Barley Root Proteome and Metabolome in Response to Cytokinin and Abiotic Stimuli
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33250914
PubMed Central
PMC7673457
DOI
10.3389/fpls.2020.590337
Knihovny.cz E-zdroje
- Klíčová slova
- Hordeum vulgare, ROS, abiotic stress, metabolome, phenylpropanoid biosynthesis, proteome, root, zeatin,
- Publikační typ
- časopisecké články MeSH
Cytokinin is a phytohormone involved in the regulation of diverse developmental and physiological processes in plants. Its potential in biotechnology and for development of higher-yield and more resilient plants has been recognized, yet the molecular mechanisms behind its action are far from understood. In this report, the roots of barley seedlings were explored as a new source to reveal as yet unknown cytokinin-responsive proteins for crop improvement. Here we found significant differences reproducibly observed for 178 proteins, for which some of the revealed cytokinin-responsive pathways were confirmed in metabolome analysis, including alterations phenylpropanoid pathway, amino acid biosynthesis and ROS metabolism. Bioinformatics analysis indicated a significant overlap between cytokinin response and response to abiotic stress. This was confirmed by comparing proteome and metabolome profiles in response to drought, salinity or a period of temperature stress. The results illustrate complex abiotic stress response in the early development of model crop plant and confirm an extensive crosstalk between plant hormone cytokinin and response to temperature stimuli, water availability or salinity stress.
Zobrazit více v PubMed
Abo-Ogiala A., Carsjens C., Diekmann H., Fayyaz P., Herrfurth C., Feussner I., et al. (2014). Temperature-induced lipocalin (TIL) is translocated under salt stress and protects chloroplasts from ion toxicity. PubMed DOI
Argueso C. T., Ferreira F. J., Kieber J. J. (2009). Environmental perception avenues: the interaction of cytokinin and environmental response pathways. PubMed DOI
Argyros R. D., Mathews D. E., Chiang Y.-H., Palmer C. M., Thibault D. M., Etheridge N., et al. (2008). Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. PubMed PMC
Bewley J. D., Bradford K. J., Hilhorst H. W. M., Nonogaki H. (2013). DOI
Bhargava A., Clabaugh I., To J. P., Maxwell B. B., Chiang Y.-H., Schaller E. G., et al. (2013). Identification of cytokinin responsive genes using microarray meta-analysis and RNA-seq in PubMed PMC
Bielach A., Podlešáková K., Marhavý P., Duclercq J., Cuesta C., Müller B., et al. (2012). Spatiotemporal regulation of lateral root organogenesis in arabidopsis by cytokinin. PubMed DOI PMC
Blattner F. R. (2018). “Taxonomy of the Genus Hordeum and Barley (Hordeum vulgare),” in DOI
Brenner W. G., Romanov G. A., Köllmer I., Bürkle L., Schmülling T. (2005). Immediate-early and delayed cytokinin response genes of PubMed DOI
Brenner W. G., Schmulling T. (2012). Transcript profiling of cytokinin action in Arabidopsis roots and shoots discovers largely similar but also organ-specific responses. PubMed DOI PMC
Cerna H., Černý M., Habánová H., Šafářová D., Abushamsiya K., Navrátil M., et al. (2017). Proteomics offers insight to the mechanism behind PubMed DOI
Černý M., Dyčka F., Bobál’ová J., Brzobohaty B. (2011). Early cytokinin response proteins and phosphoproteins of PubMed DOI PMC
Černý M., Jedelský P. L., Novák J., Schlosser A., Brzobohatý B. (2014). Cytokinin modulates proteomic, transcriptomic and growth responses to temperature shocks in Arabidopsis. PubMed DOI
Černý M., Novák J., Habánová H., Cerna H., Brzobohatý B. (2016). Role of the proteome in phytohormonal signaling. PubMed DOI
Chen Y., Hoehenwarter W., Weckwerth W. (2010). Comparative analysis of phytohormone-responsive phosphoproteins in PubMed
Chory J., Reinecke D., Sim S., Washburn T., Brenner M. (1994). A role for cytokinins in De-etiolation in Arabidopsis (det mutants have an altered response to cytokinins). PubMed DOI PMC
Cortleven A., Leuendorf J. E., Frank M., Pezzetta D., Bolt S., Schmülling T. (2019). Cytokinin action in response to abiotic and biotic stresses in plants. PubMed DOI
Danilova M. N., Kudryakova N. V., Doroshenko A. S., Zabrodin D. A., Vinogradov N. S., Kuznetsov V. V. (2016). Molecular and physiological responses of DOI
Dawson I. K., Russell J., Powell W., Steffenson B., Thomas W. T. B., Waugh R. (2015). Barley: a translational model for adaptation to climate change. PubMed DOI
Deikman J., Hammer P. E. (1995). Induction of anthocyanin accumulation by cytokinins in PubMed DOI PMC
Didi V., Jackson P., Hejátko J. (2015). Hormonal regulation of secondary cell wall formation. PubMed DOI
Dufková H., Berka M., Luklová M., Rashotte A. M., Brzobohatý B., Černý M. (2019). Eggplant germination is promoted by hydrogen peroxide and temperature in an independent but overlapping manner. PubMed DOI PMC
Entsch B., Parker C. W., Letham D. S. (1983). An enzyme from lupin seeds forming alanine derivatives of cytokinins. DOI
Ge S. X., Jung D., Yao R. (2020). ShinyGO: a graphical gene-set enrichment tool for animals and plants. PubMed DOI PMC
Gou M., Ran X., Martin D. W., Liu C. J. (2018). The scaffold proteins of lignin biosynthetic cytochrome P450 enzymes. PubMed DOI
Guan C., Wang X., Feng J., Hong S., Liang Y., Ren B., et al. (2014). Cytokinin antagonizes abscisic acid-mediated inhibition of cotyledon greening by promoting the degradation of ABSCISIC ACID INSENSITIVE5 protein in Arabidopsis. PubMed DOI PMC
Gupta R., Wang Y., Agrawal G. K., Rakwal R., Jo I. H., Bang K. H., et al. (2015). Time to dig deep into the plant proteome: a hunt for low-abundance proteins. PubMed DOI PMC
Hallmark H. T., Černý M., Brzobohatý B., Rashotte A. M. (2020). trans-Zeatin-N-glucosides have biological activity in PubMed DOI PMC
Hanin M., Ebel C., Ngom M., Laplaze L., Masmoudi K. (2016). New insights on plant salt tolerance mechanisms and their potential use for breeding. PubMed DOI PMC
Harwood W. A. (2019). An introduction to barley: the crop and the model. PubMed DOI
Hloušková P., Černý M., Kořínková N., Luklová M., Minguet E. G., Brzobohatý B., et al. (2019). Affinity chromatography revealed 14-3-3 interactome of tomato ( PubMed DOI
Holubová K., Hensel G., Vojta P., Tarkowski P., Bergougnoux V., Galuszka P. (2018). Modification of barley plant productivity through regulation of cytokinin content by reverse-genetics approaches. PubMed DOI PMC
Hooper C. M., Castleden I. R., Aryamanesh N., Jacoby R. P., Millar A. H. (2016). Finding the subcellular location of barley, wheat, rice and maize proteins: the compendium of crop proteins with Annotated Locations (cropPAL). PubMed DOI
Hooper C. M., Castleden I. R., Tanz S. K., Aryamanesh N., Millar A. H. (2017). SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. PubMed DOI PMC
Hoth S., Ikeda Y., Morgante M., Wang X., Zuo J., Hanafey M. K., et al. (2003). Monitoring genome-wide changes in gene expression in response to endogenous cytokinin reveals targets in PubMed DOI
Huan C., Jiang L., An X., Yu M., Xu Y., Ma R., et al. (2016). Potential role of reactive oxygen species and antioxidant genes in the regulation of peach fruit development and ripening. PubMed DOI
Huang Y., Sun M.-M., Ye Q., Wu X.-Q., Wu W.-H., Chen Y.-F. (2017). Abscisic Acid modulates seed germination via ABA INSENSITIVE5-mediated PHOSPHATE1. PubMed DOI PMC
Jeon J., Kim N. Y., Kim S., Kang N. Y., Novák O., Ku S. J., et al. (2010). A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. PubMed DOI PMC
Karunadasa S. S., Kurepa J., Shull T. E., Smalle J. A. (2020). Cytokinin-induced protein synthesis suppresses growth and osmotic stress tolerance. PubMed DOI
Kaur N., Erickson T. E., Ball A. S., Ryan M. H. (2017). A review of germination and early growth as a proxy for plant fitness under petrogenic contamination — knowledge gaps and recommendations. PubMed DOI
Kiba T., Yamashino T., Naito T., Koizumi N., Sakakibara H., Mizuno T. (2005). Combinatorial microarray analysis revealing araidopsis genes implicated in cytokinin responses through the His-to-Asp phosphorelay circuitry. PubMed
Kieber J. J., Schaller G. E. (2014). Cytokinins. PubMed PMC
Kim Y. M., Han Y. J., Hwang O. J., Lee S. S., Shin A. Y., Kim S. Y., et al. (2012). Overexpression of arabidopsis translationally controlled tumor protein gene AtTCTP enhances drought tolerance with rapid ABA-induced stomatal closure. PubMed DOI PMC
Kurepa J., Shull T. E., Smalle J. A. (2019). Antagonistic activity of auxin and cytokinin in shoot and root organs. PubMed DOI PMC
Laplaze L., Benkova E., Casimiro I., Maes L., Vanneste S., Swarup R., et al. (2007). Cytokinins act directly on lateral root founder cells to inhibit root initiation. PubMed DOI PMC
Latijnhouwers M., Xu X. M., Møller S. G. (2010). Arabidopsis stromal 70-kDa heat shock proteins are essential for chloroplast development. PubMed DOI
Li X. G., Su Y. H., Zhao X. Y., Li W., Gao X. Q., Zhang X. S. (2010). Cytokinin overproduction-caused alteration of flower development is partially mediated by CUC2 and CUC3 in Arabidopsis. PubMed
Liu M.-S., Li H.-C., Chang Y.-M., Wu M.-T., Chen L.-F. O. (2011). Proteomic analysis of stress-related proteins in transgenic broccoli harboring a gene for cytokinin production during postharvest senescence. PubMed DOI
Lochmanová G., Zdráhal Z., Konečná H., Koukalová Š, Malbeck J., Souček P., et al. (2008). Cytokinin-induced photomorphogenesis in dark-grown Arabidopsis: a proteomic analysis. PubMed DOI
Macková H., Hronková M., Dobrá J., Turečková V., Novák O., Lubovská Z., et al. (2013). Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. PubMed DOI PMC
Mascher M., Gundlach H., Himmelbach A., Beier S., Twardziok S. O., Wicker T., et al. (2017). A chromosome conformation capture ordered sequence of the barley genome. PubMed DOI
Mayer K. F. X., Waugh R., Langridge P., Close T. J., Wise R. P., Graner A., et al. (2012). A physical, genetic and functional sequence assembly of the barley genome. PubMed DOI
McLoughlin F., Kim M., Marshall R. S., Vierstra R. D., Vierling E. (2019). HSP101 interacts with the proteasome and promotes the clearance of ubiquitylated protein aggregates. PubMed DOI PMC
Mierswa I., Wurst M., Klinkenberg R., Scholz M., Euler T. (2006). “YALE,” in DOI
Mrízová K., Jiskrová E., Vyroubalová Š, Novák O., Ohnoutková L., Pospíšilová H., et al. (2013). Overexpression of Cytokinin Dehydrogenase Genes in Barley (Hordeum vulgare cv. Golden Promise) fundamentally affects morphology and fertility. PubMed DOI PMC
Müller B., Sheen J. (2008). Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. PubMed DOI PMC
Nakabayashi R., Yonekura-Sakakibara K., Urano K., Suzuki M., Yamada Y., Nishizawa T., et al. (2014). Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. PubMed DOI PMC
Nemhauser J. L., Hong F., Chory J. (2006). Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. PubMed
Nishiyama R., Le D. T., Watanabe Y., Matsui A., Tanaka M., Seki M., et al. (2012). Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency. PubMed DOI PMC
Nolte H., MacVicar T. D., Tellkamp F., Krüger M. (2018). Instant clue: a software suite for interactive data visualization and analysis. PubMed DOI PMC
Novák J., Pavlù J., Novák O., Nožková-Hlaváčková V., Špundová M., Hlavinka J., et al. (2013). High cytokinin levels induce a hypersensitive-like response in tobacco. PubMed DOI PMC
Pang Z., Chong J., Li S., Xia J. (2020). MetaboAnalystR 3.0: toward an optimized workflow for global metabolomics. PubMed DOI PMC
Pavlů J., Novák J., Koukalová V., Luklová M., Brzobohatý B., Černý M. (2018). Cytokinin at the crossroad of abiotic stress signalling pathways. PubMed PMC
Pino L. K., Searle B. C., Bollinger J. G., Nunn B., MacLean B., MacCoss M. J. (2020). The Skyline ecosystem: informatics for quantitative mass spectrometry proteomics. PubMed DOI PMC
Pospíšilová H., Jiskrová E., Vojta P., Mrízová K., Kokáš F., Čudejková M. M., et al. (2016). Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress. PubMed DOI
Powell A. F., Paleczny A. R., Olechowski H., Emery R. J. N. (2013). Changes in cytokinin form and concentration in developing kernels correspond with variation in yield among field-grown barley cultivars. PubMed DOI
Prerostova S., Dobrev P. I., Gaudinova A., Knirsch V., Körber N., Pieruschka R., et al. (2018). Cytokinins: their impact on molecular and growth responses to drought stress and recovery in Arabidopsis. PubMed DOI PMC
Ramireddy E., Hosseini S. A., Eggert K., Gillandt S., Gnad H., von Wirén N., et al. (2018). Root engineering in barley: increasing cytokinin degradation produces a larger root system, mineral enrichment in the shoot and improved drought tolerance. PubMed DOI PMC
Rider J. E., Hacker A., Mackintosh C. A., Pegg A. E., Woster P. M., Casero R. A. (2007). Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide. PubMed DOI
Riefler M., Novak O., Strnad M., Schmülling T. (2006). Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. PubMed DOI PMC
Righetti P. G., Boschetti E. (2016). Global proteome analysis in plants by means of peptide libraries and applications. PubMed DOI
Schneider C. A., Rasband W. S., Eliceiri K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. PubMed DOI PMC
Seifi H. S., Shelp B. J. (2019). Spermine differentially refines plant defense responses against biotic and abiotic stresses. PubMed DOI PMC
Skalák J., Černý M., Jedelský P., Dobrá J., Ge E., Novák J., et al. (2016). Stimulation of ipt overexpression as a tool to elucidate the role of cytokinins in high temperature responses of PubMed DOI PMC
Skalák J., Vercruyssen L., Claeys H., Hradilová J., Černý M., Novák O., et al. (2019). Multifaceted activity of cytokinin in leaf development shapes its size and structure in Arabidopsis. PubMed DOI
Szklarczyk D., Gable A. L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., et al. (2019). STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. PubMed DOI PMC
Tichá T., Samakovli D., Kuchařová A., Vavrdová T., Šamaj J. (2020). Multifaceted roles of heat shock protein 90 molecular chaperones in plant development. PubMed DOI
Ueda A., Yamamoto-Yamane Y., Takabe T. (2007). Salt stress enhances proline utilization in the apical region of barley roots. PubMed DOI
ul Haq S., Khan A., Ali M., Khattak A. M., Gai W.-X., Zhang H.-X., et al. (2019). Heat shock proteins: dynamic biomolecules to counter plant biotic and abiotic stresses. PubMed DOI PMC
Vescovi M., Riefler M., Gessuti M., Novak O., Schmulling T., Lo Schiavo F. (2012). Programmed cell death induced by high levels of cytokinin in Arabidopsis cultured cells is mediated by the cytokinin receptor CRE1/AHK4. PubMed DOI PMC
Vizcaíno J. A., Csordas A., Del-Toro N., Dianes J. A., Griss J., Lavidas I., et al. (2016). 2016 update of the PRIDE database and its related tools. PubMed PMC
Vojta P., Kokáš F., Husičková A., Grúz J., Bergougnoux V., Marchetti C. F., et al. (2016). Whole transcriptome analysis of transgenic barley with altered cytokinin homeostasis and increased tolerance to drought stress. PubMed DOI
Voxeur A., Höfte H. (2016). Cell wall integrity signaling in plants: “To grow or not to grow that’s the question”. PubMed DOI
Wang Y., Li L., Ye T., Zhao S., Liu Z., Feng Y. Q., et al. (2011). Cytokinin antagonizes ABA suppression to seed germination of Arabidopsis by downregulating ABI5 expression. PubMed DOI
Yang X. H., Xu Z. H., Xue H. W. (2005). Arabidopsis membrane steroid binding protein 1 is involved in inhibition of cell elongation. PubMed DOI PMC
Zalewski W., Galuszka P., Gasparis S., Orczyk W., Nadolska-Orczyk A. (2010). Silencing of the HvCKX1 gene decreases the cytokinin oxidase/dehydrogenase level in barley and leads to higher plant productivity. PubMed DOI
Žd’árská M., Zatloukalová P., Benítez M., Šedo O., Potěšil D., Novák O., et al. (2013). Proteome analysis in Arabidopsis reveals shoot- and root-specific targets of cytokinin action and differential regulation of hormonal homeostasis. PubMed PMC
Zhang Y., Chen B., Xu Z., Shi Z., Chen S., Huang X., et al. (2014). Involvement of reactive oxygen species in endosperm cap weakening and embryo elongation growth during lettuce seed germination. PubMed DOI PMC
Zhang Y., Liu S., Dai S. Y., Yuan J. S. (2012). Integration of shot-gun proteomics and bioinformatics analysis to explore plant hormone responses. PubMed DOI PMC
Zhong L., Zhou W., Wang H., Ding S., Lu Q., Wen X., et al. (2013). Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in arabidopsis under heat stress. PubMed DOI PMC
Zwack P. J., Rashotte A. M. (2015). Interactions between cytokinin signalling and abiotic stress responses. PubMed DOI
Divergent Molecular Responses to Heavy Water in Arabidopsis thaliana Compared to Bacteria and Yeast
Abiotic Stress in Crop Production
Phytochromes and Their Role in Diurnal Variations of ROS Metabolism and Plant Proteome
Defense mechanisms promoting tolerance to aggressive Phytophthora species in hybrid poplar
The Omics Hunt for Novel Molecular Markers of Resistance to Phytophthora infestans
Peptide-Based Identification of Phytophthora Isolates and Phytophthora Detection in Planta