Light Regulates the Cytokinin-Dependent Cold Stress Responses in Arabidopsis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33613584
PubMed Central
PMC7889523
DOI
10.3389/fpls.2020.608711
Knihovny.cz E-zdroje
- Klíčová slova
- acclimation, cold stress, cytokinin, cytokinin oxidase/dehydrogenase, isopentenyl transferase, karrikin, light intensity, phytohormone,
- Publikační typ
- časopisecké články MeSH
To elucidate the effect of light intensity on the cold response (5°C; 7 days) in Arabidopsis thaliana, we compared the following parameters under standard light (150 μmol m-2 s-1), low light (20 μmol m-2 s-1), and dark conditions: membrane damage, photosynthetic parameters, cytokinin oxidase/dehydrogenase (CKX) activity, phytohormone levels, and transcription of selected stress- and hormone-related genes and proteome. The impact of cytokinins (CKs), hormones directly interacting with the light signaling pathway, on cold responses was evaluated using transformants overexpressing CK biosynthetic gene isopentenyl transferase (DEX:IPT) or CK degradation gene HvCKX2 (DEX:CKX) under a dexamethasone-inducible promoter. In wild-type plants, cold treatment under light conditions caused down-regulation of CKs (in shoots) and auxin, while abscisic acid (ABA), jasmonates, and salicylic acid (SA) were up-regulated, especially under low light. Cold treatment in the dark strongly suppressed all phytohormones, except ABA. DEX:IPT plants showed enhanced stress tolerance associated with elevated CK and SA levels in shoots and auxin in apices. Contrarily, DEX:CKX plants had weaker stress tolerance accompanied by lowered levels of CKs and auxins. Nevertheless, cold substantially diminished the impact from the inserted genes. Cold stress in dark minimized differences among the genotypes. Cold treatments in light strongly up-regulated stress marker genes RD29A, especially in roots, and CBF1-3 in shoots. Under control conditions, their levels were higher in DEX:CKX plants, but after 7-day stress, DEX:IPT plants exhibited the highest transcription. Transcription of genes related to CK metabolism and signaling showed a tendency to re-establish, at least partially, CK homeostasis in both transformants. Up-regulation of strigolactone-related genes in apices and leaves indicated their role in suppressing shoot growth. The analysis of leaf proteome revealed over 20,000 peptides, representing 3,800 proteins and 2,212 protein families (data available via ProteomeXchange, identifier PXD020480). Cold stress induced proteins involved in ABA and jasmonate metabolism, antioxidant enzymes, and enzymes of flavonoid and glucosinolate biosynthesis. DEX:IPT plants up-regulated phospholipase D and MAP-kinase 4. Cold stress response at the proteome level was similar in all genotypes under optimal light intensity, differing significantly under low light. The data characterized the decisive effect of light-CK cross-talk in the regulation of cold stress responses.
Zobrazit více v PubMed
Alabadi D., Gallego-Bartolome J., Orlando L., Garcia-Carcel L., Rubio V., Martinez C., et al. (2008). Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling de-etiolation in darkness. Plant J. 53 324–335. 10.1111/j.1365-313X.2007.03346.x PubMed DOI
Ballare C. L., Pierik R. (2017). The shade-avoidance syndrome: multiple signals and ecological consequences. Plant Cell Environ. 40 2530–2543. 10.1111/pce.12914 PubMed DOI
Belintani N. G., Guerzoni J. T. S., Moreira R. M. P., Vieira L. G. E. (2012). Improving low-temperature tolerance in sugarcane by expressing the ipt gene under a cold inducible promoter. Biol. Plant 56 71–77. 10.1007/s10535-012-0018-1 DOI
Bunsick M., Toh S., Wong C., Xu Z., Ly G., McErlean C. S., et al. (2020). SMAX1-dependent seed germination bypasses GA signalling in Arabidopsis and Striga. Nat. Plants 6 646–652. 10.1038/s41477-020-0653-z PubMed DOI
Catala R., Medina J., Salinas J. (2011). Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 108 16475–16480. 10.1073/pnas.1107161108 PubMed DOI PMC
Cejudo F. J., Ojeda V., Delgado-Requerey V., Gonzalez M., Perez-Ruiz J. M. (2019). Chloroplast redox regulatory mechanisms in plant adaptation to light and darkness. Front. Plant Sci. 10:380. 10.3389/fpls.2019.00380 PubMed DOI PMC
Černý M., Kuklova A., Hoehenwarter W., Fragner L., Novak O., Rotkova G., et al. (2013). Proteome and metabolome profiling of cytokinin action in Arabidopsis identifying both distinct and similar responses to cytokinin down- and up-regulation. J. Exp. Bot. 64 4193–4206. 10.1093/jxb/ert227 PubMed DOI PMC
Choi J., Huh S. U., Kojima M., Sakakibara H., Paek K. H., Hwang I. (2010). The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev. Cell 19 284–295. 10.1016/j.devcel.2010.07.011 PubMed DOI
Chory J., Reinecke D., Sim S., Washburn T., Brenner M. (1994). A role for cytokinins in de-etiolation in Arabidopsis (det mutants have an altered response to cytokinins). Plant Physiol. 104 339–347. 10.1104/pp.104.2.339 PubMed DOI PMC
Christians M. J., Larsen P. B. (2007). Mutational loss of the prohibitin AtPHB3 results in an extreme constitutive ethylene response phenotype coupled with partial loss of ethylene-inducible gene expression in Arabidopsis seedlings. J. Exp. Bot. 58 2237–2248. 10.1093/jxb/erm086 PubMed DOI
Cortleven A., Schmulling T. (2015). Regulation of chloroplast development and function by cytokinin. J. Exp. Bot. 66 4999–5013. 10.1093/jxb/erv132 PubMed DOI
Craft J., Samalova M., Baroux C., Townley H., Martinez A., Jepson I., et al. (2005). New pOp/LhG4 vectors for stringent glucocorticoid−dependent transgene expression in Arabidopsis. Plant J. 41 899–918. 10.1111/j.1365-313X.2005.02342.x PubMed DOI
de Wit M., Lorrain S., Fankhauser C. (2014). Auxin-mediated plant architectural changes in response to shade and high temperature. Physiol. Plant 151 13–24. 10.1111/ppl.12099 PubMed DOI
Demmig-Adams B., Stewart J. J., Baker C. R., Adams W. W. (2018). Optimization of photosynthetic productivity in contrasting environments by regulons controlling plant form and function. Int. J. Mol. Sci. 19 872. 10.3390/ijms19030872 PubMed DOI PMC
Dobra J., Černý M., Storchova H., Dobrev P., Skalak J., Jedelsky P. L., et al. (2015). The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis. Plant Sci. 231 52–61. 10.1016/j.plantsci.2014.11.005 PubMed DOI
Doroshenko A. S., Danilova M. N., Kudryakova N. V., Soloviev A. A., Kusnetsov V. V. (2016). Cytokinin membrane receptors participate in regulation of plastid genome expression in the skotomorphogenesis. Dokl. Biochem. Biophys. 469 294–297. 10.1134/S1607672916040153 PubMed DOI
Dun E. A., de Saint Germain A., Rameau C., Beveridge C. A. (2012). Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiol. 158 487–498. 10.1104/pp.111.186783 PubMed DOI PMC
Gajdosova S., Spichal L., Kaminek M., Hoyerova K., Novak O., Dobrev P. I., et al. (2011). Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J. Exp. Bot. 62 2827–2840. 10.1093/jxb/erq457 PubMed DOI
Galvao V. C., Fankhauser C. (2015). Sensing the light environment in plants: photoreceptors and early signaling steps. Curr. Opin. Neurobiol. 34 46–53. 10.1016/j.conb.2015.01.013 PubMed DOI
Gaudinova A., Dobrev P. I., Solcova B., Novak O., Strnad M., Friedecky D., et al. (2005). The involvement of cytokinin oxidase/dehydrogenase and zeatin reductase in regulation of cytokinin levels in pea (Pisum sativum L.) leaves. J. Plant Growth Regul. 24 188–200. 10.1007/s00344-005-0043-9 DOI
Genty B., Briantais J. M., Baker N. R. (1989). The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990 87–92. 10.1016/S0304-4165(89)80016-9 DOI
Havlova M., Dobrev P. I., Motyka V., Storchova H., Libus J., Dobra J., et al. (2008). The role of cytokinins in responses to water deficit in tobacco plants over−expressing trans−zeatin O−glucosyltransferase gene under 35S or SAG12 promoters. Plant Cell Environ. 31 341–353. 10.1111/j.1365-3040.2007.01766.x PubMed DOI
Hloušková P., Černý M., Kořínková N., Luklová M., Minguet E. G., Brzobohatý B., et al. (2019). Affinity chromatography revealed 14-3-3 interactome of tomato (Solanum lycopersicum L.) during blue light-induced de-etiolation. J. Proteomics 193, 44–61. 10.1016/j.jprot.2018.12.017 PubMed DOI
Hodges D. M., DeLong J. M., Forney C. F., Prange R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207 604–611. 10.1007/s004250050524 PubMed DOI
Horton P., Ruban A. V. (1992). Regulation of photosystem-II. Photosynth. Res. 34 375–385. 10.1007/BF00029812 PubMed DOI
Hruz T., Laule O., Szabo G., Wessendorp F., Bleuler S., Oertle L., et al. (2008). Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv. Bioinform. 2008 420747. 10.1155/2008/420747 PubMed DOI PMC
Hu Y., Jia W., Wang J., Zhang Y., Yang L., Lin Z. (2005). Transgenic tall fescue containing the Agrobacterium tumefaciens ipt gene shows enhanced cold tolerance. Plant Cell Rep. 23 705–709. 10.1007/s00299-004-0863-2 PubMed DOI
Janda T., Majlath I., Szalai G. (2014). Interaction of temperature and light in the development of freezing tolerance in plants. J. Plant Growth Regul. 33 460–469. 10.1007/S00344-013-9381-1 DOI
Jeon J., Kim N. Y., Kim S., Kang N. Y., Novak O., Ku S. J., et al. (2010). A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J. Biol. Chem. 285 23371–23386. 10.1074/jbc.M109.096644 PubMed DOI PMC
Jiang B., Shi Y., Peng Y., Jia Y., Yan Y., Dong X., et al. (2020). Cold-induced CBF-PIF3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in Arabidopsis. Mol. Plant 13 894–906. 10.1016/j.molp.2020.04.006 PubMed DOI
Koltai H., Cohen M., Chesin O., Mayzlish-Gati E., Becard G., Puech V., et al. (2011). Light is a positive regulator of strigolactone levels in tomato roots. J. Plant Physiol. 168 1993–1996. 10.1016/j.jplph.2011.05.022 PubMed DOI
Kosova K., Prasil I. T., Vitamvas P., Dobrev P., Motyka V., Flokova K., et al. (2012). Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. J. Plant Physiol. 169 567–576. 10.1016/j.jplph.2011.12.013 PubMed DOI
Landi M. (2017). Commentary to: “Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds” by Hodges et al., Planta (1999) 207: 604-611. Planta 245 1067–1067. 10.1007/s00425-017-2699-3 PubMed DOI
Lau O. S., Deng X. W. (2010). Plant hormone signaling lightens up: integrators of light and hormones. Curr. Opin. Plant Biol. 13 571–577. 10.1016/j.pbi.2010.07.001 PubMed DOI
Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25 402–408. 10.1006/meth.2001.1262 PubMed DOI
Majlath I., Szalai G., Soos V., Sebestyen E., Balazs E., Vankova R., et al. (2012). Effect of light on the gene expression and hormonal status of winter and spring wheat plants during cold hardening. Phys. Plant. 145 296–314. 10.1111/j.1399-3054.2012.01579.x PubMed DOI
Mierswa I., Wurst M., Klinkenberg R., Scholz M., Euler T. (2006). “Yale: rapid prototyping for complex data mining tasks,” in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (New York, NY: Association for Computing Machinery; ), 935–940. 10.1145/1150402.1150531 DOI
Miller C. O., Skoog F., Okumura F. S., von Saltza M. H., Strong F. M. (1956). Isolation, structure and synthesis of kinetin, a substance promoting cell division. J. Am. Chem. Soc. 78 1375–1380. 10.1021/ja01588a032 DOI
Mohammed B., Bilooei S. F., Doczi R., Grove E., Railo S., Palme K., et al. (2018). Converging light, energy and hormonal signaling control meristem activity, leaf initiation, and growth. Plant Physiol. 176 1365–1381. 10.1104/pp.17.01730 PubMed DOI PMC
Mostofa M. G., Li W., Nguyen K. H., Fujita M., Tran L. S. P. (2018). Strigolactones in plant adaptation to abiotic stresses: an emerging avenue of plant research. Plant Cell Environ. 41 2227–2243. 10.1111/pce.13364 PubMed DOI
Motyka V., Kaminek M. (1992). “Characterization of cytokinin oxidase from tobacco and poplar callus cultures,” in Physiology and Biochemistry of Cytokinins in Plants, eds Kaminek M., Mok D. W. S., Zazimalova E. (The Hague: SPB Academic Publishing; ), 33–39.
Motyka V., Kaminek M. (1994). Cytokinin oxidase from auxin- and cytokinin-dependent callus cultures of tobacco (Nicotiana tabacum L.). J. Plant Growth Regul. 13 1–9. 10.1007/BF00210700 DOI
Motyka V., Vankova R., Capkova V., Petrasek J., Kaminek M., Schmulling T. (2003). Cytokinin-induced upregulation of cytokinin oxidase activity in tobacco includes changes in enzyme glycosylation and secretion. Physiol. Plant 117 11–21. 10.1034/j.1399-3054.2003.1170102.x PubMed DOI
Nolte H., MacVicar T. D., Tellkamp F., Kruger M. (2018). Instant clue: a software suite for interactive data visualization and analysis. Sci. Rep. 8 1–8. 10.1038/s41598-018-31154-6 PubMed DOI PMC
Pavlu J., Novak J., Koukalova V., Luklova M., Brzobohatý B., Černý M. (2018). Cytokinin at the crossroads of abiotic stress signalling pathways. Int. J. Mol. Sci. 19 2450. 10.3390/ijms19082450 PubMed DOI PMC
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D. J., et al. (2019). The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47 D442–D450. 10.1093/nar/gky1106 PubMed DOI PMC
Prinzenberg A. E., Campos-Dominguez L., Kruijer W., Harbinson J., Aarts M. G. (2020). Natural variation of photosynthetic efficiency in Arabidopsis thaliana accessions under low temperature conditions. Plant Cell Environ. 43 2000–2013. 10.1111/pce.13811 PubMed DOI PMC
Ross J. J., O’Neill D. P., Wolbang C. M., Symons G. M., Reid J. B. (2001). Auxin-gibberellin interactions and their role in plant growth. J. Plant Growth Regul. 20 346–353. 10.1007/s003440010034 PubMed DOI
Sano H., Seo S., Koizumi N., Niki T., Iwamura H., Ohashi Y. (1996). Regulation by cytokinins of endogenous levels of jasmonic and salicylic acids in mechanically wounded tobacco plants. Plant Cell Physiol. 37 762–769. 10.1093/oxfordjournals.pcp.a029011 DOI
Skalak J., Černý M., Jedelsky P., Dobra J., Ge E., Novak J., et al. (2016). Stimulation of ipt overexpression as a tool to elucidate the role of cytokinins in high temperature responses of Arabidopsis thaliana. J. Exp. Bot. 67 2861–2873. 10.1093/jxb/erw129 PubMed DOI PMC
Spichal L., Rakova N. Y., Riefler M., Mizuno T., Romanov G. A., Strnad M., et al. (2004). Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol. 45 1299–1305. 10.1093/pcp/pch132 PubMed DOI
Szalai G., Pap M., Janda T. (2009). Light-induced frost tolerance differs in winter and spring wheat plants. J. Plant Physiol. 166 1826–1831. 10.1016/j.jplph.2009.04.016 PubMed DOI
Szklarczyk D., Gable A. L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., et al. (2019). STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47 D607–D613. 10.1093/nar/gky1131 PubMed DOI PMC
Ulmasov T., Murfett J., Hagen G., Guilfoyle T. J. (1997). Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9 1963–1971. 10.1105/tpc.9.11.1963 PubMed DOI PMC
Vandenbussche F., Habricot Y., Condiff A. S., Maldiney R., Straeten D. V. D., Ahmad M. (2007). HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana. Plant J. 49 428–441. 10.1111/j.1365-313X.2006.02973.x PubMed DOI
Waldie T., McCulloch H., Leyser O. (2014). Strigolactones and the control of plant development: lessons from shoot branching. Plant J. 79 607–622. 10.1111/tpj.12488 PubMed DOI
Wang X., Ding J., Lin S., Liu D., Gu T., Wu H., et al. (2020). Evolution and roles of cytokinin genes in angiosperms 2: do ancient CKXs play housekeeping roles while non-ancient CKXs play regulatory roles? Hortic. Res. 7 1–15. 10.1038/s41438-020-0246-z PubMed DOI PMC
Werner T., Schmulling T. (2009). Cytokinin action in plant development. Curr. Opin. Plant Biol. 12 527–538. 10.1016/j.pbi.2009.07.002 PubMed DOI
Xie Y., Liu Y., Ma M., Zhou Q., Zhao Y., Zhao B., et al. (2020). Arabidopsis FHY3 and FAR1 integrate light and strigolactone signaling to regulate branching. Nat. Commun. 11 1–13. 10.1038/s41467-020-15893-7 PubMed DOI PMC
Xu D., Deng X. W. (2020). CBF-phyB-PIF module links light and low temperature signaling. Trends Plant Sci. 25 952–954. 10.1016/j.tplants.2020.06.010 PubMed DOI
Yang C., Li L. (2017). Hormonal regulation in shade avoidance. Front. Plant Sci. 8:1527. 10.3389/fpls.2017.01527 PubMed DOI PMC
Yoshida S., Mandel T., Kuhlemeier C. (2011). Stem cell activation by light guides plant organogenesis. Genes Dev. 25 1439–1450. 10.1101/gad.631211 PubMed DOI PMC
Zhao Z., Tan L., Dang C., Zhang H., Wu Q., An L. (2012). Deep-sequencing transcriptome analysis of chilling tolerance mechanisms of a subnival alpine plant, Chorispora bungeana. BMC Plant Biol. 12:222. 10.1186/1471-2229-12-222 PubMed DOI PMC
Zheng C., Zhao L., Wang Y., Shen J., Zhang Y., Jia S., et al. (2015). Integrated RNA-Seq and sRNA-Seq analysis identifies chilling and freezing responsive key molecular players and pathways in tea plant (Camellia sinensis). PLoS One 10:e0125031. 10.1371/journal.pone.0125031 PubMed DOI PMC
Zwack P. J., Compton M. A., Adams C. I., Rashotte A. M. (2016). Cytokinin response factor 4 (CRF4) is induced by cold and involved in freezing tolerance. Plant Cell Rep. 35 573–584. 10.1007/s00299-015-1904-8 PubMed DOI
Divergent Molecular Responses to Heavy Water in Arabidopsis thaliana Compared to Bacteria and Yeast
Light Quality Modulates Plant Cold Response and Freezing Tolerance
Phospholipase Dα1 Acts as a Negative Regulator of High Mg2+-Induced Leaf Senescence in Arabidopsis
The Impact of Far-Red Light Supplementation on Hormonal Responses to Cold Acclimation in Barley
Light Quality and Intensity Modulate Cold Acclimation in Arabidopsis