Crosstalk between Light- and Temperature-Mediated Processes under Cold and Heat Stress Conditions in Plants
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
K 131907
National Research, Development and Innovation Office
PubMed
34445308
PubMed Central
PMC8395339
DOI
10.3390/ijms22168602
PII: ijms22168602
Knihovny.cz E-zdroje
- Klíčová slova
- acclimation, climate change, cold, heat, light, photosynthesis, phytochromes, signalling, temperature,
- MeSH
- fotosyntéza * MeSH
- reakce na chladový šok * MeSH
- reakce na tepelný šok * MeSH
- rostliny metabolismus účinky záření MeSH
- signální transdukce MeSH
- sluneční záření MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Extreme temperatures are among the most important stressors limiting plant growth and development. Results indicate that light substantially influences the acclimation processes to both low and high temperatures, and it may affect the level of stress injury. The interaction between light and temperature in the regulation of stress acclimation mechanisms is complex, and both light intensity and spectral composition play an important role. Higher light intensities may lead to overexcitation of the photosynthetic electron transport chain; while different wavelengths may act through different photoreceptors. These may induce various stress signalling processes, leading to regulation of stomatal movement, antioxidant and osmoregulation capacities, hormonal actions, and other stress-related pathways. In recent years, we have significantly expanded our knowledge in both light and temperature sensing and signalling. The present review provides a synthesis of results for understanding how light influences the acclimation of plants to extreme low or high temperatures, including the sensing mechanisms and molecular crosstalk processes.
Zobrazit více v PubMed
Qin D., Wu H., Peng H., Yao Y., Ni Z., Li Z., Zhou C., Sun Q. Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array. BMC Genom. 2008;9:432. doi: 10.1186/1471-2164-9-432. PubMed DOI PMC
Wang X., Cai J., Jiang D., Liu F., Dai T., Cao W. Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. J. Plant Physiol. 2011;168:585–593. doi: 10.1016/j.jplph.2010.09.016. PubMed DOI
Janda T., Majláth I., Szalai G. Interaction of temperature and light in the development of freezing tolerance in plants. J. Plant Growth Regul. 2014;33:460–469. doi: 10.1007/s00344-013-9381-1. DOI
Majláth I., Darkó É., Palla B., Nagy Z., Janda T., Szalai G. Reduced light and moderate water deficiency sustain nitrogen assimilation and sucrose degradation at low temperature in durum wheat. J. Plant Physiol. 2016;191:149–158. doi: 10.1016/j.jplph.2015.12.004. PubMed DOI
Huner N.P.A., Oquist G., Sarhan F. Energy balance and acclimation to light and cold. Trends Plant Sci. 1998;3:224–230. doi: 10.1016/S1360-1385(98)01248-5. DOI
D’Amico-Damião V., Carvalho R.F. Cryptochrome-related abiotic stress responses in plants. Front. Plant Sci. 2018;9:9. doi: 10.3389/fpls.2018.01897. PubMed DOI PMC
Franklin K.A., Lee S.H., Patel D., Kumar S.V., Spartz A.K., Gu C., Ye S., Yu P., Breen G., Cohen J., et al. Phytochrome-Interacting Factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc. Natl. Acad. Sci. USA. 2011;108:20231–20235. doi: 10.1073/pnas.1110682108. PubMed DOI PMC
Kneissl J., Shinomura T., Furuya M., Bolle C. A Rice Phytochrome A in Arabidopsis: The Role of the N-terminus under red and far-red light. Mol. Plant. 2008;1:84–102. doi: 10.1093/mp/ssm010. PubMed DOI
Sakamoto T., Kimura S. Plant Temperature Sensors. Sensors. 2018;18:4365. doi: 10.3390/s18124365. PubMed DOI PMC
Park E., Kim Y., Choi G. Phytochrome B requires PIF degradation and sequestration to induce light respons-es across a wide range of light conditions. Plant Cell. 2018;30:1277–1292. doi: 10.1105/tpc.17.00913. PubMed DOI PMC
Toriba T., Tokunaga H., Shiga T., Nie F., Naramoto S., Honda E., Kyozuka J. BLADE-ON-PETIOLE genes temporally and developmentally regulate the sheath to blade ratio of rice leaves. Nat. Commun. 2019;10:619. doi: 10.1038/s41467-019-08479-5. PubMed DOI PMC
Genschik P., Sumara I., Lechner E. The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): Cellular functions and disease implications. EMBO J. 2013;32:2307–2320. doi: 10.1038/emboj.2013.173. PubMed DOI PMC
Zhang B., Holmlund M., Lorrain S., Norberg M., Bako L., Fankhauser C., Nilsson O. BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate Phytochrome Interacting Factor 4 abun-dance. eLife. 2017;6:e26759. doi: 10.7554/eLife.26759. PubMed DOI PMC
Mishra S., Khurana J.P. Emerging roles and new paradigms in signaling mechanisms of plant cryptochromes. Crit. Rev. Plant Sci. 2017;36:89–115. doi: 10.1080/07352689.2017.1348725. DOI
Christie J.M. Phototropin Blue-Light Receptors. Annu. Rev. Plant Biol. 2007;58:21–45. doi: 10.1146/annurev.arplant.58.032806.103951. PubMed DOI
Li F.W., Rothfels C.J., Melkonian M., Villarreal J.C., Stevenson D.W., Graham S.W., Wong G.K.-S., Mathews S., Pryer K.M. The origin and evolution of phototropins. Front. Plant Sci. 2015;6:637. doi: 10.3389/fpls.2015.00637. PubMed DOI PMC
Zoltowski B.D., Imaizumi T. Structure and Function of the ZTL/FKF1/LKP2 group proteins in Arabidopsis. Enzymes. 2014;35:213–239. doi: 10.1016/b978-0-12-801922-1.00009-9. PubMed DOI PMC
Yang Y., Yang X., Jang Z., Chen Z., Ruo X., Jin W., Wu Y., Shi X., Xu M. UV RESISTANCE LOCUS 8 from Chrysanthemum morifolium Ramat (CmUVR8) plays important roles in UV-B signal transduction and UV-B-induced accumulation of flavonoids. Front. Plant Sci. 2018;9:955. doi: 10.3389/fpls.2018.00955. PubMed DOI PMC
Kumar S.V., Wigge P.A. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell. 2010;140:136–147. doi: 10.1016/j.cell.2009.11.006. PubMed DOI
Cortijo S., Charoensawan V., Brestovitsky A., Buning R., Ravarani C., Rhodes D., van Noort J., Jaeger K.E., Wigge P.A. Transcriptional regulation of the ambient temperature response by H2A.Z nucleosomes and HSF1 transcription factors in Arabidopsis. Mol. Plant. 2017;10:1258–1273. doi: 10.1016/j.molp.2017.08.014. PubMed DOI PMC
Kumar S.V., Lucyshyn D., Jaeger K.E., Alós E., Alvey E., Harberd N.P., Wigge P.A. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature. 2012;484:242–245. doi: 10.1038/nature10928. PubMed DOI PMC
Legris M., Klose C., Burgie E.S., Rojas C.C.R., Neme M., Hiltbrunner A., Wigge P.A., Schafer E., Vierstra R.D., Casal J.J. Phytochrome B integrates light and temperature signals in Arabidopsis. Science. 2016;354:897–900. doi: 10.1126/science.aaf5656. PubMed DOI
Lamers J., van der Meer T., Testerink C. How Plants sense and respond to stressful environments. Plant Physiol. 2020;182:1624–1635. doi: 10.1104/pp.19.01464. PubMed DOI PMC
Foreman J., Johansson H., Hornitschek P., Josse E., Fankhauser C., Halliday K.J. Light receptor action is critical for maintaining plant biomass at warm ambient temperatures. Plant J. 2011;65:441–452. doi: 10.1111/j.1365-313X.2010.04434.x. PubMed DOI
Legris M., Nieto C., Sellaro R., Prat S., Casal J.J. Perception and signalling of light and temperature cues in plants. Plant J. 2017;90:683–697. doi: 10.1111/tpj.13467. PubMed DOI
Qiu Y., Li M., Kim R.J.A., Moore C.M., Chen M. Daytime temperature is sensed by phytochrome B in Arabidopsis through a transcriptional activator HEMERA. Nat. Commun. 2019;10:140. doi: 10.1038/s41467-018-08059-z. PubMed DOI PMC
Hahm J., Kim K., Qiu Y., Chen M. Increasing ambient temperature progressively disassembles Arabidopsis phytochrome B from individual photobodies with distinct thermostabilities. Nat. Commun. 2020;11:1660. doi: 10.1038/s41467-020-15526-z. PubMed DOI PMC
Chen M., Chory J. Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol. 2011;21:664–671. doi: 10.1016/j.tcb.2011.07.002. PubMed DOI PMC
Fujii Y., Tanaka H., Konno N., Ogasawara Y., Hamashima N., Tamura S., Hasegawa S., Hayasaki Y., Okajima K., Kodama Y. Phototropin perceives temperature based on the lifetime of its photoactivated state. Proc. Natl. Acad. Sci. USA. 2017;114:9206–9211. doi: 10.1073/pnas.1704462114. PubMed DOI PMC
Kumar A., Sharma S., Chunduri V., Kaur A., Kaur S., Malhotra N., Kumar A., Kapoor P., Kumari A., Kaur J., et al. Genome-wide identification and characterization of Heat Shock Protein Family reveals role in development and stress conditions in Triticum aestivum L. Sci. Rep. 2020;10:7858. doi: 10.1038/s41598-020-64746-2. PubMed DOI PMC
Ma D., Li X., Guo Y., Chu J., Fang S., Yan C., Noel J.P., Liu H. Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. Proc. Natl. Acad. Sci. USA. 2016;113:224–229. doi: 10.1073/pnas.1511437113. PubMed DOI PMC
Bellstaedt J., Trenner J., Lippmann R., Poeschl Y., Zhang X., Friml J., Quint M., Delker C. A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls. Plant Physiol. 2019;180:757–766. doi: 10.1104/pp.18.01377. PubMed DOI PMC
Plieth C., Hansen U.-P., Knight H., Knight M.R. Temperature sensing by plants: The primary characteristics of signal perception and calcium response. Plant J. 1999;18:491–497. doi: 10.1046/j.1365-313X.1999.00471.x. PubMed DOI
Jacott C.N., Boden S.A. Feeling the heat: Developmental and molecular responses of wheat and barley to high ambient temperatures. J. Exp. Bot. 2020;71:5740–5751. doi: 10.1093/jxb/eraa326. PubMed DOI PMC
Szalai G., Janda T., Páldi E., Dubacq J.-P. Changes in the fatty acid unsaturation after hardening in wheat chromosome substitution lines with different cold tolerance. J. Plant Physiol. 2001;158:663–666. doi: 10.1078/0176-1617-00145. DOI
Ding Y., Shi Y., Yang S. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol. 2019;222:1690–1704. doi: 10.1111/nph.15696. PubMed DOI
Zuther E., Schaarschmidt S., Fischer A., Erban A., Pagter M., Mubeen U., Giavalisco P., Kopka J., Sprenger H., Hincha D.K. Molecular signatures associated with increased freezing tolerance due to low temperature memory in Arabidopsis. Plant Cell Environ. 2019;42:854–873. PubMed
Gray G.R., Chauvin L.P., Sarhan F., Huner N.P.A. Cold acclimation and freezing tolerance: A complex interaction of light and temperature. Plant Physiol. 1997;114:467–474. doi: 10.1104/pp.114.2.467. PubMed DOI PMC
Apostol S., Szalai G., Sujbert L., Popova L.P., Janda T. Non-invasive monitoring of the light-induced cyclic photosynthetic electron flow during cold hardening in wheat leaves. Z. Nat. C. 2006;61:734–740. doi: 10.1515/znc-2006-9-1021. PubMed DOI
Dal Bosco C., Busconi M., Govoni C., Baldi P., Stanca A.M., Crosatti C., Bassi R., Cattivelli L. Cor gene expression in barley mutants affected in chloroplast development and photosynthetic electron transport. Plant Physiol. 2003;131:793–802. doi: 10.1104/pp.014530. PubMed DOI PMC
Svensson J.T., Crosatti C., Campoli C., Bassi R., Stanca A.M., Close T.J., Cattivelli L. Transcriptome analysis of cold acclimation in barley albina and xantha mutants. Plant Physiol. 2006;141:257–270. doi: 10.1104/pp.105.072645. PubMed DOI PMC
Kim H.J., Kim Y.K., Park J.Y., Kim J. Light signalling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. Plant J. 2002;29:693–704. doi: 10.1046/j.1365-313X.2002.01249.x. PubMed DOI
Novák A., Boldizsár Á., Ádám É., Kozma-Bognár L., Majláth I., Båga M., Tóth B., Chibbar R., Galiba G. Light-quality and temperature-dependent CBF14 gene expression modulates freezing tolerance in cereals. J. Exp. Bot. 2016;67:1285–1295. doi: 10.1093/jxb/erv526. PubMed DOI
Soitamo A.J., Piippo M., Allahverdiyeva Y., Battchikova N., Aro E.M. Light has a specific role in modulating Arabidopsis gene expression at low temperature. BMC Plant Biol. 2008;8:13–20. doi: 10.1186/1471-2229-8-13. PubMed DOI PMC
Xu F., Liu Z., Xie H., Zhu J., Zhang J., Kraus J., Blaschnig T., Nehls R., Wang H. Increased drought tolerance through the suppression of ESKMO1 gene and overexpression of CBF-Related genes in Arabidopsis. PLoS ONE. 2014;9:e106509. doi: 10.1371/journal.pone.0106509. PubMed DOI PMC
Janda T., Tajti J., Hamow K.Á., Marček T., Ivanovska B., Szalai G., Pál M., Zalewska E.D., Darkó É. Acclimation of photosynthetic processes and metabolic responses to elevated temperatures in cereals. Physiol. Plant. 2021;171:217–231. doi: 10.1111/ppl.13207. PubMed DOI
Majláth I., Szalai G., Soós V., Sebestyén E., Balázs E., Vanková R., Dobrev P.I., Tari I., Tandori J., Janda T. Effect of light on the gene expression and hormonal status of winter and spring wheat plants during cold hardening. Physiol. Plant. 2012;145:296–314. doi: 10.1111/j.1399-3054.2012.01579.x. PubMed DOI
Augustyniak A., Pawłowicz I., Lechowicz K., Izbiańska-Jankowska K., Arasimowicz-Jelonek M., Rapacz M., Perlikowski D., Kosmala A. Freezing tolerance of Lolium multiflorum/Festuca arundinacea introgression forms is associated with the high activity of antioxidant system and adjustment of photosynthetic activity under cold acclimation. Int. J. Mol. Sci. 2020;21:5899. doi: 10.3390/ijms21165899. PubMed DOI PMC
Mittler R., Vanderauwera S., Suzuki N., Miller G., Tognetti V.B., Vandepoele K., Gollery M., Shulaev V., Van Breusegem F. ROS signaling: The new wave? Trends Plant Sci. 2011;16:300–309. doi: 10.1016/j.tplants.2011.03.007. PubMed DOI
Molassiotis A., Fotopoulos V. Oxidative and nitrosative signaling in plants: Two branches in the same tree? Plant Signal. Behav. 2011;6:210–214. doi: 10.4161/psb.6.2.14878. PubMed DOI PMC
Borbély P., Molnár Á., Valyon E., Ördög A., Horváth-Boros K., Csupor D., Fehér A., Kolbert Z. The Effect of foliar Selenium (Se) treatment on growth; photosynthesis; and oxidative-nitrosative signalling of Stevia rebaudiana leaves. Antioxidants. 2021;10:72. doi: 10.3390/antiox10010072. PubMed DOI PMC
Kolbert Z., Szőllősi R., Feigl G., Kónya Z., Rónavári A. Nitric oxide signalling in plant nanobiology: Current status and perspectives. J. Exp. Bot. 2021;72:928–940. doi: 10.1093/jxb/eraa470. PubMed DOI
Lopes-Oliveira P.J., Oliveira H.C., Kolbert Z., Freschi L. The light and dark sides of nitric oxide: Multifaceted roles of nitric oxide in plant responses to light. J. Exp. Bot. 2021;72:885–903. doi: 10.1093/jxb/eraa504. PubMed DOI
Cheng C., Yun K.-Y., Ressom H.W., Mohanty B., Bajic V.B., Jia Y., Yun S.J., de los Reyes B.G. An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice. BMC Genom. 2007;8:175. doi: 10.1186/1471-2164-8-175. PubMed DOI PMC
Janda T., Szalai G., Leskó K., Yordanova R., Apostol S., Popova L.P. Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light. Phytochemistry. 2007;68:1674–1682. doi: 10.1016/j.phytochem.2007.04.012. PubMed DOI
Gallé Á., Czékus Z., Bela K., Horváth E., Ördög A., Csiszár J., Poór P. Plant Glutathione Transferases and light. Front. Plant Sci. 2019;9:1944. doi: 10.3389/fpls.2018.01944. PubMed DOI PMC
Poór P., Borbély P., Bódi N., Bagyánszki M., Tari I. Effects of salicylic acid on photosynthetic activity and chloroplast morphology under light and prolonged darkness. Photosynthetica. 2019;57:367–376. doi: 10.32615/ps.2019.040. DOI
Guidi L., Lo Piccolo E., Landi M. Chlorophyll fluorescence, photoinhibition and abiotic stress: Does it make any difference the fact to be a C3 or C4 Species? Front. Plant Sci. 2019;10:174. doi: 10.3389/fpls.2019.00174. PubMed DOI PMC
Szalai G., Pap M., Janda T. Light-induced frost tolerance differs in winter and spring wheat plants. J. Plant Physiol. 2009;166:1826–1831. doi: 10.1016/j.jplph.2009.04.016. PubMed DOI
Prerostova S., Černý M., Dobrev P.I., Motyka V., Hluskova L., Zupkova B., Gaudinova A., Knirsch V., Janda T., Brzobohatý B., et al. Light regulates the cytokinin-dependent cold stress responses in Arabidopsis. Front. Plant Sci. 2021;11:608711. doi: 10.3389/fpls.2020.608711. PubMed DOI PMC
Szalai G., Majláth I., Pál M., Gondor O.K., Rudnóy S., Oláh C., Vanková R., Kalapos B., Janda T. Janus-faced nature of light in the cold acclimation processes of maize. Front. Plant Sci. 2018;9:850. doi: 10.3389/fpls.2018.00850. PubMed DOI PMC
Williams B.J., Pellett N.E., Klein R.M. Phytochrome control of growth cessation and initiation of cold acclimation in selected woody plants. Plant Physiol. 1972;50:262–265. doi: 10.1104/pp.50.2.262. PubMed DOI PMC
McKenzie J.S., Weiser C.J., Burke M.J. Effects of red and far red light on the initiation of cold acclimation in Cornus stolonifera Michx. Plant Physiol. 1974;53:783–789. doi: 10.1104/pp.53.6.783. PubMed DOI PMC
Ahres M., Pálmai T., Gierczik K., Dobrev P., Vanková R., Galiba G. The impact of far-red light supplementa-tion on hormonal responses to cold acclimation in barley. Biomolecules. 2021;11:450. doi: 10.3390/biom11030450. PubMed DOI PMC
Crosatti C., de Laureto P.P., Bassi R., Cattivelli L. The interaction between cold and light controls the expression of the cold-regulated barley gene cor14b and the accumulation of the corresponding protein. Plant Physiol. 1999;119:671–680. doi: 10.1104/pp.119.2.671. PubMed DOI PMC
Crosatti C., Soncini C., Stanca A.M., Cattivelli L. The accumulation of a cold-regulated chloroplastic protein is light-dependent. Planta. 1995;196:458–463. doi: 10.1007/BF00203644. PubMed DOI
Franklin K.A., Whitelam G.C. Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Nat. Genet. 2007;39:1410–1413. doi: 10.1038/ng.2007.3. PubMed DOI
Fowler S.G., Cook D., Thomashow M.F. Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol. 2005;137:961–968. doi: 10.1104/pp.104.058354. PubMed DOI PMC
Maibam P., Nawkar G.M., Park J.H., Sahi V.P., Lee S.Y., Kang C.H. The influence of light quality, circadian rhythm, and photoperiod on the CBF-mediated freezing tolerance. Int. J. Mol. Sci. 2013;14:11527–11543. doi: 10.3390/ijms140611527. PubMed DOI PMC
Franklin K.A., Toledo-Ortiz G., Pyott D.E., Halliday K.J. Interaction of light and temperature signalling. J. Exp. Bot. 2014;65:2859–2871. doi: 10.1093/jxb/eru059. PubMed DOI
Li J., Hou P., Zheng X., Song M., Su L., Yang J. Arabidopsis Phytochrome D is involved in red light-induced negative gravitropism of hypocotyles. J. Integr. Agric. 2014;13:1634–1639. doi: 10.1016/S2095-3119(13)60607-3. DOI
Arico D., Legris M., Castro L., Garcia C.F., Laino A., Casal J.J., Mazzella M.A. Neighbour signals perceived by phytochrome B increase thermotolerance in Arabidopsis. Plant Cell Environ. 2019;42:2554–2566. doi: 10.1111/pce.13575. PubMed DOI
Ahres M., Gierczik K., Boldizsár Á., Vítámvás P., Galiba G. Temperature and light-quality-dependent regulation of freezing tolerance in barley. Plants. 2020;9:83. doi: 10.3390/plants9010083. PubMed DOI PMC
Catalá R., Medina J., Salinas J. Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2011;108:16475–16480. doi: 10.1073/pnas.1107161108. PubMed DOI PMC
Osterlund M.T., Hardtke C.S., Wei N., Deng X.W. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature. 2000;405:462–466. doi: 10.1038/35013076. PubMed DOI
Huang W., Perez-Garcia P., Pokhilko A., Millar A.J., Antoshechkin I., Riechmann J.L., Mas P. Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science. 2012;336:75–79. doi: 10.1126/science.1219075. PubMed DOI
Kovács H., Aleksza D., Baba A.I., Hajdu A., Király A.M., Zsigmond L., Tóth S.Z., Kozma-Bognár L., Szabados L. Light control of salt-induced proline accumulation is mediated by Elongated Hypocotyl 5 in Arabidopsis. Front. Plant Sci. 2019;10:1584. doi: 10.3389/fpls.2019.01584. PubMed DOI PMC
Lau O.S., Deng X.W. Plant hormone signaling lightens up: Integrators of light and hormones. Curr. Opin. Plant Biol. 2010;13:571–577. doi: 10.1016/j.pbi.2010.07.001. PubMed DOI
Wang F., Zhang L., Chen X., Wu X., Xiang X., Zhou J., Xia X., Shi K., Yu J., Foyer C.H., et al. SlHY5 inte-grates temperature; light; and hormone signaling to balance plant growth and cold tolerance. Plant Physiol. 2019;179:749–760. doi: 10.1104/pp.18.01140. PubMed DOI PMC
Prerostova S., Dobrev P.I., Knirsch V., Jarosova J., Gaudinova A., Zupkova B., Prášil I.T., Janda T., Brzobohatý B., Skalák J., et al. Light quality and intensity modulate cold acclimation in Arabidopsis. Int. J. Mol. Sci. 2021;22:2736. doi: 10.3390/ijms22052736. PubMed DOI PMC
Lancaster L.T., Humphreys A.M. Global variation in the thermal tolerances of plants. Proc. Natl. Acad. Sci. USA. 2020;117:13580–13587. doi: 10.1073/pnas.1918162117. PubMed DOI PMC
Lu Y., Li R., Wang R., Wang X., Zheng W., Sun Q., Tong S., Dai S., Xu S. Comparative proteomic analysis of flag leaves reveals new insight into wheat heat adaptation. Front. Plant Sci. 2017;8:1085. doi: 10.3389/fpls.2017.01086. PubMed DOI PMC
Végh B., Marček T., Karsai I., Janda T., Darkó É. Heat acclimation of photosynthesis in wheat genotypes of different origin. S. Afr. J. Bot. 2018;117:184–192. doi: 10.1016/j.sajb.2018.05.020. DOI
Bäurle I. Plant heat adaptation: Priming in response to heat stress. F1000Research. 2016;5:694. doi: 10.12688/f1000research.7526.1. PubMed DOI PMC
Xu S., Li J., Zhang X., Wei H., Cui L. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ. Exp. Bot. 2006;56:274–285. doi: 10.1016/j.envexpbot.2005.03.002. DOI
Zhao X.X., Huang L.K., Zhang X.Q., Li Z., Peng Y. Effects of heat acclimation on photosynthesis, antioxidant enzyme activities, and gene expression in orchardgrass under heat stress. Molecules. 2014;19:13564–13576. doi: 10.3390/molecules190913564. PubMed DOI PMC
Pál M., Szalai G., Janda T. Speculation: Polyamines are important in abiotic stress signaling. Plant Sci. 2015;237:16–23. doi: 10.1016/j.plantsci.2015.05.003. PubMed DOI
Janda T., Khalil R., Tajti J., Pál M., Darkó É. Responses of young wheat plants to moderate heat stress. Acta Physiol. Plant. 2019;41:1–8. doi: 10.1007/s11738-019-2930-x. DOI
Macková H., Hronková M., Dobrá J., Turečková V., Novák O., Lubovská Z., Motyka V., Haisel D., Hájek T., Prášil I.T., et al. Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. J. Exp. Bot. 2013;64:2805–2815. doi: 10.1093/jxb/ert131. PubMed DOI PMC
Dobrá J., Černý M., Štorchová H., Dobrev P., Skalák J., Jedelský P.L., Lukšanová H., Gaudinová A., Pešek B., Malbeck J., et al. The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis. Plant Sci. 2015;231:52–61. doi: 10.1016/j.plantsci.2014.11.005. PubMed DOI
Salvucci M.E., Crafts-Brandner S.J. Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco Activase in plants from contrasting thermal environments. Plant Physiol. 2004;134:1460–1470. doi: 10.1104/pp.103.038323. PubMed DOI PMC
Darkó É., Khalil R., Elsayed N., Pál M., Hamow K.A., Szalai G., Tajti J., Nguyen Q.T., Nguyen N.T., Le V., et al. Factors playing role in heat acclimation processes in barley and oat plants. Photosynthetica. 2019;57:1035–1043. doi: 10.32615/ps.2019.122. DOI
Lorrain S., Allen T., Duek P.D., Whitelam G.C., Fankhauser C. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J. 2008;53:312–323. doi: 10.1111/j.1365-313X.2007.03341.x. PubMed DOI
Koini M.A., Alvey L., Allen T., Tilley C.A., Harberd N.P., Whitelam G.C., Franklin K.A. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr. Biol. 2009;19:408–413. doi: 10.1016/j.cub.2009.01.046. PubMed DOI
Proveniers M.C., van Zanten M. High temperature acclimation through PIF4 signaling. Trends Plant Sci. 2013;18:59–64. doi: 10.1016/j.tplants.2012.09.002. PubMed DOI
Stortenbeker N., Bemer M. The SAUR gene family: The plant’s toolbox for adaptation of growth and development. J. Exp. Bot. 2019;70:17–27. doi: 10.1093/jxb/ery332. PubMed DOI
Bielach A., Hrtyan M., Tognetti V.B. Plants under stress: Involvement of auxin and cytokinin. Int. J. Mol. Sci. 2017;18:1427. doi: 10.3390/ijms18071427. PubMed DOI PMC
Song X.G., She X.P., He J.M., Huang C., Song T.S. Cytokinin- and auxin-induced stomatal opening involves a decrease in levels of hydrogen peroxide in guard cells of Vicia faba. Funct. Plant Biol. 2006;33:573–583. doi: 10.1071/FP05232. PubMed DOI
Jung J.H., Domijan M., Klose C., Biswas S., Ezer D., Gao M., Khattak A.K., Box M.S., Charoensawan V., Cortijo S., et al. Phytochromes function as ther-mosensors in Arabidopsis. Science. 2016;354:886–889. doi: 10.1126/science.aaf6005. PubMed DOI
Casson S.A., Franklin K.A., Gray J.E., Grierson C.S., Whitelam G.C., Hetherington A.M. Phytochrome B and PIF4 regulate stomatal development in response to light quantity. Curr. Biol. 2009;19:229–234. doi: 10.1016/j.cub.2008.12.046. PubMed DOI
Veselova S.V., Farkhutdinov R.G., Veselov D.S., Kudoyarova G.R. Role of cytokinins in the regulation of stomatal conductance of wheat seedlings under conditions of rapidly changing local temperature. Russ. J. Plant Physiol. 2006;53:756–761. doi: 10.1134/S1021443706060057. DOI
Li N., Euring D., Cha J.Y., Lin Z., Lu M., Huang L.J., Kim W.Y. Plant hormone-mediated regulation of heat tolerance in response to global climate change. Front. Plant Sci. 2021;11:2318. doi: 10.3389/fpls.2020.627969. PubMed DOI PMC
Kudoyarova G., Veselova S., Hartung W., Farhutdinov R., Veselov D., Sharipova G. Involvement of root ABA and hydraulic conductivity in the control of water relations in wheat plants exposed to increased evaporative demand. Planta. 2011;233:87–94. doi: 10.1007/s00425-010-1286-7. PubMed DOI
Skalák J., Černý M., Jedelský P., Dobrá J., Ge E., Novák J., Hronková M., Dobrev P., Vanková R., Brzobohatý B. Stimulation of ipt overexpression as a tool to elucidate the role of cytokinins in high temperature responses of Arabidopsis thaliana. J. Exp. Bot. 2016;67:2861–2873. doi: 10.1093/jxb/erw129. PubMed DOI PMC
Kostaki K.I., Coupel-Ledru A., Bonnell V.C., Gustavsson M., Sun P., McLaughlin F.J., Fraser D.P., McLachlan D.H., Hetherington A.M., Dodd A.N., et al. Guard cells integrate light and temperature signals to control stomatal aperture. Plant Physiol. 2020;182:1404–1419. doi: 10.1104/pp.19.01528. PubMed DOI PMC
Kinoshita T., Doi M., Suetsugu N., Kagawa T., Wada M., Shimazaki K. phot1 and phot2 mediate blue light regulation of stomatal opening. Nature. 2001;414:656–660. doi: 10.1038/414656a. PubMed DOI
Takemiya A., Sugiyama N., Fujimoto H., Tsutsumi T., Yamauchi S., Hiyama A., Tada Y., Christie J.M., Shimazaki K. Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening. Nat. Commun. 2013;4:2094. doi: 10.1038/ncomms3094. PubMed DOI
Pedmale U.V., Huang S.C., Zander M., Cole B.J., Hetzel J., Ljung K., Reis P.A.B., Sridevi P., Nito K., Nery J.R., et al. Cryptochromes interact directly with PIFs to control plant growth in limiting blue light. Cell. 2016;164:233–245. doi: 10.1016/j.cell.2015.12.018. PubMed DOI PMC
Lozano-Juste J., León J. Nitric oxide regulates DELLA content and PIF expression to promote photomorpho-genesis in Arabidopsis. Plant Physiol. 2011;156:1410–1423. doi: 10.1104/pp.111.177741. PubMed DOI PMC
De Lucas M., Davière J.M., Rodríguez-Falcón M., Pontin M., Iglesias-Pedraz J.M., Lorrain S., Fankhauser C., Blázquez M.A., Titarenko E., Prat S. A molecular framework for light and gibberellin control of cell elongation. Nature. 2008;451:480–484. doi: 10.1038/nature06520. PubMed DOI
Hornitschek P., Lorrain S., Zoete V., Michielin O., Fankhauser C. Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers. EMBO J. 2009;28:3893–3902. doi: 10.1038/emboj.2009.306. PubMed DOI PMC
Suzuki N., Katano K. Coordination Between ROS Regulatory systems and other pathways under heat stress and pathogen attack. Front. Plant Sci. 2018;9:490. doi: 10.3389/fpls.2018.00490. PubMed DOI PMC
Lee S., Lee H.J., Jung J.H., Park C.M. The Arabidopsis thaliana RNA-binding protein FCA regulates thermotolerance by modulating the detoxification of reactive oxygen species. New Phytol. 2015;205:555–569. doi: 10.1111/nph.13079. PubMed DOI
Han S.H., Park Y.J., Park C.M. Light primes the thermally induced detoxification of reactive oxygen species during development of thermotolerance in Arabidopsis. Plant Cell Physiol. 2019;60:230–241. doi: 10.1093/pcp/pcy206. PubMed DOI
Liu Z., Zhang Y., Wang J., Li P., Zhao C., Chen Y., Bi Y. Phytochrome-interacting factors PIF4 and PIF5 neg-atively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings. Plant Sci. 2015;238:64–72. doi: 10.1016/j.plantsci.2015.06.001. PubMed DOI
Scharf K.D., Berberich T., Ebersberger I., Nover L. The plant heat stress transcription factor (Hsf) family: Structure, function and evolution. Biochim. Biophys. Acta (BBA) Bioenerg. 2012;1819:104–119. doi: 10.1016/j.bbagrm.2011.10.002. PubMed DOI
Karayekov E., Sellaro R., Legris M., Yanovsky M.J., Casal J.J. Heat shock-induced fluctuations in clock and light signaling enhance Phytochrome B–mediated Arabidopsis deetiolation. Plant Cell. 2013;25:2892–2906. doi: 10.1105/tpc.113.114306. PubMed DOI PMC