• This record comes from PubMed

Differences in the Proteomic and Metabolomic Response of Quercus suber and Quercus variabilis During the Early Stages of Phytophthora cinnamomi Infection

. 2022 ; 13 () : 894533. [epub] 20220613

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Phytophthora cinnamomi Rands is a cosmopolite pathogen of woody plants which during the last couple of centuries has spread all over the world from its center of origin in Southeast Asia. In contrast to Chinese cork oak (Quercus variabilis Blume) forests native to Asia, which are generally healthy despite the presence of the pathogen, the populations of Cork oaks (Quercus suber L.) in Europe have been severely decimated by P. cinnamomi. The present study aims at identifying the differences in the early proteomic and metabolomic response of these two tree species that lead to their differences in susceptibility to P. cinnamomi. By using micropropagated clonal plants, we tried to minimize the plant-to-plant differences in the defense response that is maximized by the high intraspecific genetic variability inherent to the Quercus genus. The evolution on the content of Phytophthora proteins in the roots during the first 36 h after inoculation suggests a slower infection process in Q. variabilis plants. These plants displayed a significant decrease in sugars in the roots, together with a downregulation of proteins related to carbon metabolism. In the leaves, the biggest changes in proteomic profiling were observed 16 h after inoculation, and included increased abundance of peroxidases, superoxide dismutases and glutathione S-transferases in Q. variabilis plants, which probably contributed to decrease its susceptibility to P. cinnamomi.

See more in PubMed

Ali S. S., Shao J., Lary D. J., Strem M. D., Meinhardt L. W., Bailey B. A. (2017). PubMed DOI PMC

Allardyce J. A., Rookes J. E., Cahill D. M. (2012). Defining Plant Resistance to DOI

Aronson J., Pereira J., Pausas J. (2009).

Avila J. M., Linares J. C., García-Nogales A., Sánchez M. E., Gómez-Aparicio L. (2017). Across-scale patterning of plant–soil–pathogen interactions in DOI

Bergot M., Cloppet E., Pérarnaud V., Déqué M., Marçais B., Desprez-Loustau M.-L. (2004). Simulation of potential range expansion of oak disease caused by DOI

Berka M., Luklová M., Dufková H., Berková V., Novák J., Saiz-Fernández I., et al. (2020b). Barley Root Proteome and Metabolome in Response to Cytokinin and Abiotic Stimuli. PubMed DOI PMC

Berka M., Greplová M., Saiz-Fernández I., Novák J., Luklová M., Zelená P., et al. (2020a). Peptide-based identification of PubMed DOI PMC

Bindea G., Mlecnik B., Hackl H., Charoentong P., Tosolini M., Kirilovsky A., et al. (2009). ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. PubMed DOI PMC

Bugalho M., Plieninger T., Aronson J., Ellatifi M., Crespo D. G. (2009). “Open woodlands: A diversity of uses (and overuses),” in

Byrt P., Grant B. R. (1979). Some conditions governing zoospore production in axenic cultures of DOI

Cahill D. M., Bennett I. J., McComb J. A. (1993). Mechanisms of resistance to DOI

Camilo-Alves C. S. P., da Clara M. I. E., de Almeida Ribeiro N. M. C. (2013). Decline of Mediterranean oak trees and its association with DOI

Camisón Á, Martín M. Á, Sánchez-Bel P., Flors V., Alcaide F., Morcuende D., et al. (2019). Hormone and secondary metabolite profiling in chestnut during susceptible and resistant interactions with PubMed DOI

Cardillo E., Abad E., Meyer S. (2021). Iberian oak decline caused by DOI

Carvalho A., Paula A., Guedes-Pinto H., Martins L., Carvalho J., Lima-Brito J. (2009). Preliminary genetic approach based on both cytogenetic and molecular characterisations of nine oak species. DOI

Catal M., Erler F., Fulbright D. W., Adams G. C. (2013). Real-time quantitative PCR assays for evaluation of soybean varieties for resistance to the stem and root rot pathogen DOI

Chong J., Wishart D. S., Xia J. (2019). Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. PubMed DOI

Choudhury F. K., Rivero R. M., Blumwald E., Mittler R. (2017). Reactive oxygen species, abiotic stress and stress combination. PubMed DOI

Coelho A. C., Lima M. B., Neves D., Cravador A. (2006b). Genetic Diversity of Two Evergreen Oaks [ DOI

Coelho A. C., Horta M., Neves D., Cravador A. (2006a). Involvement of a cinnamyl alcohol dehydrogenase of DOI

Corcobado T., Milenkovi I., Saiz-Fernández I., Kudláèek T., Plichta R., Májek T., et al. (2022). Metabolomic and physiological changes in PubMed DOI PMC

Dorfer V., Pichler P., Stranzl T., Stadlmann J., Taus T., Winkler S., et al. (2014). MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. PubMed DOI PMC

Draper J., Rasmussen S., Zubair H. (2018). “Metabolite Analysis and Metabolomics in the Study of Biotrophic Interactions between Plants and Microbes,” in DOI

Dufková H., Berka M., Greplová M., Shejbalová Š, Hampejsová R., Luklová M., et al. (2021). The Omics Hunt for Novel Molecular Markers of Resistance to Phytophthora infestans. PubMed DOI PMC

Ebadzad G., Medeira C., Maia I., Martins J., Cravador A. (2015). Induction of defence responses by cinnamomins against DOI

Evangelisti E., Gogleva A., Hainaux T., Doumane M., Tulin F., Quan C., et al. (2017). Time-resolved dual transcriptomics reveal early induced PubMed DOI PMC

Fenning T. M. (2019). The use of tissue culture and in-vitro approaches for the study of tree diseases. DOI

Fortunato A. A., Debona D., Bernardeli A. M. A., Rodrigues F. Á. (2015). Changes in the Antioxidant System in Soybean Leaves Infected by Corynespora cassiicola. PubMed DOI

Fossdal C. G., Yaqoob N., Krokene P., Kvaalen H., Solheim H., Yakovlev I. A. (2012). Local and systemic changes in expression of resistance genes, nb-lrr genes and their putative microRNAs in norway spruce after wounding and inoculation with the pathogen ceratocystis polonica. PubMed DOI PMC

Gao S., Ren Y., Masabni J., Zou F., Xiong H., Zhu J. (2021). Influence of geographical and climatic factors on quercus variabilis blume fruit phenotypic diversity. DOI

Ge Y., Bi Y., Guest D. I. (2013). Defence responses in leaves of resistant and susceptible melon ( DOI

González M., Romero M. -Á, García L.-V., Gómez-Aparicio L., Serrano M.-S. (2020). Unravelling the role of drought as predisposing factor for DOI

Gullner G., Komives T., Király L., Schröder P. (2018). Glutathione S-transferase enzymes in plant-pathogen interactions. PubMed DOI PMC

Hallmark H. T., Černý M., Brzobohatý B., Rashotte A. M. (2020). trans-Zeatin-N-glucosides have biological activity in Arabidopsis thaliana. PubMed DOI PMC

Hardham A. R., Blackman L. M. (2018). PubMed DOI PMC

Hardoim P. R., Guerra R., Rosa da Costa A. M., Serrano M. S., Sánchez M. E., Coelho A. C. (2016). Temporal metabolic profiling of the DOI

Hernández I., Chacón O., Rodriguez R., Portieles R., López Y., Pujol M., et al. (2009). Black shank resistant tobacco by silencing of glutathione S-transferase. PubMed DOI

Hipp A. L., Manos P. S., Hahn M., Avishai M., Bodénès C., Cavender-Bares J., et al. (2020). Genomic landscape of the global oak phylogeny. PubMed DOI

Homet P., González M., Matías L., Godoy O., Pérez-Ramos I. M., García L. V., et al. (2019). Exploring interactive effects of climate change and exotic pathogens on DOI

Horn D. M., Ueckert T., Fritzemeier K., Tham K., Paschke C., Berg F., et al. (2016).

Hubert F., Grimm G. W., Jousselin E., Berry V., Franc A., Kremer A. (2014). Multiple nuclear genes stabilize the phylogenetic backbone of the genus Quercus. DOI

Jalil S. U., Mishra M., Ansari M. I. (2015). Current view on chitinase for plant defence. PubMed DOI PMC

Judelson H. S., Ah-Fong A. M. V. (2019). Exchanges at the plant-oomycete interface that influence disease. PubMed DOI PMC

Judelson H. S., Tani S., Narayan R. D. (2009). Metabolic adaptation of Phytophthora infestans during growth on leaves, tubers and artificial media. PubMed DOI PMC

Jung T., Chang T. T., Bakonyi J., Seress D., Pérez-Sierra A., Yang X., et al. (2017). Diversity of Phytophthora species in natural ecosystems of Taiwan and association with disease symptoms. DOI

Jung T., Maia C., Fu C.-H., Chang T.-T., Horta Jung M. (2014).

Jung T., Pérez-Sierra A., Durán A., Jung M. H., Balci Y., Scanu B. (2018). Canker and decline diseases caused by soil- and airborne Phytophthora species in forests and woodlands. PubMed DOI PMC

Jung T., Scanu B., Brasier C., Webber J., Milenkoviæ I., Corcobado T., et al. (2020). A Survey in Natural Forest Ecosystems of Vietnam Reveals High Diversity of both New and Described Phytophthora Taxa including P. ramorum. DOI

Jung T., Vettraino A. M., Cech T., Vannini A. (2013). “The impact of invasive Phytophthora species on European forests,” in DOI

Kim H. N., Jin H. Y., Kwak M. J., Khaine I., You H. N., Lee T. Y., et al. (2017). Why does DOI

Mansfeld B. N., Colle M., Zhang C., Lin Y. C., Grumet R. (2020). Developmentally regulated activation of defense allows for rapid inhibition of infection in age-related resistance to Phytophthora capsici in cucumber fruit. PubMed DOI PMC

McCown B. H., Lloyd G. (1981). Woody Plant Medium (WPM)—A Mineral Nutrient Formulation for Microculture of Woody Plant Species.

Meyer F. E., Shuey L. S., Naidoo S. S., Mamni T., Berger D. K., Myburg A. A., et al. (2016). Dual RNA-sequencing of Eucalyptus nitens during PubMed DOI PMC

Moreira A. C., Martins J. M. S. (2005). Influence of site factors on the impact of DOI

Moreno-Chacón A. L., Camperos-Reyes J. E., Ávila Diazgranados R. A., Romero H. M. (2013). Biochemical and physiological responses of oil palm to bud rot caused by Phytophthora palmivora. PubMed DOI

Moricca S., Linaldeddu B. T., Ginetti B., Scanu B., Franceschini A., Ragazzi A. (2016). Endemic and Emerging Pathogens Threatening Cork Oak Trees: management Options for Conserving a Unique Forest Ecosystem. PubMed DOI

Nelson C., Powell W., Merkle S., Carlson J., Hebard F., Islam-Faridi N., et al. (2014). “Biotechnology of trees: chestnut,” in

Oßwald W., Fleischmann F., Rigling D., Coelho A. C., Cravador A., Diez J., et al. (2014). Strategies of attack and defence in woody plant-Phytophthora interactions. DOI

Pandhair V., Sekhon B. S. (2006). Reactive oxygen species and antioxidants in plants: an overview. DOI

Pang L., Xiao J., Ma J., Yan L. (2021). Hyperspectral imaging technology to detect the vigor of thermal-damaged Quercus variabilis seeds. DOI

Parker D., Beckmann M., Zubair H., Enot D. P., Caracuel-Rios Z., Overy D. P., et al. (2009). Metabolomic analysis reveals a common pattern of metabolic re-programming during invasion of three host plant species by Magnaporthe grisea. PubMed DOI

Pino L. K., Searle B. C., Bollinger J. G., Nunn B., MacLean B., MacCoss M. J. (2020). The Skyline ecosystem: informatics for quantitative mass spectrometry proteomics. PubMed DOI PMC

Robin C., Desprez-Loustau M.-L., Capron G., Delatour C. (1998). First record of DOI

Rojas C. M., Senthil-Kumar M., Tzin V., Mysore K. S. (2014). Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. PubMed DOI PMC

Saiz-Fernández I., Milenkoviæ I., Berka M., Černý M., Tomšovský M., Brzobohatý B., et al. (2020). Integrated proteomic and metabolomic profiling of PubMed DOI PMC

Salem M. A., Yoshida T., Perez de Souza L., Alseekh S., Bajdzienko K., Fernie A. R., et al. (2020). An improved extraction method enables the comprehensive analysis of lipids, proteins, metabolites and phytohormones from a single sample of leaf tissue under water-deficit stress. PubMed DOI

San-Eufrasio B., Castillejo M. Á, Labella-Ortega M., Ruiz-Gómez F. J., Navarro-Cerrillo R. M., Tienda-Parrilla M., et al. (2021). Effect and Response of Quercus ilex subsp. ballota [Desf.] Samp. Seedlings From Three Contrasting Andalusian Populations to Individual and Combined PubMed DOI PMC

Scanu B., Linaldeddu B. T., Franceschini A., Anselmi N., Vannini A., Vettraino A. M. (2013). Occurrence of DOI

Seddaiu S., Brandano A., Ruiu P. A., Sechi C., Scanu B. (2020). An Overview of Phytophthora Species Inhabiting Declining DOI

Serrazina S., Santos C., Machado H., Pesquita C., Vicentini R., Pais M. S., et al. (2015). Castanea root transcriptome in response to DOI

Shakya S. K., Grünwald N. J., Fieland V. J., Knaus B. J., Weiland J. E., Maia C., et al. (2021). Phylogeography of the wide-host range panglobal plant pathogen PubMed DOI

Shearer B. L., Crane C. E., Barrett S., Cochrane A. (2007). DOI

Silva J. S., Catry F. (2006). Forest fires in cork oak ( DOI

Tenenboim H., Brotman Y. (2016). Omic Relief for the Biotically Stressed: metabolomics of Plant Biotic Interactions. PubMed DOI

van den Berg N., Swart V., Backer R., Fick A., Wienk R., Engelbrecht J., et al. (2021). Advances in Understanding Defense Mechanisms in Persea americana Against PubMed DOI PMC

Vandemark G. J., Barker B. M. (2003). Quantifying DOI

Vanholme R., De Meester B., Ralph J., Boerjan W. (2019). Lignin biosynthesis and its integration into metabolism. PubMed DOI

Wang X. F., Liu J. F., Gao W. Q., Deng Y. P., Ni Y. Y., Xiao Y. H., et al. (2016). Defense pattern of Chinese cork oak across latitudinal gradients: influences of ontogeny, herbivory, climate and soil nutrients. PubMed DOI PMC

Wei S., Song Y., Jia L. (2020). Influence of the slope aspect on the ectomycorrhizal fungal community of Quercus variabilis Blume in the middle part of the Taihang Mountains, North China. DOI

Xiao C., Gao J., Zhang Y., Wang Z., Zhang D., Chen Q., et al. (2019). Quantitative proteomics of potato leaves infected with phytophthora infestans provides insights into coordinated and altered protein expression during early and late disease stages. PubMed DOI PMC

Zhou J. Y., Lin J., He J. F., Zhang W. H. (2010). Review and perspective on Quercus variabilis research.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...