Stimulation of ipt overexpression as a tool to elucidate the role of cytokinins in high temperature responses of Arabidopsis thaliana
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27049021
PubMed Central
PMC4861028
DOI
10.1093/jxb/erw129
PII: erw129
Knihovny.cz E-zdroje
- Klíčová slova
- Abscisic acid, Arabidopsis thaliana, cytokinin, heat stress, isopentenyltransferase, proteome.,
- MeSH
- alkyltransferasy a aryltransferasy fyziologie MeSH
- Arabidopsis účinky léků metabolismus fyziologie MeSH
- cytokininy fyziologie MeSH
- dexamethason farmakologie MeSH
- kořeny rostlin metabolismus fyziologie MeSH
- kyselina abscisová fyziologie MeSH
- proteomika MeSH
- reakce na tepelný šok fyziologie MeSH
- regulace genové exprese u rostlin fyziologie MeSH
- regulátory růstu rostlin fyziologie MeSH
- signální transdukce účinky léků fyziologie MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- stanovení celkové genové exprese MeSH
- výhonky rostlin metabolismus fyziologie MeSH
- vysoká teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenylate isopentenyltransferase MeSH Prohlížeč
- alkyltransferasy a aryltransferasy MeSH
- cytokininy MeSH
- dexamethason MeSH
- kyselina abscisová MeSH
- regulátory růstu rostlin MeSH
Cytokinins (CKs) are phytohormones regulating plant growth and development as well as response to the environment. In order to evaluate their function in heat stress (HS) responses, the effect of CK elevation was determined during three types of HS - targeted to shoots, targeted to roots and applied to the whole plant. The early (30min) and longer term (3h) responses were followed at the hormonal, transcriptomic and proteomic levels in Arabidopsis transformants with dexamethasone-inducible expression of the CK biosynthetic gene isopentenyltransferase (ipt) and the corresponding wild-type (Col-0). Combination of hormonal and phenotypic analyses showed transient up-regulation of the CK/abscisic acid ratio, which controls stomatal aperture, to be more pronounced in the transformant. HS responses of the root proteome and Rubisco-immunodepleted leaf proteome were followed using 2-D gel electrophoresis and MALDI-TOF/TOF. More than 100 HS-responsive proteins were detected, most of them being modulated by CK increase. Proteome and transcriptome analyses demonstrated that CKs have longer term positive effects on the stress-related proteins and transcripts, as well as on the photosynthesis-related ones. Transient accumulation of CKs and stimulation of their signal transduction in tissue(s) not exposed to HS indicate that they are involved in plant stress responses.
Zobrazit více v PubMed
Ache P, Bauer H, Kollist H, Al-Rasheid KAS, Lautner S, Hartung W, Hedrich R. 2010. Stomatal action directly feeds back on leaf turgor: New insights into the regulation of the plant water status from non-invasive pressure probe measurements. The Plant Journal 62, 1072–1082. PubMed
Baldrianová J, Černý M, Novák J, Jedelský PL, Divíšková E, Brzobohatý B. 2015. Arabidopsis proteome responses to the smoke-derived growth regulator karrikin. Journal of Proteomics 120, 7–20. PubMed
Bevan M, Bancroft I, Bent E, et al. 1998. Analysis of 1.9Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana . Nature 391, 485–488. PubMed
Caers M, Rudelsheim P, Van Onckelen H. 1985. Effect of heat stress on photosynthetic activity and chloroplast infrastructure in correlation with endogenous cytokinin concentration in maize seedlings. Plant & Cell Physiology 26, 47–52.
Cao S, Jiang L, Song S, Jing R, Xu G. 2006. AtGRP7 is involved in the regulation of abscisic acid and stress responses in Arabidopsis. Cellular and Molecular Biology Letters 11, 526–535. PubMed PMC
Cheng J, Liu D, Li W, Ma L. 2014. New salt tolerance Arabidopsis thaliana plastidic phosphoglycerate kinase. Patent No . CN104120138-A.
Černý M, Dycka F, Bobál’ová J, Brzobohatý B. 2011. Early cytokinin response proteins and phosphoproteins of Arabidopsis thaliana identified by proteome and phosphoproteome profiling. Journal of Experimental Botany 62, 921–937. PubMed PMC
Černý M, Jedelský PL, Novák J, Schlosser A, Brzobohatý B. 2014. Cytokinin modulates proteomic, transcriptomic and growth responses to temperature shocks in Arabidopsis. Plant, Cell & Environment 37, 1641–1655. PubMed
Černý M, Kuklová A, Hoehenwarter W, et al. 2013. Proteome and metabolome profiling of cytokinin action in Arabidopsis identifying both distinct and similar responses to cytokinin down- and up-regulation. Journal of Experimental Botany 64, 4193–4206. PubMed PMC
Craft J, Šámalová M, Baroux C, Townley H, Martinez A, Jepson I, Tsiantis M, Moore I. 2005. New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis. The Plant Journal 41, 899–918. PubMed
Dobrá J, Černý M, Štorchová H, et al. 2015. The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis. Plant Science 231, 52–61. PubMed
Dobrev PI, Havlíček L, Vágner M, Malbeck J, Kamínek M. 2005. Purification and determination of plant hormones auxin and abscisic acid using solid phase extraction and two-dimensional high performance liquid chromatography. Journal of Chromatography A 1075, 159–166. PubMed
Dobrev PI, Kamínek M. 2002. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. Journal of Chromatography A 950, 21–29. PubMed
Dobrev PI, Vankova R. 2012. Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. Methods in Molecular Biology 913, 251–261. PubMed
Ferreira S, Hjernø K, Larsen M, Wingsle G, Larsen P, Fey S, Roepstorff P, Salomé Pais M. 2006. Proteome profiling of Populus euphratica Oliv. upon heat stress. Annals of Botany 98, 361–377. PubMed PMC
Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. 2012. Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends in Plant Science 17, 172–179. PubMed
Harding SA, Smigocki AC. 1994. Cytokinins modulate stress-response genes in isopentenyl transferase-transformed Nicotiana-plumbaginifolia plants. Physiologia Plantarum 90, 327–333.
Huang B, Xu C. 2008. Identification and characterization of proteins associated with plant tolerance to heat stress. Journal of Integrative Plant Biology 50, 1230–1237. PubMed
Islam MM, Tani C, Watanabe-Sugimoto M, Uraji M, Jahan MS, Masuda C, Nakamura Y, Mori IC, Murata Y. 2009. Myrosinases, TGG1 and TGG2, redundantly function in ABA and MeJA signaling in Arabidopsis guard cells. Plant & Cell Physiology 50, 1171–1175. PubMed
Jespersen D, Huang B. 2015. Proteins associated with heat-induced leaf senescence in creeping bentgrass as affected by foliar application of nitrogen, cytokinins, and an ethylene inhibitor. Proteomics 15, 798–812. PubMed
Kim JS, Jung HJ, Lee HJ, Kim KA, Goh CH, Woo Y, Oh SH, Han YS, Kang H. 2008. Glycine-rich RNA-binding protein7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana . The Plant Journal 55, 455–466. PubMed
Larkindale J, Vierling E. 2008. Core genome responses involved in acclimation to high temperature. Plant Physiology 146, 748–761. PubMed PMC
Lee DG, Ahsan N, Lee SH, Kyu YK, Jeong DB, Lee IJ, Lee BH. 2007. A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics 7, 3369–3383. PubMed
Lim CJ, Yang KA, Hong JK, Choi JS, Yun DJ, Hong JC, Chung WS, Lee SY, Cho MJ, Lim CO. 2006. Gene expression profiles during heat acclimation in Arabidopsis thaliana suspension-culture cells. Journal of Plant Research 119, 373–383. PubMed
Liu X, Huang B. 2002. Cytokinin effects on creeping bentgrass response to heat stress: II. Leaf senescence and antioxidant metabolism. Crop Science 42, 466–472.
Liu X, Huang B. 2005. Root physiological factors involved in cool-season grass response to high soil temperature. Environmental and Experimental Botany 53, 233–245.
Lochmanová G, Zdráhal Z, Konečná H, Koukalová S, Malbeck J, Soucek P, Válková M, Kiran NS, Brzobohatý B. 2008. Cytokinin-induced photomorphogenesis in dark-grown Arabidopsis: a proteomic analysis. Journal of Experimental Botany 59, 3705–3719. PubMed
Macková H, Hronková M, Dobrá J, et al. 2013. Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. Journal of Experimental Botany 64, 2805–2815. PubMed PMC
Mittler R, Finka A, Goloubinoff P. 2012. How do plants feel the heat? Trends in Biochemical Sciences 37, 118–125. PubMed
Narayanan S, Tamura PJ, Roth MR, Prasad PVV, Welti R. 2016. Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations. Plant, Cell & Environment , DOI: 10.1111/pce.12649. PubMed PMC
Novák J, Pavlů J, Novák O, Nožková-Hlaváčková V, Špundová M, Hlavinka J, Koukalová Š, Skalák J, Černý M, Brzobohatý B. 2013. High cytokinin levels induce a hypersensitive-like response in tobacco. Annals of Botany 112, 41–55. PubMed PMC
Rizhsky L, Liang H, Mittler R. 2002. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiology 130, 1143–1151. PubMed PMC
Rocco M, Arena S, Renzone G, Scippa GS, Lomaglio T, Verrillo F, Scaloni A, Marra M. 2013. Proteomic analysis of temperature stress-responsive proteins in Arabidopsis thaliana rosette leaves. Molecular bioSystems 9, 1257–1267. PubMed
Rose JKC, Bashir S, Giovannoni JJ, Jahn MM, Saravanan RS. 2004. Tackling the plant proteome: Practical approaches, hurdles and experimental tools. The Plant Journal 39, 715–733. PubMed
Šámalová M, Brzobohatý B, Moore I. 2005. pOp6/LhGR: A stringently regulated and highly responsive dexamethasone-inducible gene expression system for tobacco. The Plant Journal 41, 919–935. PubMed
Stirk WA, Novák O, Žižková E, Motyka V, Strnad M, van Staden J. 2012. Comparison of endogenous cytokinins and cytokinin oxidase/dehydrogenase activity in germinating and thermoinhibited Tagetes minuta achenes. Journal of Plant Physiology 169, 696–703. PubMed
Veerasamy M, He Y, Huang B. 2007. Leaf senescence and protein metabolism in creeping bentgrass exposed to heat stress and treated with cytokinins. Journal of the American Society of Horticultural Science 132, 467–472.
Wahid A, Gelani S, Ashraf M, Foolad MR. 2007. Heat tolerance in plants: An overview. Environmental and Experimental Botany 61, 199–223.
Wang K, Zhang X, Ervin E. 2012. Antioxidative responses in roots and shoots of creeping bentgrass under high temperature: Effects of nitrogen and cytokinin. Journal of Plant Physiology 169, 492–500. PubMed
Xu Y, Gianfagna T, Huang B. 2010. Proteomic changes associated with expression of a gene (ipt) controlling cytokinin synthesis for improving heat tolerance in a perennial grass species. Journal of Experimental Botany 61, 3273–3289. PubMed PMC
Xu Y, Huang B. 2009. Effects of foliar-applied ethylene inhibitor and synthetic cytokinin on creeping bentgrass to enhance heat tolerance. Crop Science 49, 1876–1884.
Xu Y, Tian J, Gianfagna T, Huang B. 2009. Effects of SAG12-ipt expression on cytokinin production, growth and senescence of creeping bentgrass (Agrostis stolonifera L.) under heat stress. Plant Growth Regulation 57, 281–291.
Žd’árská M, Zatloukalová P, Benítez M, et al. 2013. Proteome analysis in Arabidopsis reveals shoot- and root-specific targets of cytokinin action and differential regulation of hormonal homeostasis. Plant Physiology 161, 918–930. PubMed PMC
Abiotic Stress in Crop Production
Signal Integration in Plant Abiotic Stress Responses via Multistep Phosphorelay Signaling
Barley Root Proteome and Metabolome in Response to Cytokinin and Abiotic Stimuli
Light Regulates the Cytokinin-Dependent Cold Stress Responses in Arabidopsis
Cytokinin at the Crossroads of Abiotic Stress Signalling Pathways
Plants under Stress: Involvement of Auxin and Cytokinin