Type-A response regulators negatively mediate heat stress response by altering redox homeostasis in Arabidopsis

. 2022 ; 13 () : 968139. [epub] 20220923

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36212299

Besides the long-standing role of cytokinins (CKs) as growth regulators, their current positioning at the interface of development and stress responses is coming into recognition. The current evidence suggests the notion that CKs are involved in heat stress response (HSR), however, the role of CK signaling components is still elusive. In this study, we have identified a role of the CK signaling components type-A Arabidopsis response regulators (ARRs) in HSR in Arabidopsis. The mutants of multiple type-A ARR genes exhibit improved basal and acquired thermotolerance and, altered response to oxidative stress in our physiological analyses. Through proteomics profiling, we show that the type-A arr mutants experience a 'stress-primed' state enabling them to respond more efficiently upon exposure to real stress stimuli. A substantial number of proteins that are involved in the heat-acclimatization process such as the proteins related to cellular redox status and heat shock, are already altered in the type-A arr mutants without a prior exposure to stress conditions. The metabolomics analyses further reveal that the mutants accumulate higher amounts of α-and γ-tocopherols, which are important antioxidants for protection against oxidative damage. Collectively, our results suggest that the type-A ARRs play an important role in heat stress response by affecting the redox homeostasis in Arabidopsis.

Zobrazit více v PubMed

Abbasi A. R., Hajirezaei M., Hofius D., Sonnewald U., Voll L. M. (2007). Specific roles of α- and γ-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiol. 143, 1720–1738. doi: 10.1104/PP.106.094771 PubMed DOI PMC

Abdelrahman M., Ishii T., El-Sayed M., Tran L.-S. P. (2020). Heat sensing and lipid reprograming as a signaling switch for heat stress responses in wheat. Plant Cell Physiol. 61, 1399–1407. doi: 10.1093/pcp/pcaa072 PubMed DOI

Arvidsson S., Kwasniewski M., Riaño-Pachón D. M., Mueller-Roeber B. (2008). QuantPrime - a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinf. 9, 1–15. doi: 10.1186/1471-2105-9-465 PubMed DOI PMC

Berka M., Luklová M., Dufková H., Berková V., Novák J., Saiz-Fernández I., et al. . (2020). Barley root proteome and metabolome in response to cytokinin and abiotic stimuli. Front. Plant Sci. 11. doi: 10.3389/FPLS.2020.590337 PubMed DOI PMC

Bindea G., Mlecnik B., Hackl H., Charoentong P., Tosolini M., Kirilovsky A., et al. . (2009). ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091. doi: 10.1093/BIOINFORMATICS/BTP101 PubMed DOI PMC

Bryksová M., Hybenová A., Hernándiz A. E., Novák O., Pěnčík A., Spíchal L., et al. . (2020). Hormopriming to mitigate abiotic stress effects: A case study of N9-substituted cytokinin derivatives with a fluorinated carbohydrate moiety. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.599228 PubMed DOI PMC

Caffarri S., Croce R., Breton J., Bassi R. (2001). The major antenna complex of photosystem II has a xanthophyll binding site not involved in light harvesting. J. Biol. Chem. 276, 35924–35933. doi: 10.1074/JBC.M105199200 PubMed DOI

Černý M., Dyka F., Bobál’Ová J., Brzobohatý B. (2011). Early cytokinin response proteins and phosphoproteins of arabidopsis thaliana identified by proteome and phosphoproteome profiling. J. Exp. Bot. 62, 921–937. doi: 10.1093/jxb/erq322 PubMed DOI PMC

Černý M., Jedelský P. L., Novák J., Schlosser A., Brzobohatý B. (2014). Cytokinin modulates proteomic, transcriptomic and growth responses to temperature shocks in arabidopsis. Plant Cell Environ. 37, 1641–1655. doi: 10.1111/pce.12270 PubMed DOI

Cortleven A., Nitschke S., Klaumünzer M., AbdElgawad H., Asard H., Grimm B., et al. . (2014). A novel protective function for cytokinin in the light stress response is mediated by the ARABIDOPSIS HISTIDINE KINASE2 and ARABIDOPSIS HISTIDINE KINASE3 receptors. Plant Physiol. 164, 1470–1483. doi: 10.1104/PP.113.224667 PubMed DOI PMC

Cortleven A., Valcke R. (2012). Evaluation of the photosynthetic activity in transgenic tobacco plants with altered endogenous cytokinin content: lessons from cytokinin. Physiol. Plant 144, 394–408. doi: 10.1111/J.1399-3054.2011.01558.X PubMed DOI

Das K., Roychoudhury A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2. doi: 10.3389/FENVS.2014.00053/BIBTEX DOI

Deng B., Jin X., Yang Y., Lin Z., Zhang Y. (2014). The regulatory role of riboflavin in the drought tolerance of tobacco plants depends on ROS production. Plant Growth Regul. 72 (3), 269–277. doi: 10.1007/S10725-013-9858-8 DOI

Devireddy A. R., Zandalinas S. I., Fichman Y., Mittler R. (2020). Integration of reactive oxygen species and hormone signaling during abiotic stress. Plant J, 105, 459–476. doi: 10.1111/tpj.15010 PubMed DOI

dos Santos C. V., Cuiné S., Rouhier N., Rey P. (2005). The arabidopsis plastidic methionine sulfoxide reductase b proteins. sequence and activity characteristics, comparison of the expression with plastidic methionine sulfoxide reductase a, and induction by photooxidative stress. Plant Physiol. 138, 909. doi: 10.1104/PP.105.062430 PubMed DOI PMC

Ellouzi H., Hamed K. B., Cela J., Müller M., Abdelly C., Munné-Bosch S. (2013). Increased sensitivity to salt stress in tocopherol-deficient arabidopsis mutants growing in a hydroponic system. Plant Signaling Behav. 8, 2.e23136. doi: 10.4161/PSB.23136 PubMed DOI PMC

Fernández-Bautista N., Fernández-Calvino L., Muñoz A., Toribio R., Mock H. P., Castellano M. M. (2018). HOP family plays a major role in long-term acquired thermotolerance in arabidopsis. Plant Cell Environ. 41, 1852–1869. doi: 10.1111/PCE.13326 PubMed DOI

Foyer C. H., Noctor G. (2011). Ascorbate and glutathione: The heart of the redox hub. Plant Physiol. 155, 2–18. doi: 10.1104/PP.110.167569 PubMed DOI PMC

García-Plazaola J. I., Portillo-Estrada M., Fernández-Marín B., Kännaste A., Niinemets Ü. (2017). Emissions of carotenoid cleavage products upon heat shock and mechanical wounding from a foliose lichen. Environ. Exp. Bot. 133, 87. doi: 10.1016/J.ENVEXPBOT.2016.10.004 PubMed DOI PMC

Gustavsson N., Kokke B. P. A., Härndahl U., Silow M., Bechtold U., Poghosyan Z., et al. . (2002). A peptide methionine sulfoxide reductase highly expressed in photosynthetic tissue in arabidopsis thaliana can protect the chaperone-like activity of a chloroplast-localized small heat shock protein. Plant J. 29, 545–553. doi: 10.1046/J.1365-313X.2002.029005545.X PubMed DOI

Hare P. D., Cress W. A., van Staden J. (1997). The involvement of cytokinins in plant responses to environmental stress. Plant Growth Regul. 23, 79–103. doi: 10.1023/a:1005954525087 DOI

Hönig M., Plíhalová L., Husičková A., Nisler J., Doležal K. (2018). Role of cytokinins in senescence, antioxidant defence and photosynthesis. Int. J. Mol. Sci. 19 (12), 4045. doi: 10.3390/IJMS19124045 PubMed DOI PMC

Hruz T., Laule O., Szabo G., Wessendorp F., Bleuler S., Oertle L., et al. . (2008). Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv. Bioinf. 2008, 1–5. doi: 10.1155/2008/420747 PubMed DOI PMC

Hyun D. H., Lee G. H. (2015). Cytochrome b5 reductase, a plasma membrane redox enzyme, protects neuronal cells against metabolic and oxidative stress through maintaining redox state and bioenergetics. Age (Omaha) 37, 1–14. doi: 10.1007/S11357-015-9859-9 PubMed DOI PMC

Jamsheer K M., Jindal S., Sharma M., Awasthi P., Sreejath S., Sharma M., et al. . (2022). A negative feedback loop of TOR signaling balances growth and stress-response trade-offs in plants. Cell Rep. 39, 110631. doi: 10.1016/J.CELREP.2022.110631 PubMed DOI

Kameniarová M., Černý M., Novák J., Ondrisková V., Lenka H., Berka M., et al. . (2022). Light quality modulates plant cold response and freezing tolerance. Front. Plant Sci 13, 887103. doi: 10.3389/FPLS.2022.887103 PubMed DOI PMC

Kanwischer M., Porfirova S., Bergmüller E., Dörmann P. (2005). Alterations in tocopherol cyclase activity in transgenic and mutant plants of arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol. 137, 713. doi: 10.1104/PP.104.054908 PubMed DOI PMC

Kerchev P. I., van Breusegem F. (2022). Improving oxidative stress resilience in plants. Plant J. 109, 359–372. doi: 10.1111/TPJ.15493 PubMed DOI

Lichtenthaler H. K. (1987). [34] chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymology 148, 350–382. doi: 10.1016/0076-6879(87)48036-1 DOI

Lichtenthaler H. K., Buschmann C. (2001). Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food Analytical Chem. 1, F4.3.1–F4.3.8. doi: 10.1002/0471142913.FAF0403S01 DOI

Lichtenthaler H. K., Wellburn A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 11, 591–592. doi: 10.1042/BST0110591 DOI

Liu D., Liu Y., Rao J., Wang G., Li H., Ge F., et al. . (2013). [Overexpression of the glutathione s-transferase gene from pyrus pyrifolia fruit improves tolerance to abiotic stress in transgenic tobacco plants]. Molekuliarnaia biologiia 47, 591–601. doi: 10.7868/S0026898413040101 PubMed DOI

Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402–408. doi: 10.1006/meth.2001.1262 PubMed DOI

Loggini B., Scartazza A., Brugnoli E., Navari-Izzo F. (1999). Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol. 119, 1091–1100. doi: 10.1104/PP.119.3.1091 PubMed DOI PMC

Ma J., Qiu D., Gao H., Wen H., Wu Y., Pang Y., et al. . (2020). Over-expression of a γ-tocopherol methyltransferase gene in vitamin e pathway confers PEG-simulated drought tolerance in alfalfa. BMC Plant Biol. 20, 1–16. doi: 10.1186/S12870-020-02424-1/FIGURES/9 PubMed DOI PMC

Melandri G., Thorp K. R., Broeckling C., Thompson A. L., Hinze L., Pauli D. (2021). Assessing drought and heat stress-induced changes in the cotton leaf metabolome and their relationship with hyperspectral reflectance. Front. Plant Sci. 12. doi: 10.3389/FPLS.2021.751868/BIBTEX PubMed DOI PMC

Meyer E. H., Tomaz T., Carroll A. J., Estavillo G., Delannoy E., Tanz S. K., et al. . (2009). Remodeled respiration in ndufs4 with low phosphorylation efficiency suppresses arabidopsis germination and growth and alters control of metabolism at night. Plant Physiol. 151, 603–619. doi: 10.1104/PP.109.141770 PubMed DOI PMC

Moore C. E., Meacham-Hensold K., Lemonnier P., Slattery R. A., Benjamin C., Bernacchi C. J., et al. . (2021). The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. J. Exp. Bot. 72, 2822. doi: 10.1093/JXB/ERAB090 PubMed DOI PMC

Munné-Bosch S. (2005). The role of alpha-tocopherol in plant stress tolerance. J. Plant Physiol. 162, 743–748. doi: 10.1016/J.JPLPH.2005.04.022 PubMed DOI

Munné-Bosch S. (2019). Vitamin e function in stress sensing and signaling in plants. Dev. Cell 48, 290–292. doi: 10.1016/J.DEVCEL.2019.01.023 PubMed DOI

Mushegian A. R., Koonin E. V. (1996). A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc. Natl. Acad. Sci. U.S.A. 93, 10268. doi: 10.1073/PNAS.93.19.10268 PubMed DOI PMC

Nguyen K. H., Ha C., Nishiyama R., Watanabe Y., Leyva-González M. A., Fujita Y., et al. . (2016). Arabidopsis type b cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought. Proc. Natl. Acad. Sci. U.S.A. 113, 3090–3095. doi: 10.1073/pnas.1600399113 PubMed DOI PMC

Pang Z., Chong J., Zhou G., de Lima Morais D. A., Chang L., Barrette M., et al. . (2021). MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49, W388–W396. doi: 10.1093/NAR/GKAB382 PubMed DOI PMC

Perez-Riverol Y., Bai J., Bandla C., García-Seisdedos D., Hewapathirana S., Kamatchinathan S., et al. . (2022). The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552. doi: 10.1093/NAR/GKAB1038 PubMed DOI PMC

Porcher A., Guérin V., Leduc N., Lebrec A., Lothier J., Vian A. (2021). Ascorbate–glutathione pathways mediated by cytokinin regulate H2O2 levels in light-controlled rose bud burst. Plant Physiol. 186, 910–928. doi: 10.1093/PLPHYS/KIAB123 PubMed DOI PMC

Prerostova S., Dobrev P. I., Kramna B., Gaudinova A., Knirsch V., Spichal L., et al. . (2020). Heat acclimation and inhibition of cytokinin degradation positively affect heat stress tolerance of arabidopsis. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.00087 PubMed DOI PMC

Queval G., Noctor G. (2007). A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: Application to redox profiling during arabidopsis rosette development. Anal. Biochem. 363, 58–69. doi: 10.1016/J.AB.2007.01.005 PubMed DOI

Roxas V. P., Smith R. K., Smith R. K., Allen R. D. (1997). Overexpression of glutathione s-transferase/glutathioneperoxidase enhances the growth of transgenic tobacco seedlings during stress. Nat. Biotechnol. 15:10, 988–991. doi: 10.1038/nbt1097-988 PubMed DOI

Saiz-Fernández I., Đorđević B., Kerchev P., Černý M., Horta Jung M., Brzobohatý B. (2022). Differences in the proteomic and metabolomic response during the early stages of phytophthora cinnamomi infection of two quercus species with contrasting degrees of susceptibility. Front. Microbiol 13, 894533. doi: 10.3389/FMICB.2022.894533 PubMed DOI PMC

Salomé P. A., To J. P. C., Kieber J. J., McClung C. R. (2006). Arabidopsis response regulators ARR3 and ARR4 play cytokinin-independent roles in the control of circadian period. Plant Cell 18, 55. doi: 10.1105/TPC.105.037994 PubMed DOI PMC

Schertl P., Braun H. P. (2014). Respiratory electron transfer pathways in plant mitochondria. Front. Plant Sci. 5. doi: 10.3389/FPLS.2014.00163/BIBTEX PubMed DOI PMC

Špundová M., Popelková H., Ilík P., Skotnica J., Novotný R., Nauš J. (2003). Ultra-structural and functional changes in the chloroplasts of detached barley leaves senescing under dark and light conditions. J. Plant Physiol. 160, 1051–1058. doi: 10.1078/0176-1617-00902 PubMed DOI

Szymańska R., Ślesak I., Orzechowska A., Kruk J. (2017). Physiological and biochemical responses to high light and temperature stress in plants. Environ. Exp. Bot. 139, 165–177. doi: 10.1016/J.ENVEXPBOT.2017.05.002 DOI

Talla S. K., Panigrahy M., Kappara S., Nirosha P., Neelamraju S., Ramanan R. (2016). Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes. J. Exp. Bot. 67, 1839–1851. doi: 10.1093/JXB/ERV575 PubMed DOI PMC

Todaka D., Zhao Y., Yoshida T., Kudo M., Kidokoro S., Mizoi J., et al. . (2017). Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. Plant J. 90, 61–78. doi: 10.1111/tpj.13468 PubMed DOI

Todorova D., Genkov T., Vaseva-Gemisheva I., Alexieva V., Karanov E., Smith A., et al. . (2005). Effect of temperature stress on the endogenous cytokinin content in arabidopsis thaliana (L.) heynh plants. Acta Physiologiae Plantarum 27, 13–18. doi: 10.1007/S11738-005-0031-5 DOI

To J. P. C., Haberer G., Ferreira F. J., Deruère J., Mason M. G., Schaller G. E., et al. . (2004). Type-a arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16, 658. doi: 10.1105/TPC.018978 PubMed DOI PMC

Wang Q. L., Chen J. H., He N. Y., Guo F. Q. (2018). Metabolic reprogramming in chloroplasts under heat stress in plants. Int. J. Mol. Sci. 19 (3), 849. doi: 10.3390/IJMS19030849 PubMed DOI PMC

Wang W., Vinocur B., Shoseyov O., Altman A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9, 244–252. doi: 10.1016/J.TPLANTS.2004.03.006 PubMed DOI

Xia J., Psychogios N., Young N., Wishart D. S. (2009). MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 37, W652–W660. doi: 10.1093/NAR/GKP356 PubMed DOI PMC

Xia X. J., Zhou Y. H., Shi K., Zhou J., Foyer C. H., Yu J. Q. (2015). Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J. Exp. Bot. 66, 2839–2856. doi: 10.1093/jxb/erv089 PubMed DOI

Xu Y., Burgess P., Zhang X., Huang B. (2016). Enhancing cytokinin synthesis by overexpressing ipt alleviated drought inhibition of root growth through activating ROS-scavenging systems in agrostis stolonifera. J. Exp. Bot. 67, 1979. doi: 10.1093/JXB/ERW019 PubMed DOI PMC

Xu Q., Paulsen A. Q., Guikema J. A., Paulsen G. M. (1995). Functional and ultrastructural injury to photosynthesis in wheat by high temperature during maturation. Environ. Exp. Bot. 35, 43–54. doi: 10.1016/0098-8472(94)00030-9 DOI

Yoo K. S., Ok S. H., Jeong B. C., Jung K. W., Cui M. H., Hyoung S., et al. . (2011). Single cystathionine β-synthase domain-containing proteins modulate development by regulating the thioredoxin system in Arabidopsis. Plant Cell 23 (10), 3577–3594. doi: 10.1105/TPC.111.089847 PubMed DOI PMC

Young A. J., Young A. J. (1991). The photoprotective role of carotenoids in higher plants. Physiologia Plantarum 83, 702–708. doi: 10.1111/J.1399-3054.1991.TB02490.X DOI

Yusuf M. A., Kumar D., Rajwanshi R., Strasser R. J., Tsimilli-Michael M., Govindjee, et al. . (2010). Overexpression of gamma-tocopherol methyl transferase gene in transgenic brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochim. Biophys. Acta 1797, 1428–1438. doi: 10.1016/J.BBABIO.2010.02.002 PubMed DOI

Zhang J., Shi Y., Zhang X., Du H., Xu B., Huang B. (2017). Melatonin suppresion of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.). Environ. Exp. Bot. 138, 36–45. doi: 10.1016/j.envexpbot.2017.02.012 DOI

Zhang L., Wu M., Teng Y., Jia S., Yu D., Wei T., et al. . (2019). Overexpression of the glutathione peroxidase 5 (RcGPX5) gene from rhodiola crenulata increases drought tolerance in salvia miltiorrhiza. Front. Plant Sci. 9. doi: 10.3389/FPLS.2018.01950/BIBTEX PubMed DOI PMC

Zhang H., Zhao Y., Zhu J. K. (2020). Thriving under stress: How plants balance growth and the stress response. Dev. Cell 55, 529–543. doi: 10.1016/J.DEVCEL.2020.10.012 PubMed DOI

Zwack P. J., Rashotte A. M. (2015). Interactions between cytokinin signalling and abiotic stress responses. J. Exp. Bot. 66, 4863–4871. doi: 10.1093/jxb/erv172 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...