Cytokinins: Their Impact on Molecular and Growth Responses to Drought Stress and Recovery in Arabidopsis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29872444
PubMed Central
PMC5972670
DOI
10.3389/fpls.2018.00655
Knihovny.cz E-zdroje
- Klíčová slova
- abscisic acid, auxin, cytokinin, cytokinin oxidase/dehydrogenase, drought stress, isopentenyl transferase, phytohormone,
- Publikační typ
- časopisecké články MeSH
Our phenotyping and hormonal study has characterized the role of cytokinins (CK) in the drought and recovery responses of Arabidopsis thaliana. CK down-regulation was achieved by overexpression of the gene for CK deactivating enzyme cytokinin oxidase/dehydrogenase (CKX): constitutive (35S:CKX) or at the stress onset using a dexamethasone-inducible pOp/LhGR promoter (DEX:CKX). The 35S:CKX plants exhibited slow ontogenesis and higher expression levels of stress-associated genes, e.g., AtP5CS1, already at well-watered conditions. CK down-regulation resulted during drought in higher stress tolerance (indicated by relatively low up-regulation of the expression of drought stress marker gene AtRD29B) accompanied with lower leaf water loss. Nevertheless, these plants exhibited slow and delayed recovery after re-watering. CK levels were increased at the stress onset by stimulation of the expression of CK biosynthetic gene isopentenyl transferase (ipt) (DEX:IPT) or by application of exogenous CK meta-topolin. After water withdrawal, long-term CK elevation resulted in higher water loss in comparison with CKX transformants as well as with plants overexpressing ipt driven by senescence-inducible SAG12 promoter (SAG:IPT), which gradually enhanced CKs during the stress progression. In all cases, CK up-regulation resulted in fast and more vigorous recovery. All drought-stressed plants exhibited growth suppression associated with elevation of abscisic acid and decrease of auxins and active CKs (with the exception of SAG:IPT plants). Apart from the ipt overexpressers, also increase of jasmonic and salicylic acid was found.
Department of Experimental Plant Biology Faculty of Science Charles University Prague Czechia
IBG 2 Plant Sciences Institute for Bio and Geosciences Forschungszentrum Jülich Jülich Germany
Zobrazit více v PubMed
Apte A., Singh S. (2007). AlleleID: a pathogen detection and identification system in PCR Primer Design, Methods in Molecular Biology, Vol. 402, ed Yuryev A. (Totowa, NJ: Humana Press; ), 329–346. PubMed
Barboza-Barquero L., Nagel K. A., Jansen M., Klasen J. R., Kastenholz B., Braun S., et al. . (2015). Phenotype of Arabidopsis thaliana semi-dwarfs with deep roots and high growth rates under water-limiting conditions is independent of the GA5 loss-of-function alleles. Ann. Bot. 116, 321–331. 10.1093/aob/mcv099 PubMed DOI PMC
Cerný M., Kuklova A., Hoehenwarter W., Fragner L., Novak O., Rotkova G., et al. . (2013). Proteome and metabolome profiling of cytokinin action in Arabidopsis identifying both distinct and similar responses to cytokinin down- and up-regulation. J. Exp. Bot. 64, 4193–4206. 10.1093/jxb/ert227 PubMed DOI PMC
Craft J., Samalova M., Baroux C., Townley H., Martinez A., Jepson I., et al. . (2005). New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis. Plant J. 41, 899–918. 10.1111/j.1365-313X.2005.02342.x PubMed DOI
Daryanto S., Wang L. X., Jacinthe P. A. (2016). Global synthesis of drought effects on maize and wheat production. PLoS ONE 11:5. 10.1371/journal.pone. PubMed DOI PMC
de Ollas C., Dodd I. C. (2016). Physiological impacts of ABA-JA interactions under water-limitation. Plant Mol. Biol. 91, 641–650. 10.1007/s11103-016-0503-6 PubMed DOI PMC
Djilianov D. L., Dobrev P. I., Moyankova D. P., Vankova R., Georgieva D. T., Gajdosova S., et al. (2013). Dynamics of endogenous phytohormones during desiccation and recovery of the resurrection plant species Haberlea rhodopensis. J. Plant Growth Regul. 32, 564–574. 10.1007/s00344-013-9323-y DOI
Dobrev P. I., Kaminek M. (2002). Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A 950, 21–29. 10.1016/S0021-9673(02)00024-9 PubMed DOI
Dobrev P. I., Vankova R. (2012). Quantification of abscisic acid, cytokinin and auxin content in salt-stressed plant tissue, in Plant Salt Tolerance, Methods in Molecular Biology, Vol. 913, eds Shabala S., Cuin T. (Totowa, NJ: Humana Press; ), 251–261. PubMed
Estrada-Melo A. C., Ma C., Reid M. S., Jiang C. Z. (2015). Overexpression of an ABA biosynthesis gene using a stress-inducible promoter enhances drought resistance in petunia. Hortic. Res. 2:15013. 10.1038/hortres.2015. PubMed DOI PMC
Gan S. S., Amasino R. M. (1995). Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270, 1986–1988. 10.1126/science.270.5244.1986 PubMed DOI
Ha S., Vankova R., Yamaguchi-Shinozaki K., Shinozaki K., Tran L. S. P. (2012). Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci. 17, 172–179. 10.1016/j.tplants.2011.12.005 PubMed DOI
Hammer Ø., Harper D. A. T., Ryan P. D. (2001). PAST: Paleontological Statistics Software Package for education and data analysis. Palaeontol. Electron. 4, 1–9. Available online at: http://palaeo-electronica.org/2001_1/past/issue1_01.htm
Hellemans J., Mortier G., De Paepe A., Speleman F., Vandesompele J. (2007). qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 8:R19. 10.1186/gb-2007-8-2-r19 PubMed DOI PMC
Jansen M., Gilmer F., Biskup B., Nagel K. A., Rascher U., Fischbach A., et al. (2009). Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via growscreen fluoro allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Funct. Plant Biol. 36, 902–914. 10.1071/FP09095 PubMed DOI
Kudoyarova G. R., Vysotskaya L. B., Cherkozyanova A., Dodd I. C. (2007). Effect of partial rootzone drying on the concentration of zeatin-type cytokinins in tomato (Solanum lycopersicum L.) xylem sap and leaves. J. Exp. Bot. 58, 161–168. 10.1093/jxb/erl116 PubMed DOI
Kuppu S., Mishra N., Hu R. B., Sun L., Zhu X. L., Shen G. X., et al. . (2013). Water-deficit inducible expression of a cytokinin biosynthetic gene IPT improves drought tolerance cotton. PLoS ONE 8:e64190. 10.1371/journal.pone.0064190 PubMed DOI PMC
Lamesch P., Berardini T. Z., Li D., Swarbreck D., Wilks C., Sasidharan R., et al. . (2012). The Arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 40:D1202–D1210. 10.1093/nar/gkr1090 PubMed DOI PMC
Laureys F., Dewitte W., Witters E., Van Montagu M., Inze D., Van Onckelen H. (1998). Zeatin is indispensable for the G(2)-M transition in tobacco BY-2 cells. FEBS Lett. 426, 29–32. 10.1016/S0014-5793(98)00297-X PubMed DOI
Liu L., Li H. X., Zeng H. L., Cai Q. S., Zhou X., Yin C. X. (2016). Exogenous jasmonic acid and cytokinin antagonistically regulate rice flag leaf senescence by mediating chlorophyll degradation, membrane deterioration, and senescence-associated genes expression. J. Plant Growth Regul. 35, 366–376. 10.1007/s00344-015-9539-0 DOI
Lubovská Z., Dobra J., Storchova H., Wilhelmova N., Vankova R. (2014). Cytokinin oxidase/dehydrogenase overexpression modifies antioxidant defense against heat, drought and their combination in Nicotiana tabacum plants. J. Plant Physiol. 171, 1625–1633. 10.1016/j.jplph.2014.06.021 PubMed DOI
Macková H., Hronkova M., Dobra J., Tureckova V., Novak O., Lubovska Z., et al. . (2013). Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. J. Exp. Bot. 64, 2805–2815. 10.1093/jxb/ert131 PubMed DOI PMC
Mao X. G., Zhang H. Y., Tian S. J., Chang X. P., Jing R. L. (2010). TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. J. Exp. Bot. 61, 683–696. 10.1093/jxb/erp331 PubMed DOI PMC
Merewitz E. B., Du H. M., Yu W. J., Liu Y. M., Gianfagna T., Huang B. R. (2012). Elevated cytokinin content in ipt transgenic creeping bentgrass promotes drought tolerance through regulating metabolite accumulation. J. Exp. Bot. 63, 1315–1328. 10.1093/jxb/err372 PubMed DOI PMC
Miller C. O., Skoog F., Vonsaltza M. H., Strong F. M. (1955). Kinetin, a cell division factor from deoxyribonucleic acid. J. Am. Chem. Soc. 77, 1392–1392. 10.1021/ja01610a105 DOI
Miura K., Tada Y. (2014). Regulation of water, salinity, and cold stress responses by salicylic acid. Front. Plant Sci. 5:4. 10.3389/fpls.2014.00004 PubMed DOI PMC
Nishiyama R., Watanabe Y., Fujita Y., Le D. T., Kojima M., Werner T., et al. (2011). Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and ABA responses, and ABA biosynthesis. Plant Cell 23, 2169–2183. 10.1105/tpc.111.087395 PubMed DOI PMC
Pospíšilová H., Jiskrova E., Vojta P., Mrizova K., Kokas F., Majeska M., et al. . (2016). Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress. New Biotech. 33, 692–705. 10.1016/j.nbt.2015.12.005 PubMed DOI
Qin H., Gu Q., Zhang J. L., Sun L., Kuppu S., Zhang Y. Z., et al. . (2011). Regulated expression of an isopentenyltransferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions. Plant Cell Physiol. 52, 1904–1914. 10.1093/pcp/pcr,125 PubMed DOI
R Development Core Team (2011). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Reusche M., Klaskova J., Thole K., Truskina J., Novak O., Janz D., et al. . (2013). Stabilization of cytokinin levels enhances Arabidopsis resistance against Verticillium longisporum. Mol. Plant-Microbe Interact. 26, 850–860. 10.1094/MPMI-12-12-0287-R PubMed DOI
Rivero R. M., Gimeno J., Van Deynze A., Walia H., Blumwald E. (2010). Enhanced cytokinin synthesis in tobacco plants expressing P-SARK::IPT prevents the degradation of photosynthetic protein complexes during drought. Plant Cell Physiol. 51, 1929–1941. 10.1093/pcp/pcq143 PubMed DOI
Rivero R. M., Kojima M., Gepstein A., Sakakibara H., Mittler R., Gepstein S., et al. . (2007). Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc. Natl. Acad. Sci. U.S.A. 104, 19631–19636. 10.1073/pnas.0709453104 PubMed DOI PMC
Rivero R. M., Shulaev V., Blumwald E. (2009). Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiol. 150, 1530–1540. 10.1104/pp.109.139378 PubMed DOI PMC
Roussel J., Geiger F., Fischbach A., Jahnke S., Scharr H. (2016). 3D surface reconstruction of plant seeds by volume carving: performance and accuracies. Front. Plant Sci. 7:745. 10.3389/fpls.2016. PubMed DOI PMC
Rowe J. H., Topping J. F., Liu J. L., Lindsey K. (2016). Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. New Phytol. 211, 225–239. 10.1111/nph.13882 PubMed DOI PMC
Rulcova J., Pospisilova J. (2001). Effect of benzylaminopurine on rehydration of bean plants after water stress. Biol. Plant. 44, 75–81. 10.1023/A:1017922421606 DOI
Sharp R. E., LeNoble M. E. (2002). ABA, ethylene and the control of shoot and root growth under water stress. J. Exp. Bot. 53, 33–37. 10.1093/jexbot/53.366.33 PubMed DOI
Shi H., Chen L., Ye T., Liu X., Ding K., Chan Z. (2014). Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiol. Biochem. 82, 209–217. 10.1016/j.plaphy.2014.06.008 PubMed DOI
Skalák J., Cern,ý M., Jedelsk,ý P., Dobr,á J., Ge E., Novák J., et al. (2016). Stimulation of ipt-overexpression as a tool for elucidation of cytokinin role in temperature responses of Arabidopsis thaliana. J. Exp. Bot. 67, 2861–2873. 10.1093/jxb/erw129 PubMed DOI PMC
Synková H., Van Loven K., Pospíšilová J., Valcke R. (1999). Photosynthesis of transgenic Pssu-ipt tobacco. J. Plant Physiol. 155, 173–182. 10.1016/S0176-1617(99)80004-2 DOI
Untergasser A., Nijveen H., Rao X., Bisseling T., Geurts R., Leunissen J. A. (2007). Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 35, W71–W74. 10.1093/nar/gkm306 PubMed DOI PMC
Vanková R., Dobra J., Storchova H. (2012). Recovery from drought stress in tobacco – an active process associated with the reversal of senescence in some parts and the sacrifice of others. Plant Signal. Behav. 7, 19–21. 10.4161/psb.7.1.18375 PubMed DOI PMC
Wani S. H., Kumar V., Shriram V., Sah S. K. (2016). Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 4, 162–176. 10.1016/j.cj.2016.01.010 DOI
Werbrouck S. P. O. (2010). Merits and drawbacks of new aromatic cytokinins in plant tissue culture. Acta Hortic. 865, 103–108. 10.17660/ActaHortic.2010.865.12 DOI
Werbrouck S. P. O., Strnad M., Van Onckelen H. A., Deberg P. C. (1996). Meta-topolin, an alternative to benzyladenine in tissue cultures?. Physiol. Plant. 98, 291–297. 10.1034/j.1399-3054.1996.980210.x DOI
Werner T., Motyka V., Strnad M., Schmulling T. (2001). Regulation of plant growth by cytokinin. Proc. Natl. Acad. Sci. U.S.A. 98, 10487–10492. 10.1073/pnas.171304098 PubMed DOI PMC
Werner T., Nehnevajova E., Kollmer I., Novak O., Strnad M., Kramer U., et al. . (2010). Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in arabidopsis and tobacco. Plant Cell 22, 3905–3920. 10.1105/tpc.109.072694 PubMed DOI PMC
Xu Y., Burgess P., Zhang X. Z., Huang B. R. (2016). Enhancing cytokinin synthesis by overexpressing ipt alleviated drought inhibition of root growth through activating ROS-scavenging systems in Agrostis stolonifera. J. Exp. Bot. 67, 1979–1992. 10.1093/jxb/erw019 PubMed DOI PMC
Zhang Z. J., Li F., Li D. J., Zhang H. W., Huang R. F. (2010). Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta 232, 765–774. 10.1007/s00425-010-1208-8 PubMed DOI
Zuker M., Mathews D. H., Turner D. H. (1999). Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide, in RNA Biochemistry and Biotechnology, NATO ASI Series, eds Barciszewski J., Clark B. F. C. (Dordrecht, NL: Kluwer Academic Publishers; ), 11–43.
Zwack P. J., Rashotte A. M. (2015). Interactions between cytokinin signaling and abiotic stress responses. J. Exp. Bot. 66, 4863–4871. 10.1093/jxb/erv172 PubMed DOI
Barley Root Proteome and Metabolome in Response to Cytokinin and Abiotic Stimuli
Cytokinin at the Crossroads of Abiotic Stress Signalling Pathways