Differences in the Proteomic and Metabolomic Response of Quercus suber and Quercus variabilis During the Early Stages of Phytophthora cinnamomi Infection
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
35770156
PubMed Central
PMC9234522
DOI
10.3389/fmicb.2022.894533
Knihovny.cz E-resources
- Keywords
- glutathione S-transferase, micropropagation, peroxidases, phenylpropanoids, plant pathogen, resistance, sugars,
- Publication type
- Journal Article MeSH
Phytophthora cinnamomi Rands is a cosmopolite pathogen of woody plants which during the last couple of centuries has spread all over the world from its center of origin in Southeast Asia. In contrast to Chinese cork oak (Quercus variabilis Blume) forests native to Asia, which are generally healthy despite the presence of the pathogen, the populations of Cork oaks (Quercus suber L.) in Europe have been severely decimated by P. cinnamomi. The present study aims at identifying the differences in the early proteomic and metabolomic response of these two tree species that lead to their differences in susceptibility to P. cinnamomi. By using micropropagated clonal plants, we tried to minimize the plant-to-plant differences in the defense response that is maximized by the high intraspecific genetic variability inherent to the Quercus genus. The evolution on the content of Phytophthora proteins in the roots during the first 36 h after inoculation suggests a slower infection process in Q. variabilis plants. These plants displayed a significant decrease in sugars in the roots, together with a downregulation of proteins related to carbon metabolism. In the leaves, the biggest changes in proteomic profiling were observed 16 h after inoculation, and included increased abundance of peroxidases, superoxide dismutases and glutathione S-transferases in Q. variabilis plants, which probably contributed to decrease its susceptibility to P. cinnamomi.
See more in PubMed
Ali S. S., Shao J., Lary D. J., Strem M. D., Meinhardt L. W., Bailey B. A. (2017). PubMed DOI PMC
Allardyce J. A., Rookes J. E., Cahill D. M. (2012). Defining Plant Resistance to DOI
Aronson J., Pereira J., Pausas J. (2009).
Avila J. M., Linares J. C., García-Nogales A., Sánchez M. E., Gómez-Aparicio L. (2017). Across-scale patterning of plant–soil–pathogen interactions in DOI
Bergot M., Cloppet E., Pérarnaud V., Déqué M., Marçais B., Desprez-Loustau M.-L. (2004). Simulation of potential range expansion of oak disease caused by DOI
Berka M., Luklová M., Dufková H., Berková V., Novák J., Saiz-Fernández I., et al. (2020b). Barley Root Proteome and Metabolome in Response to Cytokinin and Abiotic Stimuli. PubMed DOI PMC
Berka M., Greplová M., Saiz-Fernández I., Novák J., Luklová M., Zelená P., et al. (2020a). Peptide-based identification of PubMed DOI PMC
Bindea G., Mlecnik B., Hackl H., Charoentong P., Tosolini M., Kirilovsky A., et al. (2009). ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. PubMed DOI PMC
Bugalho M., Plieninger T., Aronson J., Ellatifi M., Crespo D. G. (2009). “Open woodlands: A diversity of uses (and overuses),” in
Byrt P., Grant B. R. (1979). Some conditions governing zoospore production in axenic cultures of DOI
Cahill D. M., Bennett I. J., McComb J. A. (1993). Mechanisms of resistance to DOI
Camilo-Alves C. S. P., da Clara M. I. E., de Almeida Ribeiro N. M. C. (2013). Decline of Mediterranean oak trees and its association with DOI
Camisón Á, Martín M. Á, Sánchez-Bel P., Flors V., Alcaide F., Morcuende D., et al. (2019). Hormone and secondary metabolite profiling in chestnut during susceptible and resistant interactions with PubMed DOI
Cardillo E., Abad E., Meyer S. (2021). Iberian oak decline caused by DOI
Carvalho A., Paula A., Guedes-Pinto H., Martins L., Carvalho J., Lima-Brito J. (2009). Preliminary genetic approach based on both cytogenetic and molecular characterisations of nine oak species. DOI
Catal M., Erler F., Fulbright D. W., Adams G. C. (2013). Real-time quantitative PCR assays for evaluation of soybean varieties for resistance to the stem and root rot pathogen DOI
Chong J., Wishart D. S., Xia J. (2019). Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. PubMed DOI
Choudhury F. K., Rivero R. M., Blumwald E., Mittler R. (2017). Reactive oxygen species, abiotic stress and stress combination. PubMed DOI
Coelho A. C., Lima M. B., Neves D., Cravador A. (2006b). Genetic Diversity of Two Evergreen Oaks [ DOI
Coelho A. C., Horta M., Neves D., Cravador A. (2006a). Involvement of a cinnamyl alcohol dehydrogenase of DOI
Corcobado T., Milenkovi I., Saiz-Fernández I., Kudláèek T., Plichta R., Májek T., et al. (2022). Metabolomic and physiological changes in PubMed DOI PMC
Dorfer V., Pichler P., Stranzl T., Stadlmann J., Taus T., Winkler S., et al. (2014). MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. PubMed DOI PMC
Draper J., Rasmussen S., Zubair H. (2018). “Metabolite Analysis and Metabolomics in the Study of Biotrophic Interactions between Plants and Microbes,” in DOI
Dufková H., Berka M., Greplová M., Shejbalová Š, Hampejsová R., Luklová M., et al. (2021). The Omics Hunt for Novel Molecular Markers of Resistance to Phytophthora infestans. PubMed DOI PMC
Ebadzad G., Medeira C., Maia I., Martins J., Cravador A. (2015). Induction of defence responses by cinnamomins against DOI
Evangelisti E., Gogleva A., Hainaux T., Doumane M., Tulin F., Quan C., et al. (2017). Time-resolved dual transcriptomics reveal early induced PubMed DOI PMC
Fenning T. M. (2019). The use of tissue culture and in-vitro approaches for the study of tree diseases. DOI
Fortunato A. A., Debona D., Bernardeli A. M. A., Rodrigues F. Á. (2015). Changes in the Antioxidant System in Soybean Leaves Infected by Corynespora cassiicola. PubMed DOI
Fossdal C. G., Yaqoob N., Krokene P., Kvaalen H., Solheim H., Yakovlev I. A. (2012). Local and systemic changes in expression of resistance genes, nb-lrr genes and their putative microRNAs in norway spruce after wounding and inoculation with the pathogen ceratocystis polonica. PubMed DOI PMC
Gao S., Ren Y., Masabni J., Zou F., Xiong H., Zhu J. (2021). Influence of geographical and climatic factors on quercus variabilis blume fruit phenotypic diversity. DOI
Ge Y., Bi Y., Guest D. I. (2013). Defence responses in leaves of resistant and susceptible melon ( DOI
González M., Romero M. -Á, García L.-V., Gómez-Aparicio L., Serrano M.-S. (2020). Unravelling the role of drought as predisposing factor for DOI
Gullner G., Komives T., Király L., Schröder P. (2018). Glutathione S-transferase enzymes in plant-pathogen interactions. PubMed DOI PMC
Hallmark H. T., Černý M., Brzobohatý B., Rashotte A. M. (2020). trans-Zeatin-N-glucosides have biological activity in Arabidopsis thaliana. PubMed DOI PMC
Hardham A. R., Blackman L. M. (2018). PubMed DOI PMC
Hardoim P. R., Guerra R., Rosa da Costa A. M., Serrano M. S., Sánchez M. E., Coelho A. C. (2016). Temporal metabolic profiling of the DOI
Hernández I., Chacón O., Rodriguez R., Portieles R., López Y., Pujol M., et al. (2009). Black shank resistant tobacco by silencing of glutathione S-transferase. PubMed DOI
Hipp A. L., Manos P. S., Hahn M., Avishai M., Bodénès C., Cavender-Bares J., et al. (2020). Genomic landscape of the global oak phylogeny. PubMed DOI
Homet P., González M., Matías L., Godoy O., Pérez-Ramos I. M., García L. V., et al. (2019). Exploring interactive effects of climate change and exotic pathogens on DOI
Horn D. M., Ueckert T., Fritzemeier K., Tham K., Paschke C., Berg F., et al. (2016).
Hubert F., Grimm G. W., Jousselin E., Berry V., Franc A., Kremer A. (2014). Multiple nuclear genes stabilize the phylogenetic backbone of the genus Quercus. DOI
Jalil S. U., Mishra M., Ansari M. I. (2015). Current view on chitinase for plant defence. PubMed DOI PMC
Judelson H. S., Ah-Fong A. M. V. (2019). Exchanges at the plant-oomycete interface that influence disease. PubMed DOI PMC
Judelson H. S., Tani S., Narayan R. D. (2009). Metabolic adaptation of Phytophthora infestans during growth on leaves, tubers and artificial media. PubMed DOI PMC
Jung T., Chang T. T., Bakonyi J., Seress D., Pérez-Sierra A., Yang X., et al. (2017). Diversity of Phytophthora species in natural ecosystems of Taiwan and association with disease symptoms. DOI
Jung T., Maia C., Fu C.-H., Chang T.-T., Horta Jung M. (2014).
Jung T., Pérez-Sierra A., Durán A., Jung M. H., Balci Y., Scanu B. (2018). Canker and decline diseases caused by soil- and airborne Phytophthora species in forests and woodlands. PubMed DOI PMC
Jung T., Scanu B., Brasier C., Webber J., Milenkoviæ I., Corcobado T., et al. (2020). A Survey in Natural Forest Ecosystems of Vietnam Reveals High Diversity of both New and Described Phytophthora Taxa including P. ramorum. DOI
Jung T., Vettraino A. M., Cech T., Vannini A. (2013). “The impact of invasive Phytophthora species on European forests,” in DOI
Kim H. N., Jin H. Y., Kwak M. J., Khaine I., You H. N., Lee T. Y., et al. (2017). Why does DOI
Mansfeld B. N., Colle M., Zhang C., Lin Y. C., Grumet R. (2020). Developmentally regulated activation of defense allows for rapid inhibition of infection in age-related resistance to Phytophthora capsici in cucumber fruit. PubMed DOI PMC
McCown B. H., Lloyd G. (1981). Woody Plant Medium (WPM)—A Mineral Nutrient Formulation for Microculture of Woody Plant Species.
Meyer F. E., Shuey L. S., Naidoo S. S., Mamni T., Berger D. K., Myburg A. A., et al. (2016). Dual RNA-sequencing of Eucalyptus nitens during PubMed DOI PMC
Moreira A. C., Martins J. M. S. (2005). Influence of site factors on the impact of DOI
Moreno-Chacón A. L., Camperos-Reyes J. E., Ávila Diazgranados R. A., Romero H. M. (2013). Biochemical and physiological responses of oil palm to bud rot caused by Phytophthora palmivora. PubMed DOI
Moricca S., Linaldeddu B. T., Ginetti B., Scanu B., Franceschini A., Ragazzi A. (2016). Endemic and Emerging Pathogens Threatening Cork Oak Trees: management Options for Conserving a Unique Forest Ecosystem. PubMed DOI
Nelson C., Powell W., Merkle S., Carlson J., Hebard F., Islam-Faridi N., et al. (2014). “Biotechnology of trees: chestnut,” in
Oßwald W., Fleischmann F., Rigling D., Coelho A. C., Cravador A., Diez J., et al. (2014). Strategies of attack and defence in woody plant-Phytophthora interactions. DOI
Pandhair V., Sekhon B. S. (2006). Reactive oxygen species and antioxidants in plants: an overview. DOI
Pang L., Xiao J., Ma J., Yan L. (2021). Hyperspectral imaging technology to detect the vigor of thermal-damaged Quercus variabilis seeds. DOI
Parker D., Beckmann M., Zubair H., Enot D. P., Caracuel-Rios Z., Overy D. P., et al. (2009). Metabolomic analysis reveals a common pattern of metabolic re-programming during invasion of three host plant species by Magnaporthe grisea. PubMed DOI
Pino L. K., Searle B. C., Bollinger J. G., Nunn B., MacLean B., MacCoss M. J. (2020). The Skyline ecosystem: informatics for quantitative mass spectrometry proteomics. PubMed DOI PMC
Robin C., Desprez-Loustau M.-L., Capron G., Delatour C. (1998). First record of DOI
Rojas C. M., Senthil-Kumar M., Tzin V., Mysore K. S. (2014). Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. PubMed DOI PMC
Saiz-Fernández I., Milenkoviæ I., Berka M., Černý M., Tomšovský M., Brzobohatý B., et al. (2020). Integrated proteomic and metabolomic profiling of PubMed DOI PMC
Salem M. A., Yoshida T., Perez de Souza L., Alseekh S., Bajdzienko K., Fernie A. R., et al. (2020). An improved extraction method enables the comprehensive analysis of lipids, proteins, metabolites and phytohormones from a single sample of leaf tissue under water-deficit stress. PubMed DOI
San-Eufrasio B., Castillejo M. Á, Labella-Ortega M., Ruiz-Gómez F. J., Navarro-Cerrillo R. M., Tienda-Parrilla M., et al. (2021). Effect and Response of Quercus ilex subsp. ballota [Desf.] Samp. Seedlings From Three Contrasting Andalusian Populations to Individual and Combined PubMed DOI PMC
Scanu B., Linaldeddu B. T., Franceschini A., Anselmi N., Vannini A., Vettraino A. M. (2013). Occurrence of DOI
Seddaiu S., Brandano A., Ruiu P. A., Sechi C., Scanu B. (2020). An Overview of Phytophthora Species Inhabiting Declining DOI
Serrazina S., Santos C., Machado H., Pesquita C., Vicentini R., Pais M. S., et al. (2015). Castanea root transcriptome in response to DOI
Shakya S. K., Grünwald N. J., Fieland V. J., Knaus B. J., Weiland J. E., Maia C., et al. (2021). Phylogeography of the wide-host range panglobal plant pathogen PubMed DOI
Shearer B. L., Crane C. E., Barrett S., Cochrane A. (2007). DOI
Silva J. S., Catry F. (2006). Forest fires in cork oak ( DOI
Tenenboim H., Brotman Y. (2016). Omic Relief for the Biotically Stressed: metabolomics of Plant Biotic Interactions. PubMed DOI
van den Berg N., Swart V., Backer R., Fick A., Wienk R., Engelbrecht J., et al. (2021). Advances in Understanding Defense Mechanisms in Persea americana Against PubMed DOI PMC
Vandemark G. J., Barker B. M. (2003). Quantifying DOI
Vanholme R., De Meester B., Ralph J., Boerjan W. (2019). Lignin biosynthesis and its integration into metabolism. PubMed DOI
Wang X. F., Liu J. F., Gao W. Q., Deng Y. P., Ni Y. Y., Xiao Y. H., et al. (2016). Defense pattern of Chinese cork oak across latitudinal gradients: influences of ontogeny, herbivory, climate and soil nutrients. PubMed DOI PMC
Wei S., Song Y., Jia L. (2020). Influence of the slope aspect on the ectomycorrhizal fungal community of Quercus variabilis Blume in the middle part of the Taihang Mountains, North China. DOI
Xiao C., Gao J., Zhang Y., Wang Z., Zhang D., Chen Q., et al. (2019). Quantitative proteomics of potato leaves infected with phytophthora infestans provides insights into coordinated and altered protein expression during early and late disease stages. PubMed DOI PMC
Zhou J. Y., Lin J., He J. F., Zhang W. H. (2010). Review and perspective on Quercus variabilis research.
Defense mechanisms promoting tolerance to aggressive Phytophthora species in hybrid poplar