytokinin signaling in root to hypocotyl ratio changes induced by shading roots of Arabidopsis seedlings. Plant Cell Physiol. 56, 1006–1018. 10.1093/PCP/PCV026 PubMed DOI
Novák J., Cerný M., Roignant J., Skalák J., Saiz-Fernández I., Luklová M., et al. . (2021). Limited light intensity and low temperature: can plants survive freezing in light conditions that more accurately replicate the cold season in temperate regions? Environ. Exp. Bot. 190, 104581. 10.1016/J.ENVEXPBOT.2021.104581 DOI
Novák J., Pavlu J., Novák O., NoŽková-Hlaváčková V., Špundová M., Hlavinka J., et al. . (2013). High cytokinin levels induce a hypersensitive-like response in tobacco. Ann. Bot. 112, 41. 10.1093/AOB/MCT092 PubMed DOI PMC
Örvar B. L., Sangwan V., Omann F., Dhindsa R. S. (2000). Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J. 23, 785–794. 10.1046/J.1365-313X.2000.00845.X PubMed DOI
Palma M. D., Grillo S., Massarelli I., Costa A., Balogh G., Vigh L., et al. . (2008). Regulation of desaturase gene expression, changes in membrane lipid composition and freezing tolerance in potato plants. Mol. Breed. 21, 15–26. 10.1007/S11032-007-9105-Y DOI
Park E., Park J., Kim J., Nagatani A., Lagarias J. C., Choi G. (2012). Phytochrome B inhibits binding of phytochrome-interacting factors to their target promoters. Plant J. 72, 537–546. 10.1111/J.1365-313X.2012.05114.X PubMed DOI PMC
Park S., Lee C.-M., Doherty C. J., Gilmour S. J., Kim Y., Thomashow M. F. (2015). Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. Plant J. 82, 193–207. 10.1111/TPJ.12796 PubMed DOI
Pavlů J., Novák J., Koukalová V., Luklová M., Brzobohatý B., Černý M. (2018). Cytokinin at the crossroads of abiotic stress signalling pathways. Int. J. Mol. Sci. 19. 10.3390/ijms19082450 PubMed DOI PMC
Pfaffl M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29. 10.1093/nar/29.9.e45 PubMed DOI PMC
Pooam M., Dixon N., Hilvert M., Misko P., Waters K., Jourdan N., et al. . (2021). Effect of temperature on the Arabidopsis cryptochrome photocycle. Physiol. Plant. 172, 1653–1661. 10.1111/PPL.13365 PubMed DOI
Prerostová S., Cerný M., Dobrev P. I., Motyka V., Hluskova L., Zupkova B., et al. . (2021b). Light regulates the cytokinin-dependent cold stress responses in arabidopsis. Front. Plant Sci. 11, 2293. 10.3389/fpls.2020.608711 PubMed DOI PMC
Prerostová S., Dobrev P. I., Knirsch V., Jarosova J., Gaudinova A., Zupkova B., et al. . (2021a). Light quality and intensity modulate cold acclimation in arabidopsis. Int. J. Mol. Sci. 22, 1–21. 10.3390/IJMS22052736 PubMed DOI PMC
Raju K., S K, Barnes A. C., Schnable J. C., Roston R. L. (2018). Low-temperature tolerance in land plants: are transcript and membrane responses conserved? Plant Sci. 276, 73–86. 10.1016/J.PLANTSCI.2018.08.002 PubMed DOI
Rasmussen S., Barah P., Suarez-Rodriguez M. C., Bressendorff S., Friis P., Costantino P., et al. . (2013). Transcriptome responses to combinations of stresses in arabidopsis. Plant Physiol. 161, 1783–1794. 10.1104/PP.112.210773 PubMed DOI PMC
Robson M. T., Aphalo P. J. (2019). Transmission of ultraviolet, visible and near-infrared solar radiation to plants within a seasonal snow pack. Photochem. Photobiol. Sci. 18, 1963–1971. 10.1039/C9PP00197B PubMed DOI
Saxena I., Srikanth S., Chen Z. (2016). Cross talk between H2O2 and interacting signal molecules under plant stress response. Front. Plant Sci. 7, 570. 10.3389/FPLS.2016.00570/BIBTEX PubMed DOI PMC
Schneider C. A., Rasband W. S., Eliceiri K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. 10.1038/nmeth.2089 PubMed DOI PMC
Shi Y., Ding Y., Yang S. (2018). Molecular regulation of CBF signaling in cold acclimation. Trends Plant Sci. 23, 623–637. 10.1016/J.TPLANTS.2018.04.002 PubMed DOI
Shi Y., Tian S., Hou L., Huang X., Zhang X., Guo H., et al. . (2012). Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell 24, 2578–2595. 10.1105/TPC.112.098640 PubMed DOI PMC
Si T., Wang X., Zhao C., Huang M., Cai J., Zhou Q., et al. . (2018). The role of hydrogen peroxide in mediating the mechanical wounding-induced freezing tolerance in wheat. Front. Plant Sci. 14, 327. 10.3389/FPLS.2018.00327 PubMed DOI PMC
Sjögren L. L. E., Stanne T. M., Zheng B., Sutinen S., Clarke A. K. (2006). Structural and functional insights into the chloroplast ATP-Dependent Clp protease in arabidopsis. Plant Cell 18, 2635–2649. 10.1105/TPC.106.044594 PubMed DOI PMC
Skalák J., Vercruyssen L., Claeys H., Hradilová J., Cerný M., Novák O., et al. . (2019). Multifaceted activity of cytokinin in leaf development shapes its size and structure in arabidopsis. Plant J. 97, 805–824. 10.1111/TPJ.14285 PubMed DOI
Skalitzky C. A., Martin J. R., Harwood J. H., Beirne J. J., Adamczyk B. J., Heck G. R., et al. . (2011). Plastids contain a second sec translocase system with essential functions. Plant Physiol. 155, 354–369. 10.1104/PP.110.166546 PubMed DOI PMC
Soitamo A. J., Piippo M., Allahverdiyeva Y., Battchikova N., Aro E. M. (2008). Light has a specific role in modulating Arabidopsis gene expression at low temperature. BMC Plant Biol. 8, 13. 10.1186/1471-2229-8-13 PubMed DOI PMC
Sun L., Dong S., Ge Y., Fonseca J. P., Robinson Z. T., Mysore K. S., et al. . (2019). DiVenn: An interactive and integrated web-based visualization tool for comparing gene lists. Front. Genet. 10, 421. 10.3389/FGENE.2019.00421/BIBTEX PubMed DOI PMC
Szklarczyk D., Gable A. L., Nastou K. C., Lyon D., Kirsch R., Pyysalo S., et al. . (2021). The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49, D605–D612. 10.1093/NAR/GKAA1074 PubMed DOI PMC
Thalhammer A., Pagter M., Hincha D. K., Zuther E. (2020). Measuring Freezing Tolerance of Leaves and Rosettes: Electrolyte Leakage and Chlorophyll Fluorescence Assays. Plant Cold Acclim. 2, 9–21. 10.1007/978-1-0716-0660-5_2 PubMed DOI
Thomashow M. F. (1999). Plant cold acclimation: freezing Tolerance Genes and Regulatory Mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 571–599. 10.1146/ANNUREV.ARPLANT.50.1.571 PubMed DOI
Valledor L., Escandón M., Meijón M., Nukarinen E., Cañal M. J., Weckwerth W. (2014). A universal protocol for the combined isolation of metabolites, DNA, long RNAs, small RNAs, and proteins from plants and microorganisms. Plant J. 79, 173–180. 10.1111/TPJ.12546 PubMed DOI
Vandenbussche F., Habricot Y., Condiff A. S., Maldiney R., Van Der Straeten D., Ahmad M. (2007). HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana. Plant J. 49, 428–441. 10.1111/J.1365-313X.2006.02973.X PubMed DOI
Vizcaíno J. A., Csordas A., Del-Toro N., Dianes J. A., Griss J., Lavidas I., et al. . (2016). 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, D447–D456. 10.1093/NAR/GKV1145 PubMed DOI PMC
Wang F., Guo Z., Li H., Wang M., Onac E., Zhou J., et al. . (2016). Phytochrome a and b function antagonistically to regulate cold tolerance via abscisic acid-dependent jasmonate signaling. Plant Physiol. 170, 459–471. 10.1104/pp.15.01171 PubMed DOI PMC
Wang W., Wang X., Huang M., Cai J., Zhou Q., Dai T., et al. . (2018). Hydrogen peroxide and abscisic acid mediate salicylic acid-induced freezing tolerance in wheat. Front. Plant Sci. 9, 1137. 10.3389/FPLS.2018.01137/BIBTEX PubMed DOI PMC
Yu L., Zhou C., Fan J., Shanklin J., Xu C. (2021). Mechanisms and functions of membrane lipid remodeling in plants. Plant J. 107, 37–53. 10.1111/TPJ.15273 PubMed DOI
Zhang X., Zhang L., Sun Y., Zheng S., Wang J., Zhang T. (2020). Hydrogen peroxide is involved in strigolactone induced low temperature stress tolerance in rape seedlings (Brassica rapa L.). Plant Physiol. Biochem. 157, 402–415. 10.1016/J.PLAPHY.2020.11.006 PubMed DOI
Zhang Y., Zheng S., Liu Z., Wang L., Bi Y. (2011). Both HY5 and HYH are necessary regulators for low temperature-induced anthocyanin accumulation in Arabidopsis seedlings. J. Plant Physiol. 168, 367–374. 10.1016/j.jplph.2010.07.025 PubMed DOI
Zhao C., Zhang Z., Xie S., Si T., Li Y., Zhu J.-K. (2016). Mutational Evidence for the Critical Role of CBF transcription factors in cold acclimation in arabidopsis. Plant Physiol. 171, 2744–2759. 10.1104/PP.16.00533 PubMed DOI PMC
Zhou J., Wang J., Shi K., Xia X. J., Zhou Y. H., Yu J. Q. (2012). Hydrogen peroxide is involved in the cold acclimation-induced chilling tolerance of tomato plants. Plant Physiol. Biochem. 60, 141–149. 10.1016/J.PLAPHY.2012.07.010 PubMed DOI
Zuther E., Schultz E., Childs L. H., Hincha D. K. (2012). Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions. Plant. Cell Environ. 35, 1860–1878. 10.1111/J.1365-3040.2012.02522.X PubMed DOI
Zwack P. J., Compton M. A., Adams C. I., Rashotte A. M. (2016). Cytokinin response factor 4 (CRF4) is induced by cold and involved in freezing tolerance. Plant Cell Rep. 35, 573–584. 10.1007/S00299-015-1904-8 PubMed DOI
Zwack P. J., Rashotte A. M. (2015). Interactions between cytokinin signalling and abiotic stress responses. J. Exp. Bot. 66, 4863–4871. 10.1093/JXB/ERV172 PubMed DOI
Divergent Molecular Responses to Heavy Water in Arabidopsis thaliana Compared to Bacteria and Yeast
Abiotic Stress in Crop Production