Differences in the Proteomic and Metabolomic Response of Quercus suber and Quercus variabilis During the Early Stages of Phytophthora cinnamomi Infection
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35770156
PubMed Central
PMC9234522
DOI
10.3389/fmicb.2022.894533
Knihovny.cz E-zdroje
- Klíčová slova
- glutathione S-transferase, micropropagation, peroxidases, phenylpropanoids, plant pathogen, resistance, sugars,
- Publikační typ
- časopisecké články MeSH
Phytophthora cinnamomi Rands is a cosmopolite pathogen of woody plants which during the last couple of centuries has spread all over the world from its center of origin in Southeast Asia. In contrast to Chinese cork oak (Quercus variabilis Blume) forests native to Asia, which are generally healthy despite the presence of the pathogen, the populations of Cork oaks (Quercus suber L.) in Europe have been severely decimated by P. cinnamomi. The present study aims at identifying the differences in the early proteomic and metabolomic response of these two tree species that lead to their differences in susceptibility to P. cinnamomi. By using micropropagated clonal plants, we tried to minimize the plant-to-plant differences in the defense response that is maximized by the high intraspecific genetic variability inherent to the Quercus genus. The evolution on the content of Phytophthora proteins in the roots during the first 36 h after inoculation suggests a slower infection process in Q. variabilis plants. These plants displayed a significant decrease in sugars in the roots, together with a downregulation of proteins related to carbon metabolism. In the leaves, the biggest changes in proteomic profiling were observed 16 h after inoculation, and included increased abundance of peroxidases, superoxide dismutases and glutathione S-transferases in Q. variabilis plants, which probably contributed to decrease its susceptibility to P. cinnamomi.
Zobrazit více v PubMed
Ali S. S., Shao J., Lary D. J., Strem M. D., Meinhardt L. W., Bailey B. A. (2017). Phytophthora megakarya and P. palmivora, causal agents of black pod rot, induce similar plant defense responses late during infection of susceptible cacao pods. Front. Plant Sci. 8:169. 10.3389/fpls.2017.00169 PubMed DOI PMC
Allardyce J. A., Rookes J. E., Cahill D. M. (2012). Defining Plant Resistance to Phytophthora cinnamomi: a Standardized Approach to Assessment. J. Phytopathol. 160 269–276. 10.1111/j.1439-0434.2012.01895.x DOI
Aronson J., Pereira J., Pausas J. (2009). Cork Oak Woodlands On The Edge: Ecology, Biogeography, And Restoration Of An Ancient Mediterranean Ecosystem. Washington DC: Island Press.
Avila J. M., Linares J. C., García-Nogales A., Sánchez M. E., Gómez-Aparicio L. (2017). Across-scale patterning of plant–soil–pathogen interactions in Quercus suber decline. Eur. J. For. Res. 136 677–688. 10.1007/s10342-017-1064-1 DOI
Bergot M., Cloppet E., Pérarnaud V., Déqué M., Marçais B., Desprez-Loustau M.-L. (2004). Simulation of potential range expansion of oak disease caused by Phytophthora cinnamomi under climate change. Glob. Chang. Biol. 10 1539–1552. 10.1111/j.1365-2486.2004.00824.x DOI
Berka M., Luklová M., Dufková H., Berková V., Novák J., Saiz-Fernández I., et al. (2020b). Barley Root Proteome and Metabolome in Response to Cytokinin and Abiotic Stimuli. Front. Plant Sci. 11:590337. 10.3389/fpls.2020.590337 PubMed DOI PMC
Berka M., Greplová M., Saiz-Fernández I., Novák J., Luklová M., Zelená P., et al. (2020a). Peptide-based identification of phytophthora isolates and phytophthora detection in planta. Int. J. Mol. Sci. 21:9463. 10.3390/ijms21249463 PubMed DOI PMC
Bindea G., Mlecnik B., Hackl H., Charoentong P., Tosolini M., Kirilovsky A., et al. (2009). ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25 1091–1093. 10.1093/bioinformatics/btp101 PubMed DOI PMC
Bugalho M., Plieninger T., Aronson J., Ellatifi M., Crespo D. G. (2009). “Open woodlands: A diversity of uses (and overuses),” in Cork Oak Woodlands on the Edge: Ecology, Adaptive Management, and Restoration, eds Aronson J., Pereira J. S., Pausas J. G. (Washington DC: Island Press; ), 33–45.
Byrt P., Grant B. R. (1979). Some conditions governing zoospore production in axenic cultures of Phytophthora cinnamomi rands. Aust. J. Bot. 27 103–115. 10.1071/BT9790103 DOI
Cahill D. M., Bennett I. J., McComb J. A. (1993). Mechanisms of resistance to Phytophthora cinnamomi in clonal, micropropagated Eucalyptus marginata. Plant Pathol. 42 865–872. 10.1111/j.1365-3059.1993.tb02672.x DOI
Camilo-Alves C. S. P., da Clara M. I. E., de Almeida Ribeiro N. M. C. (2013). Decline of Mediterranean oak trees and its association with Phytophthora cinnamomi: a review. Eur. J. For. Res. 132 411–432. 10.1007/s10342-013-0688-z DOI
Camisón Á, Martín M. Á, Sánchez-Bel P., Flors V., Alcaide F., Morcuende D., et al. (2019). Hormone and secondary metabolite profiling in chestnut during susceptible and resistant interactions with Phytophthora cinnamomi. J. Plant Physiol. 241:153030. 10.1016/j.jplph.2019.153030 PubMed DOI
Cardillo E., Abad E., Meyer S. (2021). Iberian oak decline caused by Phytophthora cinnamomi?: a spatiotemporal analysis incorporating the effect of host heterogeneities at landscape scale. For. Pathol. 51:e12667. 10.1111/efp.12667 DOI
Carvalho A., Paula A., Guedes-Pinto H., Martins L., Carvalho J., Lima-Brito J. (2009). Preliminary genetic approach based on both cytogenetic and molecular characterisations of nine oak species. Plant Biosyst. 143 S25–S33. 10.1080/11263500903192126 DOI
Catal M., Erler F., Fulbright D. W., Adams G. C. (2013). Real-time quantitative PCR assays for evaluation of soybean varieties for resistance to the stem and root rot pathogen Phytophthora sojae. Eur. J. Plant Pathol. 137 859–869. 10.1007/s10658-013-0297-1 DOI
Chong J., Wishart D. S., Xia J. (2019). Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinforma. 68:e86. 10.1002/cpbi.86 PubMed DOI
Choudhury F. K., Rivero R. M., Blumwald E., Mittler R. (2017). Reactive oxygen species, abiotic stress and stress combination. Plant J. 90 856–867. 10.1111/TPJ.13299 PubMed DOI
Coelho A. C., Lima M. B., Neves D., Cravador A. (2006b). Genetic Diversity of Two Evergreen Oaks [Quercus suber (L.) and Quercus ilex subsp. rotundifolia (Lam.)] in Portugal using AFLP Markers. Silvae Genet. 55 105–118. 10.1515/sg-2006-0016 DOI
Coelho A. C., Horta M., Neves D., Cravador A. (2006a). Involvement of a cinnamyl alcohol dehydrogenase of Quercus suber in the defence response to infection by Phytophthora cinnamomi. Physiol. Mol. Plant Pathol. 69 62–72. 10.1016/j.pmpp.2007.01.001 DOI
Corcobado T., Milenkovi I., Saiz-Fernández I., Kudláèek T., Plichta R., Májek T., et al. (2022). Metabolomic and physiological changes in Fagus sylvatica seedlings infected with Phytophthora plurivora and the A1 and A2 mating types of P. xcambivora. J. Fungi 8:298. 10.3390/JOF8030298 PubMed DOI PMC
Dorfer V., Pichler P., Stranzl T., Stadlmann J., Taus T., Winkler S., et al. (2014). MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. J. Proteome Res. 13 3679–3684. 10.1021/pr500202e PubMed DOI PMC
Draper J., Rasmussen S., Zubair H. (2018). “Metabolite Analysis and Metabolomics in the Study of Biotrophic Interactions between Plants and Microbes,” in Annual Plant Reviews online, ed. Hall D R. (Chichester, UK: John Wiley & Sons, Ltd; ), 25–59. 10.1002/9781119312994.apr0462 DOI
Dufková H., Berka M., Greplová M., Shejbalová Š, Hampejsová R., Luklová M., et al. (2021). The Omics Hunt for Novel Molecular Markers of Resistance to Phytophthora infestans. Plants 11:61. 10.3390/PLANTS11010061 PubMed DOI PMC
Ebadzad G., Medeira C., Maia I., Martins J., Cravador A. (2015). Induction of defence responses by cinnamomins against Phytophthora cinnamomi in Quercus suber and Quercus ilex subs. rotundifolia. Eur. J. Plant Pathol. 143 705–723. 10.1007/s10658-015-0721-9 DOI
Evangelisti E., Gogleva A., Hainaux T., Doumane M., Tulin F., Quan C., et al. (2017). Time-resolved dual transcriptomics reveal early induced Nicotiana benthamiana root genes and conserved infection-promoting Phytophthora palmivora effectors. BMC Biol. 15:39. 10.1186/s12915-017-0379-1 PubMed DOI PMC
Fenning T. M. (2019). The use of tissue culture and in-vitro approaches for the study of tree diseases. Plant Cell Tissue Organ. Cult. 136 415–430. 10.1007/s11240-018-01531-0 DOI
Fortunato A. A., Debona D., Bernardeli A. M. A., Rodrigues F. Á. (2015). Changes in the Antioxidant System in Soybean Leaves Infected by Corynespora cassiicola. Phytopathology 105 1050–1058. 10.1094/PHYTO-10-14-0283-R PubMed DOI
Fossdal C. G., Yaqoob N., Krokene P., Kvaalen H., Solheim H., Yakovlev I. A. (2012). Local and systemic changes in expression of resistance genes, nb-lrr genes and their putative microRNAs in norway spruce after wounding and inoculation with the pathogen ceratocystis polonica. BMC Plant Biol. 12:105. 10.1186/1471-2229-12-105 PubMed DOI PMC
Gao S., Ren Y., Masabni J., Zou F., Xiong H., Zhu J. (2021). Influence of geographical and climatic factors on quercus variabilis blume fruit phenotypic diversity. Diversity 13:329. 10.3390/D13070329/S1 DOI
Ge Y., Bi Y., Guest D. I. (2013). Defence responses in leaves of resistant and susceptible melon (Cucumis melo L.) cultivars infected with Colletotrichum lagenarium. Physiol. Mol. Plant Pathol. 81 13–21. 10.1016/j.pmpp.2012.09.002 DOI
González M., Romero M. -Á, García L.-V., Gómez-Aparicio L., Serrano M.-S. (2020). Unravelling the role of drought as predisposing factor for Quercus suber decline caused by Phytophthora cinnamomi. Eur. J. Plant Pathol. 156 1015–1021. 10.1007/s10658-020-01951-9 DOI
Gullner G., Komives T., Király L., Schröder P. (2018). Glutathione S-transferase enzymes in plant-pathogen interactions. Front. Plant Sci. 871:1836. 10.3389/fpls.2018.01836 PubMed DOI PMC
Hallmark H. T., Černý M., Brzobohatý B., Rashotte A. M. (2020). trans-Zeatin-N-glucosides have biological activity in Arabidopsis thaliana. PLoS One 15:e0232762. 10.1371/journal.pone.0232762 PubMed DOI PMC
Hardham A. R., Blackman L. M. (2018). Phytophthora cinnamomi. Mol. Plant Pathol. 19 260–285. 10.1111/mpp.12568 PubMed DOI PMC
Hardoim P. R., Guerra R., Rosa da Costa A. M., Serrano M. S., Sánchez M. E., Coelho A. C. (2016). Temporal metabolic profiling of the Quercus suber - Phytophthora cinnamomi system by middle-infrared spectroscopy. For. Pathol. 46 122–133. 10.1111/efp.12229 DOI
Hernández I., Chacón O., Rodriguez R., Portieles R., López Y., Pujol M., et al. (2009). Black shank resistant tobacco by silencing of glutathione S-transferase. Biochem. Biophys. Res. Commun. 387 300–304. 10.1016/j.bbrc.2009.07.003 PubMed DOI
Hipp A. L., Manos P. S., Hahn M., Avishai M., Bodénès C., Cavender-Bares J., et al. (2020). Genomic landscape of the global oak phylogeny. New Phytol. 226 1198–1212. 10.1111/nph.16162 PubMed DOI
Homet P., González M., Matías L., Godoy O., Pérez-Ramos I. M., García L. V., et al. (2019). Exploring interactive effects of climate change and exotic pathogens on Quercus suber performance: damage caused by Phytophthora cinnamomi varies across contrasting scenarios of soil moisture. Agric. For. Meteorol. 276–277 107605. 10.1016/j.agrformet.2019.06.004 DOI
Horn D. M., Ueckert T., Fritzemeier K., Tham K., Paschke C., Berg F., et al. (2016). New Method For Label-Free Quantification In The Proteome Discoverer Framework. Sunnyvale, CA: Thermo Fisher Scientific.
Hubert F., Grimm G. W., Jousselin E., Berry V., Franc A., Kremer A. (2014). Multiple nuclear genes stabilize the phylogenetic backbone of the genus Quercus. Syst. Biodivers. 12 405–423. 10.1080/14772000.2014.941037 DOI
Jalil S. U., Mishra M., Ansari M. I. (2015). Current view on chitinase for plant defence. Trends Biosci. 8 6733–6743. 10.3389/fpls.2017.00362 PubMed DOI PMC
Judelson H. S., Ah-Fong A. M. V. (2019). Exchanges at the plant-oomycete interface that influence disease. Plant Physiol. 179 1198–1211. 10.1104/pp.18.00979 PubMed DOI PMC
Judelson H. S., Tani S., Narayan R. D. (2009). Metabolic adaptation of Phytophthora infestans during growth on leaves, tubers and artificial media. Mol. Plant Pathol. 10 843–855. 10.1111/j.1364-3703.2009.00570.x PubMed DOI PMC
Jung T., Chang T. T., Bakonyi J., Seress D., Pérez-Sierra A., Yang X., et al. (2017). Diversity of Phytophthora species in natural ecosystems of Taiwan and association with disease symptoms. Plant Pathol. 66 194–211. 10.1111/ppa.12564 DOI
Jung T., Maia C., Fu C.-H., Chang T.-T., Horta Jung M. (2014). Differences in Susceptibility to Phytophthora cinnamomi Between the European Cork Oak (Quercus suber) and Six Asian Quercus spp. Unpublished work.
Jung T., Pérez-Sierra A., Durán A., Jung M. H., Balci Y., Scanu B. (2018). Canker and decline diseases caused by soil- and airborne Phytophthora species in forests and woodlands. Persoonia 40 182–220. 10.3767/persoonia.2018.40.08 PubMed DOI PMC
Jung T., Scanu B., Brasier C., Webber J., Milenkoviæ I., Corcobado T., et al. (2020). A Survey in Natural Forest Ecosystems of Vietnam Reveals High Diversity of both New and Described Phytophthora Taxa including P. ramorum. Forests 11:93. 10.3390/f11010093 DOI
Jung T., Vettraino A. M., Cech T., Vannini A. (2013). “The impact of invasive Phytophthora species on European forests,” in Phytophthora: a global perspective, ed. Kurt L. (Wallingford: CABI; ), 146–158. 10.1079/9781780640938.0146 DOI
Kim H. N., Jin H. Y., Kwak M. J., Khaine I., You H. N., Lee T. Y., et al. (2017). Why does Quercus suber species decline in Mediterranean areas? J. Asia-Pac. Biodivers. 10 337–341. 10.1016/j.japb.2017.05.004 DOI
Mansfeld B. N., Colle M., Zhang C., Lin Y. C., Grumet R. (2020). Developmentally regulated activation of defense allows for rapid inhibition of infection in age-related resistance to Phytophthora capsici in cucumber fruit. BMC Genomics 21:628. 10.1186/s12864-020-07040-9 PubMed DOI PMC
McCown B. H., Lloyd G. (1981). Woody Plant Medium (WPM)—A Mineral Nutrient Formulation for Microculture of Woody Plant Species. HortScience 16 453–453.
Meyer F. E., Shuey L. S., Naidoo S. S., Mamni T., Berger D. K., Myburg A. A., et al. (2016). Dual RNA-sequencing of Eucalyptus nitens during Phytophthora cinnamomi challenge reveals pathogen and host factors influencing compatibility. Front. Plant Sci. 7:191. 10.3389/fpls.2016.00191 PubMed DOI PMC
Moreira A. C., Martins J. M. S. (2005). Influence of site factors on the impact of Phytophthora cinnamomi in cork oak stands in Portugal. For. Pathol. 35 145–162. 10.1111/j.1439-0329.2005.00397.x DOI
Moreno-Chacón A. L., Camperos-Reyes J. E., Ávila Diazgranados R. A., Romero H. M. (2013). Biochemical and physiological responses of oil palm to bud rot caused by Phytophthora palmivora. Plant Physiol. Biochem. 70 246–251. 10.1016/j.plaphy.2013.05.026 PubMed DOI
Moricca S., Linaldeddu B. T., Ginetti B., Scanu B., Franceschini A., Ragazzi A. (2016). Endemic and Emerging Pathogens Threatening Cork Oak Trees: management Options for Conserving a Unique Forest Ecosystem. Plant Dis. 100 2184–2193. 10.1094/PDIS-03-16-0408-FE PubMed DOI
Nelson C., Powell W., Merkle S., Carlson J., Hebard F., Islam-Faridi N., et al. (2014). “Biotechnology of trees: chestnut,” in Tree Biotechnology, eds Ramawat K., Mérillion J., Ahuja M. (Boca Raton: CRC Press; ), 3–35.
Oßwald W., Fleischmann F., Rigling D., Coelho A. C., Cravador A., Diez J., et al. (2014). Strategies of attack and defence in woody plant-Phytophthora interactions. For. Pathol. 44 169–190. 10.1111/efp.12096 DOI
Pandhair V., Sekhon B. S. (2006). Reactive oxygen species and antioxidants in plants: an overview. J. Plant Biochem. Biotechnol. 15 71–78. 10.1007/BF03321907 DOI
Pang L., Xiao J., Ma J., Yan L. (2021). Hyperspectral imaging technology to detect the vigor of thermal-damaged Quercus variabilis seeds. J. For. Res. 32 461–469. 10.1007/S11676-020-01144-4/TABLES/3 DOI
Parker D., Beckmann M., Zubair H., Enot D. P., Caracuel-Rios Z., Overy D. P., et al. (2009). Metabolomic analysis reveals a common pattern of metabolic re-programming during invasion of three host plant species by Magnaporthe grisea. Plant J. 59 723–737. 10.1111/j.1365-313X.2009.03912.x PubMed DOI
Pino L. K., Searle B. C., Bollinger J. G., Nunn B., MacLean B., MacCoss M. J. (2020). The Skyline ecosystem: informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev. 39 229–244. 10.1002/mas.21540 PubMed DOI PMC
Robin C., Desprez-Loustau M.-L., Capron G., Delatour C. (1998). First record of Phytophthora cinnamomi on cork and holm oaks in France and evidence of pathogenicity. Ann. des Sci. For. 55 869–883. 10.1051/forest:19980801 DOI
Rojas C. M., Senthil-Kumar M., Tzin V., Mysore K. S. (2014). Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front. Plant Sci. 5:17. 10.3389/fpls.2014.00017 PubMed DOI PMC
Saiz-Fernández I., Milenkoviæ I., Berka M., Černý M., Tomšovský M., Brzobohatý B., et al. (2020). Integrated proteomic and metabolomic profiling of Phytophthora cinnamomi attack on Sweet chestnut (Castanea sativa) reveals distinct molecular reprogramming proximal to the infection site and away from it. Int. J. Mol. Sci. 21:8525. 10.3390/ijms21228525 PubMed DOI PMC
Salem M. A., Yoshida T., Perez de Souza L., Alseekh S., Bajdzienko K., Fernie A. R., et al. (2020). An improved extraction method enables the comprehensive analysis of lipids, proteins, metabolites and phytohormones from a single sample of leaf tissue under water-deficit stress. Plant J. 103 1614–1632. 10.1111/tpj.14800 PubMed DOI
San-Eufrasio B., Castillejo M. Á, Labella-Ortega M., Ruiz-Gómez F. J., Navarro-Cerrillo R. M., Tienda-Parrilla M., et al. (2021). Effect and Response of Quercus ilex subsp. ballota [Desf.] Samp. Seedlings From Three Contrasting Andalusian Populations to Individual and Combined Phytophthora cinnamomi and Drought Stresses. Front. Plant Sci. 12:722802. 10.3389/fpls.2021.722802 PubMed DOI PMC
Scanu B., Linaldeddu B. T., Franceschini A., Anselmi N., Vannini A., Vettraino A. M. (2013). Occurrence of Phytophthora cinnamomi in cork oak forests in Italy. For. Pathol. 43 340–343. 10.1111/efp.12039 DOI
Seddaiu S., Brandano A., Ruiu P. A., Sechi C., Scanu B. (2020). An Overview of Phytophthora Species Inhabiting Declining Quercus suber Stands in Sardinia (Italy). Forests 11:971. 10.3390/F11090971 DOI
Serrazina S., Santos C., Machado H., Pesquita C., Vicentini R., Pais M. S., et al. (2015). Castanea root transcriptome in response to Phytophthora cinnamomi challenge. Tree Genet. Genomes 11 1–19. 10.1007/s11295-014-0829-7 DOI
Shakya S. K., Grünwald N. J., Fieland V. J., Knaus B. J., Weiland J. E., Maia C., et al. (2021). Phylogeography of the wide-host range panglobal plant pathogen Phytophthora cinnamomi. Mol. Ecol. 30 5164–5178. 10.1111/mec.16109 PubMed DOI
Shearer B. L., Crane C. E., Barrett S., Cochrane A. (2007). Phytophthora cinnamomi invasion, a major threatening process to conservation of flora diversity in the South-west Botanical Province of Western Australia. Aust. J. Bot. 55:225. 10.1071/BT06019 DOI
Silva J. S., Catry F. (2006). Forest fires in cork oak (Quercus suber L.) stands in Portugal. Int. J. Environ. Stud. 63 235–257. 10.1080/00207230600720829 DOI
Tenenboim H., Brotman Y. (2016). Omic Relief for the Biotically Stressed: metabolomics of Plant Biotic Interactions. Trends Plant Sci. 21 781–791. 10.1016/j.tplants.2016.04.009 PubMed DOI
van den Berg N., Swart V., Backer R., Fick A., Wienk R., Engelbrecht J., et al. (2021). Advances in Understanding Defense Mechanisms in Persea americana Against Phytophthora cinnamomi. Front. Plant Sci. 12:636339. 10.3389/fpls.2021.636339 PubMed DOI PMC
Vandemark G. J., Barker B. M. (2003). Quantifying Phytophthora medicaginis in susceptible and resistant alfalfa with a real-time fluorescent PCR assay. J. Phytopathol. 151 577–583. 10.1046/j.0931-1785.2003.00768.x DOI
Vanholme R., De Meester B., Ralph J., Boerjan W. (2019). Lignin biosynthesis and its integration into metabolism. Curr. Opin. Biotechnol. 56 230–239. 10.1016/j.copbio.2019.02.018 PubMed DOI
Wang X. F., Liu J. F., Gao W. Q., Deng Y. P., Ni Y. Y., Xiao Y. H., et al. (2016). Defense pattern of Chinese cork oak across latitudinal gradients: influences of ontogeny, herbivory, climate and soil nutrients. Sci. Rep. 6:27269. 10.1038/srep27269 PubMed DOI PMC
Wei S., Song Y., Jia L. (2020). Influence of the slope aspect on the ectomycorrhizal fungal community of Quercus variabilis Blume in the middle part of the Taihang Mountains, North China. J. For. Res. 32 385–400. 10.1007/S11676-019-01083-9 DOI
Xiao C., Gao J., Zhang Y., Wang Z., Zhang D., Chen Q., et al. (2019). Quantitative proteomics of potato leaves infected with phytophthora infestans provides insights into coordinated and altered protein expression during early and late disease stages. Int. J. Mol. Sci. 20:136. 10.3390/ijms20010136 PubMed DOI PMC
Zhou J. Y., Lin J., He J. F., Zhang W. H. (2010). Review and perspective on Quercus variabilis research. J. Northwest For. Univ. 25 43–49.
Defense mechanisms promoting tolerance to aggressive Phytophthora species in hybrid poplar