Crosstalk between Light- and Temperature-Mediated Processes under Cold and Heat Stress Conditions in Plants

. 2021 Aug 10 ; 22 (16) : . [epub] 20210810

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34445308

Grantová podpora
K 131907 National Research, Development and Innovation Office

Extreme temperatures are among the most important stressors limiting plant growth and development. Results indicate that light substantially influences the acclimation processes to both low and high temperatures, and it may affect the level of stress injury. The interaction between light and temperature in the regulation of stress acclimation mechanisms is complex, and both light intensity and spectral composition play an important role. Higher light intensities may lead to overexcitation of the photosynthetic electron transport chain; while different wavelengths may act through different photoreceptors. These may induce various stress signalling processes, leading to regulation of stomatal movement, antioxidant and osmoregulation capacities, hormonal actions, and other stress-related pathways. In recent years, we have significantly expanded our knowledge in both light and temperature sensing and signalling. The present review provides a synthesis of results for understanding how light influences the acclimation of plants to extreme low or high temperatures, including the sensing mechanisms and molecular crosstalk processes.

Zobrazit více v PubMed

Qin D., Wu H., Peng H., Yao Y., Ni Z., Li Z., Zhou C., Sun Q. Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array. BMC Genom. 2008;9:432. doi: 10.1186/1471-2164-9-432. PubMed DOI PMC

Wang X., Cai J., Jiang D., Liu F., Dai T., Cao W. Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. J. Plant Physiol. 2011;168:585–593. doi: 10.1016/j.jplph.2010.09.016. PubMed DOI

Janda T., Majláth I., Szalai G. Interaction of temperature and light in the development of freezing tolerance in plants. J. Plant Growth Regul. 2014;33:460–469. doi: 10.1007/s00344-013-9381-1. DOI

Majláth I., Darkó É., Palla B., Nagy Z., Janda T., Szalai G. Reduced light and moderate water deficiency sustain nitrogen assimilation and sucrose degradation at low temperature in durum wheat. J. Plant Physiol. 2016;191:149–158. doi: 10.1016/j.jplph.2015.12.004. PubMed DOI

Huner N.P.A., Oquist G., Sarhan F. Energy balance and acclimation to light and cold. Trends Plant Sci. 1998;3:224–230. doi: 10.1016/S1360-1385(98)01248-5. DOI

D’Amico-Damião V., Carvalho R.F. Cryptochrome-related abiotic stress responses in plants. Front. Plant Sci. 2018;9:9. doi: 10.3389/fpls.2018.01897. PubMed DOI PMC

Franklin K.A., Lee S.H., Patel D., Kumar S.V., Spartz A.K., Gu C., Ye S., Yu P., Breen G., Cohen J., et al. Phytochrome-Interacting Factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc. Natl. Acad. Sci. USA. 2011;108:20231–20235. doi: 10.1073/pnas.1110682108. PubMed DOI PMC

Kneissl J., Shinomura T., Furuya M., Bolle C. A Rice Phytochrome A in Arabidopsis: The Role of the N-terminus under red and far-red light. Mol. Plant. 2008;1:84–102. doi: 10.1093/mp/ssm010. PubMed DOI

Sakamoto T., Kimura S. Plant Temperature Sensors. Sensors. 2018;18:4365. doi: 10.3390/s18124365. PubMed DOI PMC

Park E., Kim Y., Choi G. Phytochrome B requires PIF degradation and sequestration to induce light respons-es across a wide range of light conditions. Plant Cell. 2018;30:1277–1292. doi: 10.1105/tpc.17.00913. PubMed DOI PMC

Toriba T., Tokunaga H., Shiga T., Nie F., Naramoto S., Honda E., Kyozuka J. BLADE-ON-PETIOLE genes temporally and developmentally regulate the sheath to blade ratio of rice leaves. Nat. Commun. 2019;10:619. doi: 10.1038/s41467-019-08479-5. PubMed DOI PMC

Genschik P., Sumara I., Lechner E. The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): Cellular functions and disease implications. EMBO J. 2013;32:2307–2320. doi: 10.1038/emboj.2013.173. PubMed DOI PMC

Zhang B., Holmlund M., Lorrain S., Norberg M., Bako L., Fankhauser C., Nilsson O. BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate Phytochrome Interacting Factor 4 abun-dance. eLife. 2017;6:e26759. doi: 10.7554/eLife.26759. PubMed DOI PMC

Mishra S., Khurana J.P. Emerging roles and new paradigms in signaling mechanisms of plant cryptochromes. Crit. Rev. Plant Sci. 2017;36:89–115. doi: 10.1080/07352689.2017.1348725. DOI

Christie J.M. Phototropin Blue-Light Receptors. Annu. Rev. Plant Biol. 2007;58:21–45. doi: 10.1146/annurev.arplant.58.032806.103951. PubMed DOI

Li F.W., Rothfels C.J., Melkonian M., Villarreal J.C., Stevenson D.W., Graham S.W., Wong G.K.-S., Mathews S., Pryer K.M. The origin and evolution of phototropins. Front. Plant Sci. 2015;6:637. doi: 10.3389/fpls.2015.00637. PubMed DOI PMC

Zoltowski B.D., Imaizumi T. Structure and Function of the ZTL/FKF1/LKP2 group proteins in Arabidopsis. Enzymes. 2014;35:213–239. doi: 10.1016/b978-0-12-801922-1.00009-9. PubMed DOI PMC

Yang Y., Yang X., Jang Z., Chen Z., Ruo X., Jin W., Wu Y., Shi X., Xu M. UV RESISTANCE LOCUS 8 from Chrysanthemum morifolium Ramat (CmUVR8) plays important roles in UV-B signal transduction and UV-B-induced accumulation of flavonoids. Front. Plant Sci. 2018;9:955. doi: 10.3389/fpls.2018.00955. PubMed DOI PMC

Kumar S.V., Wigge P.A. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell. 2010;140:136–147. doi: 10.1016/j.cell.2009.11.006. PubMed DOI

Cortijo S., Charoensawan V., Brestovitsky A., Buning R., Ravarani C., Rhodes D., van Noort J., Jaeger K.E., Wigge P.A. Transcriptional regulation of the ambient temperature response by H2A.Z nucleosomes and HSF1 transcription factors in Arabidopsis. Mol. Plant. 2017;10:1258–1273. doi: 10.1016/j.molp.2017.08.014. PubMed DOI PMC

Kumar S.V., Lucyshyn D., Jaeger K.E., Alós E., Alvey E., Harberd N.P., Wigge P.A. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature. 2012;484:242–245. doi: 10.1038/nature10928. PubMed DOI PMC

Legris M., Klose C., Burgie E.S., Rojas C.C.R., Neme M., Hiltbrunner A., Wigge P.A., Schafer E., Vierstra R.D., Casal J.J. Phytochrome B integrates light and temperature signals in Arabidopsis. Science. 2016;354:897–900. doi: 10.1126/science.aaf5656. PubMed DOI

Lamers J., van der Meer T., Testerink C. How Plants sense and respond to stressful environments. Plant Physiol. 2020;182:1624–1635. doi: 10.1104/pp.19.01464. PubMed DOI PMC

Foreman J., Johansson H., Hornitschek P., Josse E., Fankhauser C., Halliday K.J. Light receptor action is critical for maintaining plant biomass at warm ambient temperatures. Plant J. 2011;65:441–452. doi: 10.1111/j.1365-313X.2010.04434.x. PubMed DOI

Legris M., Nieto C., Sellaro R., Prat S., Casal J.J. Perception and signalling of light and temperature cues in plants. Plant J. 2017;90:683–697. doi: 10.1111/tpj.13467. PubMed DOI

Qiu Y., Li M., Kim R.J.A., Moore C.M., Chen M. Daytime temperature is sensed by phytochrome B in Arabidopsis through a transcriptional activator HEMERA. Nat. Commun. 2019;10:140. doi: 10.1038/s41467-018-08059-z. PubMed DOI PMC

Hahm J., Kim K., Qiu Y., Chen M. Increasing ambient temperature progressively disassembles Arabidopsis phytochrome B from individual photobodies with distinct thermostabilities. Nat. Commun. 2020;11:1660. doi: 10.1038/s41467-020-15526-z. PubMed DOI PMC

Chen M., Chory J. Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol. 2011;21:664–671. doi: 10.1016/j.tcb.2011.07.002. PubMed DOI PMC

Fujii Y., Tanaka H., Konno N., Ogasawara Y., Hamashima N., Tamura S., Hasegawa S., Hayasaki Y., Okajima K., Kodama Y. Phototropin perceives temperature based on the lifetime of its photoactivated state. Proc. Natl. Acad. Sci. USA. 2017;114:9206–9211. doi: 10.1073/pnas.1704462114. PubMed DOI PMC

Kumar A., Sharma S., Chunduri V., Kaur A., Kaur S., Malhotra N., Kumar A., Kapoor P., Kumari A., Kaur J., et al. Genome-wide identification and characterization of Heat Shock Protein Family reveals role in development and stress conditions in Triticum aestivum L. Sci. Rep. 2020;10:7858. doi: 10.1038/s41598-020-64746-2. PubMed DOI PMC

Ma D., Li X., Guo Y., Chu J., Fang S., Yan C., Noel J.P., Liu H. Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. Proc. Natl. Acad. Sci. USA. 2016;113:224–229. doi: 10.1073/pnas.1511437113. PubMed DOI PMC

Bellstaedt J., Trenner J., Lippmann R., Poeschl Y., Zhang X., Friml J., Quint M., Delker C. A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls. Plant Physiol. 2019;180:757–766. doi: 10.1104/pp.18.01377. PubMed DOI PMC

Plieth C., Hansen U.-P., Knight H., Knight M.R. Temperature sensing by plants: The primary characteristics of signal perception and calcium response. Plant J. 1999;18:491–497. doi: 10.1046/j.1365-313X.1999.00471.x. PubMed DOI

Jacott C.N., Boden S.A. Feeling the heat: Developmental and molecular responses of wheat and barley to high ambient temperatures. J. Exp. Bot. 2020;71:5740–5751. doi: 10.1093/jxb/eraa326. PubMed DOI PMC

Szalai G., Janda T., Páldi E., Dubacq J.-P. Changes in the fatty acid unsaturation after hardening in wheat chromosome substitution lines with different cold tolerance. J. Plant Physiol. 2001;158:663–666. doi: 10.1078/0176-1617-00145. DOI

Ding Y., Shi Y., Yang S. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol. 2019;222:1690–1704. doi: 10.1111/nph.15696. PubMed DOI

Zuther E., Schaarschmidt S., Fischer A., Erban A., Pagter M., Mubeen U., Giavalisco P., Kopka J., Sprenger H., Hincha D.K. Molecular signatures associated with increased freezing tolerance due to low temperature memory in Arabidopsis. Plant Cell Environ. 2019;42:854–873. PubMed

Gray G.R., Chauvin L.P., Sarhan F., Huner N.P.A. Cold acclimation and freezing tolerance: A complex interaction of light and temperature. Plant Physiol. 1997;114:467–474. doi: 10.1104/pp.114.2.467. PubMed DOI PMC

Apostol S., Szalai G., Sujbert L., Popova L.P., Janda T. Non-invasive monitoring of the light-induced cyclic photosynthetic electron flow during cold hardening in wheat leaves. Z. Nat. C. 2006;61:734–740. doi: 10.1515/znc-2006-9-1021. PubMed DOI

Dal Bosco C., Busconi M., Govoni C., Baldi P., Stanca A.M., Crosatti C., Bassi R., Cattivelli L. Cor gene expression in barley mutants affected in chloroplast development and photosynthetic electron transport. Plant Physiol. 2003;131:793–802. doi: 10.1104/pp.014530. PubMed DOI PMC

Svensson J.T., Crosatti C., Campoli C., Bassi R., Stanca A.M., Close T.J., Cattivelli L. Transcriptome analysis of cold acclimation in barley albina and xantha mutants. Plant Physiol. 2006;141:257–270. doi: 10.1104/pp.105.072645. PubMed DOI PMC

Kim H.J., Kim Y.K., Park J.Y., Kim J. Light signalling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. Plant J. 2002;29:693–704. doi: 10.1046/j.1365-313X.2002.01249.x. PubMed DOI

Novák A., Boldizsár Á., Ádám É., Kozma-Bognár L., Majláth I., Båga M., Tóth B., Chibbar R., Galiba G. Light-quality and temperature-dependent CBF14 gene expression modulates freezing tolerance in cereals. J. Exp. Bot. 2016;67:1285–1295. doi: 10.1093/jxb/erv526. PubMed DOI

Soitamo A.J., Piippo M., Allahverdiyeva Y., Battchikova N., Aro E.M. Light has a specific role in modulating Arabidopsis gene expression at low temperature. BMC Plant Biol. 2008;8:13–20. doi: 10.1186/1471-2229-8-13. PubMed DOI PMC

Xu F., Liu Z., Xie H., Zhu J., Zhang J., Kraus J., Blaschnig T., Nehls R., Wang H. Increased drought tolerance through the suppression of ESKMO1 gene and overexpression of CBF-Related genes in Arabidopsis. PLoS ONE. 2014;9:e106509. doi: 10.1371/journal.pone.0106509. PubMed DOI PMC

Janda T., Tajti J., Hamow K.Á., Marček T., Ivanovska B., Szalai G., Pál M., Zalewska E.D., Darkó É. Acclimation of photosynthetic processes and metabolic responses to elevated temperatures in cereals. Physiol. Plant. 2021;171:217–231. doi: 10.1111/ppl.13207. PubMed DOI

Majláth I., Szalai G., Soós V., Sebestyén E., Balázs E., Vanková R., Dobrev P.I., Tari I., Tandori J., Janda T. Effect of light on the gene expression and hormonal status of winter and spring wheat plants during cold hardening. Physiol. Plant. 2012;145:296–314. doi: 10.1111/j.1399-3054.2012.01579.x. PubMed DOI

Augustyniak A., Pawłowicz I., Lechowicz K., Izbiańska-Jankowska K., Arasimowicz-Jelonek M., Rapacz M., Perlikowski D., Kosmala A. Freezing tolerance of Lolium multiflorum/Festuca arundinacea introgression forms is associated with the high activity of antioxidant system and adjustment of photosynthetic activity under cold acclimation. Int. J. Mol. Sci. 2020;21:5899. doi: 10.3390/ijms21165899. PubMed DOI PMC

Mittler R., Vanderauwera S., Suzuki N., Miller G., Tognetti V.B., Vandepoele K., Gollery M., Shulaev V., Van Breusegem F. ROS signaling: The new wave? Trends Plant Sci. 2011;16:300–309. doi: 10.1016/j.tplants.2011.03.007. PubMed DOI

Molassiotis A., Fotopoulos V. Oxidative and nitrosative signaling in plants: Two branches in the same tree? Plant Signal. Behav. 2011;6:210–214. doi: 10.4161/psb.6.2.14878. PubMed DOI PMC

Borbély P., Molnár Á., Valyon E., Ördög A., Horváth-Boros K., Csupor D., Fehér A., Kolbert Z. The Effect of foliar Selenium (Se) treatment on growth; photosynthesis; and oxidative-nitrosative signalling of Stevia rebaudiana leaves. Antioxidants. 2021;10:72. doi: 10.3390/antiox10010072. PubMed DOI PMC

Kolbert Z., Szőllősi R., Feigl G., Kónya Z., Rónavári A. Nitric oxide signalling in plant nanobiology: Current status and perspectives. J. Exp. Bot. 2021;72:928–940. doi: 10.1093/jxb/eraa470. PubMed DOI

Lopes-Oliveira P.J., Oliveira H.C., Kolbert Z., Freschi L. The light and dark sides of nitric oxide: Multifaceted roles of nitric oxide in plant responses to light. J. Exp. Bot. 2021;72:885–903. doi: 10.1093/jxb/eraa504. PubMed DOI

Cheng C., Yun K.-Y., Ressom H.W., Mohanty B., Bajic V.B., Jia Y., Yun S.J., de los Reyes B.G. An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice. BMC Genom. 2007;8:175. doi: 10.1186/1471-2164-8-175. PubMed DOI PMC

Janda T., Szalai G., Leskó K., Yordanova R., Apostol S., Popova L.P. Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light. Phytochemistry. 2007;68:1674–1682. doi: 10.1016/j.phytochem.2007.04.012. PubMed DOI

Gallé Á., Czékus Z., Bela K., Horváth E., Ördög A., Csiszár J., Poór P. Plant Glutathione Transferases and light. Front. Plant Sci. 2019;9:1944. doi: 10.3389/fpls.2018.01944. PubMed DOI PMC

Poór P., Borbély P., Bódi N., Bagyánszki M., Tari I. Effects of salicylic acid on photosynthetic activity and chloroplast morphology under light and prolonged darkness. Photosynthetica. 2019;57:367–376. doi: 10.32615/ps.2019.040. DOI

Guidi L., Lo Piccolo E., Landi M. Chlorophyll fluorescence, photoinhibition and abiotic stress: Does it make any difference the fact to be a C3 or C4 Species? Front. Plant Sci. 2019;10:174. doi: 10.3389/fpls.2019.00174. PubMed DOI PMC

Szalai G., Pap M., Janda T. Light-induced frost tolerance differs in winter and spring wheat plants. J. Plant Physiol. 2009;166:1826–1831. doi: 10.1016/j.jplph.2009.04.016. PubMed DOI

Prerostova S., Černý M., Dobrev P.I., Motyka V., Hluskova L., Zupkova B., Gaudinova A., Knirsch V., Janda T., Brzobohatý B., et al. Light regulates the cytokinin-dependent cold stress responses in Arabidopsis. Front. Plant Sci. 2021;11:608711. doi: 10.3389/fpls.2020.608711. PubMed DOI PMC

Szalai G., Majláth I., Pál M., Gondor O.K., Rudnóy S., Oláh C., Vanková R., Kalapos B., Janda T. Janus-faced nature of light in the cold acclimation processes of maize. Front. Plant Sci. 2018;9:850. doi: 10.3389/fpls.2018.00850. PubMed DOI PMC

Williams B.J., Pellett N.E., Klein R.M. Phytochrome control of growth cessation and initiation of cold acclimation in selected woody plants. Plant Physiol. 1972;50:262–265. doi: 10.1104/pp.50.2.262. PubMed DOI PMC

McKenzie J.S., Weiser C.J., Burke M.J. Effects of red and far red light on the initiation of cold acclimation in Cornus stolonifera Michx. Plant Physiol. 1974;53:783–789. doi: 10.1104/pp.53.6.783. PubMed DOI PMC

Ahres M., Pálmai T., Gierczik K., Dobrev P., Vanková R., Galiba G. The impact of far-red light supplementa-tion on hormonal responses to cold acclimation in barley. Biomolecules. 2021;11:450. doi: 10.3390/biom11030450. PubMed DOI PMC

Crosatti C., de Laureto P.P., Bassi R., Cattivelli L. The interaction between cold and light controls the expression of the cold-regulated barley gene cor14b and the accumulation of the corresponding protein. Plant Physiol. 1999;119:671–680. doi: 10.1104/pp.119.2.671. PubMed DOI PMC

Crosatti C., Soncini C., Stanca A.M., Cattivelli L. The accumulation of a cold-regulated chloroplastic protein is light-dependent. Planta. 1995;196:458–463. doi: 10.1007/BF00203644. PubMed DOI

Franklin K.A., Whitelam G.C. Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Nat. Genet. 2007;39:1410–1413. doi: 10.1038/ng.2007.3. PubMed DOI

Fowler S.G., Cook D., Thomashow M.F. Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol. 2005;137:961–968. doi: 10.1104/pp.104.058354. PubMed DOI PMC

Maibam P., Nawkar G.M., Park J.H., Sahi V.P., Lee S.Y., Kang C.H. The influence of light quality, circadian rhythm, and photoperiod on the CBF-mediated freezing tolerance. Int. J. Mol. Sci. 2013;14:11527–11543. doi: 10.3390/ijms140611527. PubMed DOI PMC

Franklin K.A., Toledo-Ortiz G., Pyott D.E., Halliday K.J. Interaction of light and temperature signalling. J. Exp. Bot. 2014;65:2859–2871. doi: 10.1093/jxb/eru059. PubMed DOI

Li J., Hou P., Zheng X., Song M., Su L., Yang J. Arabidopsis Phytochrome D is involved in red light-induced negative gravitropism of hypocotyles. J. Integr. Agric. 2014;13:1634–1639. doi: 10.1016/S2095-3119(13)60607-3. DOI

Arico D., Legris M., Castro L., Garcia C.F., Laino A., Casal J.J., Mazzella M.A. Neighbour signals perceived by phytochrome B increase thermotolerance in Arabidopsis. Plant Cell Environ. 2019;42:2554–2566. doi: 10.1111/pce.13575. PubMed DOI

Ahres M., Gierczik K., Boldizsár Á., Vítámvás P., Galiba G. Temperature and light-quality-dependent regulation of freezing tolerance in barley. Plants. 2020;9:83. doi: 10.3390/plants9010083. PubMed DOI PMC

Catalá R., Medina J., Salinas J. Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2011;108:16475–16480. doi: 10.1073/pnas.1107161108. PubMed DOI PMC

Osterlund M.T., Hardtke C.S., Wei N., Deng X.W. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature. 2000;405:462–466. doi: 10.1038/35013076. PubMed DOI

Huang W., Perez-Garcia P., Pokhilko A., Millar A.J., Antoshechkin I., Riechmann J.L., Mas P. Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science. 2012;336:75–79. doi: 10.1126/science.1219075. PubMed DOI

Kovács H., Aleksza D., Baba A.I., Hajdu A., Király A.M., Zsigmond L., Tóth S.Z., Kozma-Bognár L., Szabados L. Light control of salt-induced proline accumulation is mediated by Elongated Hypocotyl 5 in Arabidopsis. Front. Plant Sci. 2019;10:1584. doi: 10.3389/fpls.2019.01584. PubMed DOI PMC

Lau O.S., Deng X.W. Plant hormone signaling lightens up: Integrators of light and hormones. Curr. Opin. Plant Biol. 2010;13:571–577. doi: 10.1016/j.pbi.2010.07.001. PubMed DOI

Wang F., Zhang L., Chen X., Wu X., Xiang X., Zhou J., Xia X., Shi K., Yu J., Foyer C.H., et al. SlHY5 inte-grates temperature; light; and hormone signaling to balance plant growth and cold tolerance. Plant Physiol. 2019;179:749–760. doi: 10.1104/pp.18.01140. PubMed DOI PMC

Prerostova S., Dobrev P.I., Knirsch V., Jarosova J., Gaudinova A., Zupkova B., Prášil I.T., Janda T., Brzobohatý B., Skalák J., et al. Light quality and intensity modulate cold acclimation in Arabidopsis. Int. J. Mol. Sci. 2021;22:2736. doi: 10.3390/ijms22052736. PubMed DOI PMC

Lancaster L.T., Humphreys A.M. Global variation in the thermal tolerances of plants. Proc. Natl. Acad. Sci. USA. 2020;117:13580–13587. doi: 10.1073/pnas.1918162117. PubMed DOI PMC

Lu Y., Li R., Wang R., Wang X., Zheng W., Sun Q., Tong S., Dai S., Xu S. Comparative proteomic analysis of flag leaves reveals new insight into wheat heat adaptation. Front. Plant Sci. 2017;8:1085. doi: 10.3389/fpls.2017.01086. PubMed DOI PMC

Végh B., Marček T., Karsai I., Janda T., Darkó É. Heat acclimation of photosynthesis in wheat genotypes of different origin. S. Afr. J. Bot. 2018;117:184–192. doi: 10.1016/j.sajb.2018.05.020. DOI

Bäurle I. Plant heat adaptation: Priming in response to heat stress. F1000Research. 2016;5:694. doi: 10.12688/f1000research.7526.1. PubMed DOI PMC

Xu S., Li J., Zhang X., Wei H., Cui L. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ. Exp. Bot. 2006;56:274–285. doi: 10.1016/j.envexpbot.2005.03.002. DOI

Zhao X.X., Huang L.K., Zhang X.Q., Li Z., Peng Y. Effects of heat acclimation on photosynthesis, antioxidant enzyme activities, and gene expression in orchardgrass under heat stress. Molecules. 2014;19:13564–13576. doi: 10.3390/molecules190913564. PubMed DOI PMC

Pál M., Szalai G., Janda T. Speculation: Polyamines are important in abiotic stress signaling. Plant Sci. 2015;237:16–23. doi: 10.1016/j.plantsci.2015.05.003. PubMed DOI

Janda T., Khalil R., Tajti J., Pál M., Darkó É. Responses of young wheat plants to moderate heat stress. Acta Physiol. Plant. 2019;41:1–8. doi: 10.1007/s11738-019-2930-x. DOI

Macková H., Hronková M., Dobrá J., Turečková V., Novák O., Lubovská Z., Motyka V., Haisel D., Hájek T., Prášil I.T., et al. Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. J. Exp. Bot. 2013;64:2805–2815. doi: 10.1093/jxb/ert131. PubMed DOI PMC

Dobrá J., Černý M., Štorchová H., Dobrev P., Skalák J., Jedelský P.L., Lukšanová H., Gaudinová A., Pešek B., Malbeck J., et al. The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis. Plant Sci. 2015;231:52–61. doi: 10.1016/j.plantsci.2014.11.005. PubMed DOI

Salvucci M.E., Crafts-Brandner S.J. Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco Activase in plants from contrasting thermal environments. Plant Physiol. 2004;134:1460–1470. doi: 10.1104/pp.103.038323. PubMed DOI PMC

Darkó É., Khalil R., Elsayed N., Pál M., Hamow K.A., Szalai G., Tajti J., Nguyen Q.T., Nguyen N.T., Le V., et al. Factors playing role in heat acclimation processes in barley and oat plants. Photosynthetica. 2019;57:1035–1043. doi: 10.32615/ps.2019.122. DOI

Lorrain S., Allen T., Duek P.D., Whitelam G.C., Fankhauser C. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J. 2008;53:312–323. doi: 10.1111/j.1365-313X.2007.03341.x. PubMed DOI

Koini M.A., Alvey L., Allen T., Tilley C.A., Harberd N.P., Whitelam G.C., Franklin K.A. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr. Biol. 2009;19:408–413. doi: 10.1016/j.cub.2009.01.046. PubMed DOI

Proveniers M.C., van Zanten M. High temperature acclimation through PIF4 signaling. Trends Plant Sci. 2013;18:59–64. doi: 10.1016/j.tplants.2012.09.002. PubMed DOI

Stortenbeker N., Bemer M. The SAUR gene family: The plant’s toolbox for adaptation of growth and development. J. Exp. Bot. 2019;70:17–27. doi: 10.1093/jxb/ery332. PubMed DOI

Bielach A., Hrtyan M., Tognetti V.B. Plants under stress: Involvement of auxin and cytokinin. Int. J. Mol. Sci. 2017;18:1427. doi: 10.3390/ijms18071427. PubMed DOI PMC

Song X.G., She X.P., He J.M., Huang C., Song T.S. Cytokinin- and auxin-induced stomatal opening involves a decrease in levels of hydrogen peroxide in guard cells of Vicia faba. Funct. Plant Biol. 2006;33:573–583. doi: 10.1071/FP05232. PubMed DOI

Jung J.H., Domijan M., Klose C., Biswas S., Ezer D., Gao M., Khattak A.K., Box M.S., Charoensawan V., Cortijo S., et al. Phytochromes function as ther-mosensors in Arabidopsis. Science. 2016;354:886–889. doi: 10.1126/science.aaf6005. PubMed DOI

Casson S.A., Franklin K.A., Gray J.E., Grierson C.S., Whitelam G.C., Hetherington A.M. Phytochrome B and PIF4 regulate stomatal development in response to light quantity. Curr. Biol. 2009;19:229–234. doi: 10.1016/j.cub.2008.12.046. PubMed DOI

Veselova S.V., Farkhutdinov R.G., Veselov D.S., Kudoyarova G.R. Role of cytokinins in the regulation of stomatal conductance of wheat seedlings under conditions of rapidly changing local temperature. Russ. J. Plant Physiol. 2006;53:756–761. doi: 10.1134/S1021443706060057. DOI

Li N., Euring D., Cha J.Y., Lin Z., Lu M., Huang L.J., Kim W.Y. Plant hormone-mediated regulation of heat tolerance in response to global climate change. Front. Plant Sci. 2021;11:2318. doi: 10.3389/fpls.2020.627969. PubMed DOI PMC

Kudoyarova G., Veselova S., Hartung W., Farhutdinov R., Veselov D., Sharipova G. Involvement of root ABA and hydraulic conductivity in the control of water relations in wheat plants exposed to increased evaporative demand. Planta. 2011;233:87–94. doi: 10.1007/s00425-010-1286-7. PubMed DOI

Skalák J., Černý M., Jedelský P., Dobrá J., Ge E., Novák J., Hronková M., Dobrev P., Vanková R., Brzobohatý B. Stimulation of ipt overexpression as a tool to elucidate the role of cytokinins in high temperature responses of Arabidopsis thaliana. J. Exp. Bot. 2016;67:2861–2873. doi: 10.1093/jxb/erw129. PubMed DOI PMC

Kostaki K.I., Coupel-Ledru A., Bonnell V.C., Gustavsson M., Sun P., McLaughlin F.J., Fraser D.P., McLachlan D.H., Hetherington A.M., Dodd A.N., et al. Guard cells integrate light and temperature signals to control stomatal aperture. Plant Physiol. 2020;182:1404–1419. doi: 10.1104/pp.19.01528. PubMed DOI PMC

Kinoshita T., Doi M., Suetsugu N., Kagawa T., Wada M., Shimazaki K. phot1 and phot2 mediate blue light regulation of stomatal opening. Nature. 2001;414:656–660. doi: 10.1038/414656a. PubMed DOI

Takemiya A., Sugiyama N., Fujimoto H., Tsutsumi T., Yamauchi S., Hiyama A., Tada Y., Christie J.M., Shimazaki K. Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening. Nat. Commun. 2013;4:2094. doi: 10.1038/ncomms3094. PubMed DOI

Pedmale U.V., Huang S.C., Zander M., Cole B.J., Hetzel J., Ljung K., Reis P.A.B., Sridevi P., Nito K., Nery J.R., et al. Cryptochromes interact directly with PIFs to control plant growth in limiting blue light. Cell. 2016;164:233–245. doi: 10.1016/j.cell.2015.12.018. PubMed DOI PMC

Lozano-Juste J., León J. Nitric oxide regulates DELLA content and PIF expression to promote photomorpho-genesis in Arabidopsis. Plant Physiol. 2011;156:1410–1423. doi: 10.1104/pp.111.177741. PubMed DOI PMC

De Lucas M., Davière J.M., Rodríguez-Falcón M., Pontin M., Iglesias-Pedraz J.M., Lorrain S., Fankhauser C., Blázquez M.A., Titarenko E., Prat S. A molecular framework for light and gibberellin control of cell elongation. Nature. 2008;451:480–484. doi: 10.1038/nature06520. PubMed DOI

Hornitschek P., Lorrain S., Zoete V., Michielin O., Fankhauser C. Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers. EMBO J. 2009;28:3893–3902. doi: 10.1038/emboj.2009.306. PubMed DOI PMC

Suzuki N., Katano K. Coordination Between ROS Regulatory systems and other pathways under heat stress and pathogen attack. Front. Plant Sci. 2018;9:490. doi: 10.3389/fpls.2018.00490. PubMed DOI PMC

Lee S., Lee H.J., Jung J.H., Park C.M. The Arabidopsis thaliana RNA-binding protein FCA regulates thermotolerance by modulating the detoxification of reactive oxygen species. New Phytol. 2015;205:555–569. doi: 10.1111/nph.13079. PubMed DOI

Han S.H., Park Y.J., Park C.M. Light primes the thermally induced detoxification of reactive oxygen species during development of thermotolerance in Arabidopsis. Plant Cell Physiol. 2019;60:230–241. doi: 10.1093/pcp/pcy206. PubMed DOI

Liu Z., Zhang Y., Wang J., Li P., Zhao C., Chen Y., Bi Y. Phytochrome-interacting factors PIF4 and PIF5 neg-atively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings. Plant Sci. 2015;238:64–72. doi: 10.1016/j.plantsci.2015.06.001. PubMed DOI

Scharf K.D., Berberich T., Ebersberger I., Nover L. The plant heat stress transcription factor (Hsf) family: Structure, function and evolution. Biochim. Biophys. Acta (BBA) Bioenerg. 2012;1819:104–119. doi: 10.1016/j.bbagrm.2011.10.002. PubMed DOI

Karayekov E., Sellaro R., Legris M., Yanovsky M.J., Casal J.J. Heat shock-induced fluctuations in clock and light signaling enhance Phytochrome B–mediated Arabidopsis deetiolation. Plant Cell. 2013;25:2892–2906. doi: 10.1105/tpc.113.114306. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace