Abscisic Acid and Cytokinins Are Not Involved in the Regulation of Stomatal Conductance of Scots Pine Saplings during Post-Drought Recovery

. 2023 Mar 13 ; 13 (3) : . [epub] 20230313

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36979458

Delayed or incomplete recovery of gas exchange after water stress relief limits assimilation in the post-drought period and can thus negatively affect the processes of post-drought recovery. Abscisic acid (ABA) accumulation and antagonistic action between ABA and cytokinins (CKs) play an important role in regulation of stomatal conductance under water deficit. Specifically, in pine species, sustained ABA accumulation is thought to be the main cause of delayed post-drought gas exchange recovery, although the role of CKs is not yet known. Therefore, we aimed to study the effects of ABA and CKs on recovery of stomatal conductance in greenhouse-grown 3-year-old Scots pine saplings recovering from water stress. We analysed both changes in endogenous ABA and CK contents and the effects of treatment with exogenous CK on stomatal conductance. Drought stress suppressed stomatal conductance, and post-drought stomatal conductance remained suppressed for 2 weeks after plant rewatering. ABA accumulated during water stress, but ABA levels decreased rapidly after rewatering. Additionally, trans-zeatin/ABA and isopentenyladenine/ABA ratios, which were decreased in water-stressed plants, recovered rapidly in rewatered plants. Spraying plants with 6-benzylaminopurine (0.1-100 µM) did not influence recovery of either stomatal conductance or needle water status. It can be concluded that the delayed recovery of stomatal conductance in Scots pine needles was not due to sustained ABA accumulation or a sustained decrease in the CK/ABA ratio, and CK supplementation was unable to overcome this delayed recovery.

Zobrazit více v PubMed

Vicente-Serrano S.M., Gouveia C., Camarero J.J., Beguería S., Trigo R., López-Moreno J.I., Azorín-Molina C., Pasho E., Lorenzo-Lacruz J., Revuelto J. Response of Vegetation to Drought Time-Scales across Global Land Biomes. Proc. Natl. Acad. Sci. USA. 2013;110:52–57. doi: 10.1073/pnas.1207068110. PubMed DOI PMC

Ruehr N.K., Grote R., Mayr S., Arneth A. Beyond the Extreme: Recovery of Carbon and Water Relations in Woody Plants Following Heat and Drought Stress. Tree Physiol. 2019;39:1285–1299. doi: 10.1093/treephys/tpz032. PubMed DOI PMC

Kannenberg S.A., Schwalm C.R., Anderegg W.R. Ghosts of the Past: How Drought Legacy Effects Shape Forest Functioning and Carbon Cycling. Ecol. Lett. 2020;23:891–901. doi: 10.1111/ele.13485. PubMed DOI

Anderegg W.R., Schwalm C., Biondi F., Camarero J.J., Koch G., Litvak M., Ogle K., Shaw J.D., Shevliakova E., Williams A.P. Pervasive Drought Legacies in Forest Ecosystems and Their Implications for Carbon Cycle Models. Science. 2015;349:528–532. doi: 10.1126/science.aab1833. PubMed DOI

Anderegg W.R., Trugman A.T., Badgley G., Konings A.G., Shaw J. Divergent Forest Sensitivity to Repeated Extreme Droughts. Nat. Clim. Chang. 2020;10:1091–1095. doi: 10.1038/s41558-020-00919-1. DOI

Gazol A., Camarero J.J., Sánchez-Salguero R., Vicente-Serrano S.M., Serra-Maluquer X., Gutiérrez E., de Luis M., Sangüesa-Barreda G., Novak K., Rozas V. Drought Legacies Are Short, Prevail in Dry Conifer Forests and Depend on Growth Variability. J. Ecol. 2020;108:2473–2484. doi: 10.1111/1365-2745.13435. DOI

Gazol A., Camarero J.J., Sánchez-Salguero R., Zavala M.A., Serra-Maluquer X., Gutiérrez E., De Luis M., Sangüesa-Barreda G., Novak K., Rozas V. Tree Growth Response to Drought Partially Explains Regional-Scale Growth and Mortality Patterns in Iberian Forests. Ecol. Appl. 2022;32:e2589. doi: 10.1002/eap.2589. PubMed DOI

DeSoto L., Cailleret M., Sterck F., Jansen S., Kramer K., Robert E.M., Aakala T., Amoroso M.M., Bigler C., Camarero J.J. Low Growth Resilience to Drought Is Related to Future Mortality Risk in Trees. Nat. Commun. 2020;11:545. doi: 10.1038/s41467-020-14300-5. PubMed DOI PMC

Jiang P., Liu H., Piao S., Ciais P., Wu X., Yin Y., Wang H. Enhanced Growth after Extreme Wetness Compensates for Post-Drought Carbon Loss in Dry Forests. Nat. Commun. 2019;10:195. doi: 10.1038/s41467-018-08229-z. PubMed DOI PMC

Fatichi S., Pappas C., Ivanov V.Y. Modeling Plant–Water Interactions: An Ecohydrological Overview from the Cell to the Global Scale. Wiley Interdiscip. Rev. Water. 2016;3:327–368. doi: 10.1002/wat2.1125. DOI

Chmura D.J., Guzicka M., McCulloh K.A., Żytkowiak R. Limited Variation Found among Norway Spruce Half-Sib Families in Physiological Response to Drought and Resistance to Embolism. Tree Physiol. 2016;36:252–266. doi: 10.1093/treephys/tpv141. PubMed DOI

Rehschuh R., Cecilia A., Zuber M., Faragó T., Baumbach T., Hartmann H., Jansen S., Mayr S., Ruehr N. Drought-Induced Xylem Embolism Limits the Recovery of Leaf Gas Exchange in Scots Pine. Plant Physiol. 2020;184:852–864. doi: 10.1104/pp.20.00407. PubMed DOI PMC

Hájíčková M., Plichta R., Urban J., Volařík D., Gebauer R. Low Resistance but High Resilience to Drought of Flushing Norway Spruce Seedlings. Tree Physiol. 2021;41:1848–1860. doi: 10.1093/treephys/tpab043. PubMed DOI

Zlobin I.E., Kartashov A.V., Ivanov Y.V., Ivanova A.I., Kuznetsov V.V. Stem Notching Decreases Stem Hydraulic Conductance but Does Not Influence Drought Impacts and Post-Drought Recovery in Scots Pine and Norway Spruce. Physiol. Plant. 2022;174:e13813. doi: 10.1111/ppl.13813. PubMed DOI

Han Y., Deng J., Zhou W., Wang Q.-W., Yu D. Seasonal Responses of Hydraulic Function and Carbon Dynamics in Spruce Seedlings to Continuous Drought. Front. Plant Sci. 2022;13:868108. doi: 10.3389/fpls.2022.868108. PubMed DOI PMC

Brodribb T.J., Cochard H. Hydraulic Failure Defines the Recovery and Point of Death in Water-Stressed Conifers. Plant Physiol. 2009;149:575–584. doi: 10.1104/pp.108.129783. PubMed DOI PMC

Brodribb T.J., McAdam S.A., Jordan G.J., Martins S.C. Conifer Species Adapt to Low-Rainfall Climates by Following One of Two Divergent Pathways. Proc. Natl. Acad. Sci. USA. 2014;111:14489–14493. doi: 10.1073/pnas.1407930111. PubMed DOI PMC

Brodribb T.J., McAdam S.A. Abscisic Acid Mediates a Divergence in the Drought Response of Two Conifers. Plant Physiol. 2013;162:1370–1377. doi: 10.1104/pp.113.217877. PubMed DOI PMC

Hasan M.M., Gong L., Nie Z.-F., Li F.-P., Ahammed G.J., Fang X.-W. ABA-Induced Stomatal Movements in Vascular Plants during Dehydration and Rehydration. Environ. Exp. Bot. 2021;186:104436. doi: 10.1016/j.envexpbot.2021.104436. DOI

Tanaka Y., Sano T., Tamaoki M., Nakajima N., Kondo N., Hasezawa S. Cytokinin and Auxin Inhibit Abscisic Acid-Induced Stomatal Closure by Enhancing Ethylene Production in Arabidopsis. J. Exp. Bot. 2006;57:2259–2266. doi: 10.1093/jxb/erj193. PubMed DOI

Verslues P.E. ABA and Cytokinins: Challenge and Opportunity for Plant Stress Research. Plant Mol. Biol. 2016;91:629–640. doi: 10.1007/s11103-016-0458-7. PubMed DOI

Skalák J., Černỳ M., Jedelskỳ P., Dobrá J., Ge E., Novák J., Hronková M., Dobrev P., Vanková R., Brzobohatỳ B. Stimulation of Ipt Overexpression as a Tool to Elucidate the Role of Cytokinins in High Temperature Responses of Arabidopsis Thaliana. J. Exp. Bot. 2016;67:2861–2873. doi: 10.1093/jxb/erw129. PubMed DOI PMC

Prerostova S., Dobrev P.I., Gaudinova A., Knirsch V., Körber N., Pieruschka R., Fiorani F., Brzobohatỳ B., Černỳ M., Spichal L. Cytokinins: Their Impact on Molecular and Growth Responses to Drought Stress and Recovery in Arabidopsis. Front. Plant Sci. 2018;9:655. doi: 10.3389/fpls.2018.00655. PubMed DOI PMC

Farber M., Attia Z., Weiss D. Cytokinin Activity Increases Stomatal Density and Transpiration Rate in Tomato. J. Exp. Bot. 2016;67:6351–6362. doi: 10.1093/jxb/erw398. PubMed DOI PMC

Daszkowska-Golec A., Szarejko I. Open or Close the Gate–Stomata Action under the Control of Phytohormones in Drought Stress Conditions. Front. Plant Sci. 2013;4:138. doi: 10.3389/fpls.2013.00138. PubMed DOI PMC

Zlobin I.E., Ivanov Y.V., Kartashov A.V., Kuznetsov V.V. Impact of Drought Stress Induced by Polyethylene Glycol on Growth, Water Relations and Cell Viability of Norway Spruce Seedlings. Environ. Sci. Pollut. Res. 2018;25:8951–8962. doi: 10.1007/s11356-017-1131-7. PubMed DOI

Fox H., Doron-Faigenboim A., Kelly G., Bourstein R., Attia Z., Zhou J., Moshe Y., Moshelion M., David-Schwartz R. Transcriptome Analysis of Pinus Halepensis under Drought Stress and during Recovery. Tree Physiol. 2018;38:423–441. doi: 10.1093/treephys/tpx137. PubMed DOI PMC

Bai Y.-L., Yin X., Xiong C.-F., Cai B.-D., Wu Y., Zhang X.-Y., Wei Z., Ye T., Feng Y.-Q. Neophaseic Acid Catabolism in the 9′-Hydroxylation Pathway of Abscisic Acid in Arabidopsis Thaliana. Plant Commun. 2022;3:100340. doi: 10.1016/j.xplc.2022.100340. PubMed DOI PMC

Abrams S.R., Loewen M.C. Advances in Botanical Research. Volume 92. Elsevier; Amsterdam, The Netherlands: 2019. Chemistry and chemical biology of ABA; pp. 315–339.

Seo M., Marion-Poll A. Advances in Botanical Research. Volume 92. Elsevier; Amsterdam, The Netherlands: 2019. Abscisic acid metabolism and transport; pp. 1–49.

Jadhav A.S., Taylor D.C., Giblin M., Ferrie A.M., Ambrose S.J., Ross A.R., Nelson K.M., Zaharia L.I., Sharma N., Anderson M. Hormonal Regulation of Oil Accumulation in Brassica Seeds: Metabolism and Biological Activity of ABA, 7′-, 8′-and 9′-Hydroxy ABA in Microspore Derived Embryos of B. Napus. Phytochemistry. 2008;69:2678–2688. doi: 10.1016/j.phytochem.2008.08.010. PubMed DOI

Kepka M., Benson C.L., Gonugunta V.K., Nelson K.M., Christmann A., Grill E., Abrams S.R. Action of Natural Abscisic Acid Precursors and Catabolites on Abscisic Acid Receptor Complexes. Plant Physiol. 2011;157:2108–2119. doi: 10.1104/pp.111.182584. PubMed DOI PMC

Pashkovskiy P.P., Vankova R., Zlobin I.E., Dobrev P., Kartashov A.V., Ivanova A.I., Ivanov V.P., Marchenko S.I., Nartov D.I., Ivanov Y.V. Hormonal Responses to Short-Term and Long-Term Water Deficit in Native Scots Pine and Norway Spruce Trees. Environ. Exp. Bot. 2022;195:104789. doi: 10.1016/j.envexpbot.2022.104789. DOI

Pashkovskiy P.P., Vankova R., Zlobin I.E., Dobrev P., Ivanov Y.V., Kartashov A.V., Kuznetsov V.V. Comparative Analysis of Abscisic Acid Levels and Expression of Abscisic Acid-Related Genes in Scots Pine and Norway Spruce Seedlings under Water Deficit. Plant Physiol. Biochem. 2019;140:105–112. doi: 10.1016/j.plaphy.2019.04.037. PubMed DOI

Lomin S.N., Savelieva E.M., Arkhipov D.V., Pashkovskiy P.P., Myakushina Y.A., Heyl A., Romanov G.A. Cytokinin Perception in Ancient Plants beyond Angiospermae. Int. J. Mol. Sci. 2021;22:13077. doi: 10.3390/ijms222313077. PubMed DOI PMC

Martins S.C., McAdam S.A., Deans R.M., DaMatta F.M., Brodribb T.J. Stomatal Dynamics Are Limited by Leaf Hydraulics in Ferns and Conifers: Results from Simultaneous Measurements of Liquid and Vapour Fluxes in Leaves. Plant Cell Environ. 2016;39:694–705. doi: 10.1111/pce.12668. PubMed DOI

Scoffoni C., Sack L., Ort D. The Causes and Consequences of Leaf Hydraulic Decline with Dehydration. J. Exp. Bot. 2017;68:4479–4496. doi: 10.1093/jxb/erx252. PubMed DOI

Scoffoni C., Albuquerque C., Brodersen C.R., Townes S.V., John G.P., Bartlett M.K., Buckley T.N., McElrone A.J., Sack L. Outside-Xylem Vulnerability, Not Xylem Embolism, Controls Leaf Hydraulic Decline during Dehydration. Plant Physiol. 2017;173:1197–1210. doi: 10.1104/pp.16.01643. PubMed DOI PMC

Creek D., Lamarque L.J., Torres-Ruiz J.M., Parise C., Burlett R., Tissue D.T., Delzon S. Xylem Embolism in Leaves Does Not Occur with Open Stomata: Evidence from Direct Observations Using the Optical Visualization Technique. J. Exp. Bot. 2020;71:1151–1159. doi: 10.1093/jxb/erz474. PubMed DOI

Skelton R.P., Brodribb T.J., McAdam S.A., Mitchell P.J. Gas Exchange Recovery Following Natural Drought Is Rapid Unless Limited by Loss of Leaf Hydraulic Conductance: Evidence from an Evergreen Woodland. New Phytol. 2017;215:1399–1412. doi: 10.1111/nph.14652. PubMed DOI

Brodribb T., Brodersen C.R., Carriqui M., Tonet V., Rodriguez Dominguez C., McAdam S. Linking Xylem Network Failure with Leaf Tissue Death. New Phytol. 2021;232:68–79. doi: 10.1111/nph.17577. PubMed DOI

Cardoso A.A., Batz T.A., McAdam S.A. Xylem Embolism Resistance Determines Leaf Mortality during Drought in Persea Americana. Plant Physiol. 2020;182:547–554. doi: 10.1104/pp.19.00585. PubMed DOI PMC

John G.P., Henry C., Sack L. Leaf Rehydration Capacity: Associations with Other Indices of Drought Tolerance and Environment. Plant Cell Environ. 2018;41:2638–2653. doi: 10.1111/pce.13390. PubMed DOI

Trueba S., Pan R., Scoffoni C., John G.P., Davis S.D., Sack L. Thresholds for Leaf Damage Due to Dehydration: Declines of Hydraulic Function, Stomatal Conductance and Cellular Integrity Precede Those for Photochemistry. New Phytol. 2019;223:134–149. doi: 10.1111/nph.15779. PubMed DOI

Virlouvet L., Fromm M. Physiological and Transcriptional Memory in Guard Cells during Repetitive Dehydration Stress. New Phytol. 2015;205:596–607. doi: 10.1111/nph.13080. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...