Structure and function of nucleoside hydrolases from Physcomitrella patens and maize catalyzing the hydrolysis of purine, pyrimidine, and cytokinin ribosides
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24170203
PubMed Central
PMC3850210
DOI
10.1104/pp.113.228775
PII: pp.113.228775
Knihovny.cz E-zdroje
- MeSH
- biokatalýza * účinky léků MeSH
- cytokininy chemie metabolismus MeSH
- dusík farmakologie MeSH
- fenotyp MeSH
- fylogeneze MeSH
- genový knockout MeSH
- hydrolýza účinky léků MeSH
- kinetika MeSH
- krystalografie rentgenová MeSH
- kukuřice setá účinky léků enzymologie genetika MeSH
- mechy účinky léků enzymologie genetika růst a vývoj MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- mutageneze cílená MeSH
- mutantní proteiny chemie metabolismus MeSH
- N-glykosylhydrolasy chemie genetika metabolismus MeSH
- pyrimidiny chemie metabolismus MeSH
- ribonukleosidy chemie metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- substrátová specifita účinky léků MeSH
- vazebná místa MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokininy MeSH
- dusík MeSH
- mutantní proteiny MeSH
- N-glykosylhydrolasy MeSH
- pyrimidine MeSH Prohlížeč
- pyrimidiny MeSH
- ribonukleosidy MeSH
We present a comprehensive characterization of the nucleoside N-ribohydrolase (NRH) family in two model plants, Physcomitrella patens (PpNRH) and maize (Zea mays; ZmNRH), using in vitro and in planta approaches. We identified two NRH subclasses in the plant kingdom; one preferentially targets the purine ribosides inosine and xanthosine, while the other is more active toward uridine and xanthosine. Both subclasses can hydrolyze plant hormones such as cytokinin ribosides. We also solved the crystal structures of two purine NRHs, PpNRH1 and ZmNRH3. Structural analyses, site-directed mutagenesis experiments, and phylogenetic studies were conducted to identify the residues responsible for the observed differences in substrate specificity between the NRH isoforms. The presence of a tyrosine at position 249 (PpNRH1 numbering) confers high hydrolase activity for purine ribosides, while an aspartate residue in this position confers high activity for uridine. Bud formation is delayed by knocking out single NRH genes in P. patens, and under conditions of nitrogen shortage, PpNRH1-deficient plants cannot salvage adenosine-bound nitrogen. All PpNRH knockout plants display elevated levels of certain purine and pyrimidine ribosides and cytokinins that reflect the substrate preferences of the knocked out enzymes. NRH enzymes thus have functions in cytokinin conversion and activation as well as in purine and pyrimidine metabolism.
Zobrazit více v PubMed
Achar BS, Vaidyanathan CS. (1967) Purification and properties of uridine hydrolase from mung-bean (Phaseolus radiatus) seedlings. Arch Biochem Biophys 119: 356–362 PubMed
Allen M, Qin W, Moreau F, Moffatt B. (2002) Adenine phosphoribosyltransferase isoforms of Arabidopsis and their potential contributions to adenine and cytokinin metabolism. Physiol Plant 115: 56–68 PubMed
Ashton NW, Cove DJ. (1977) The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants of the moss, Physcomitrella patens. Mol Gen Genet 154: 87–95
Bricogne G, Blanc E, Brandl M, Flensburg C, Keller P, Paciorek W, Roversi P, Sharff A, Smart OS, Vonrhein C, et al (2011) BUSTER Version 2.1.0. Global Phasing, Cambridge, UK
Campos A, Rijo-Johansen MJ, Carneiro MF, Fevereiro P. (2005) Purification and characterisation of adenosine nucleosidase from Coffea arabica young leaves. Phytochemistry 66: 147–151 PubMed
Chen CM, Kristopeit SM. (1981) Metabolism of cytokinin: deribosylation of cytokinin ribonucleoside by adenosine nucleosidase from wheat germ cells. Plant Physiol 68: 1020–1023 PubMed PMC
Chen M, Thelen JJ. (2011) Plastid uridine salvage activity is required for photoassimilate allocation and partitioning in Arabidopsis. Plant Cell 23: 2991–3006 PubMed PMC
Cove D, Bezanilla M, Harries P, Quatrano R. (2006) Mosses as model systems for the study of metabolism and development. Annu Rev Plant Biol 57: 497–520 PubMed
Degano M, Almo SC, Sacchettini JC, Schramm VL. (1998) Trypanosomal nucleoside hydrolase: a novel mechanism from the structure with a transition-state inhibitor. Biochemistry 37: 6277–6285 PubMed
Degano M, Gopaul DN, Scapin G, Schramm VL, Sacchettini JC. (1996) Three-dimensional structure of the inosine-uridine nucleoside N-ribohydrolase from Crithidia fasciculata. Biochemistry 35: 5971–5981 PubMed
Edgar RC. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797 PubMed PMC
Emsley P, Cowtan K. (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126–2132 PubMed
Estupiñán B, Schramm VL. (1994) Guanosine-inosine-preferring nucleoside N-glycohydrolase from Crithidia fasciculata. J Biol Chem 269: 23068–23073 PubMed
Garau G, Muzzolini L, Tornaghi P, Degano M. (2010) Active site plasticity revealed from the structure of the enterobacterial N-ribohydrolase RihA bound to a competitive inhibitor. BMC Struct Biol 10: 14. PubMed PMC
Giabbai B, Degano M. (2004) Crystal structure to 1.7 a of the Escherichia coli pyrimidine nucleoside hydrolase YeiK, a novel candidate for cancer gene therapy. Structure 12: 739–749 PubMed
Gopaul DN, Meyer SL, Degano M, Sacchettini JC, Schramm VL. (1996) Inosine-uridine nucleoside hydrolase from Crithidia fasciculata: genetic characterization, crystallization, and identification of histidine 241 as a catalytic site residue. Biochemistry 35: 5963–5970 PubMed
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59: 307–321 PubMed
Guranowski A. (1982) Purine catabolism in plants: purification and some properties of inosine nucleosidase from yellow lupin (Lupinus luteus L.) seeds. Plant Physiol 70: 344–349 PubMed PMC
Guranowski A, Schneider Z. (1977) Purification and characterization of adenosine nucleosidase from barley leaves. Biochim Biophys Acta 482: 145–158 PubMed
Horenstein BA, Parkin DW, Estupiñán B, Schramm VL. (1991) Transition-state analysis of nucleoside hydrolase from Crithidia fasciculata. Biochemistry 30: 10788–10795 PubMed
Houba-Hérin N, Pethe C, d’Alayer J, Laloue M. (1999) Cytokinin oxidase from Zea mays: purification, cDNA cloning and expression in moss protoplasts. Plant J 17: 615–626 PubMed
Iovane E, Giabbai B, Muzzolini L, Matafora V, Fornili A, Minici C, Giannese F, Degano M. (2008) Structural basis for substrate specificity in group I nucleoside hydrolases. Biochemistry 47: 4418–4426 PubMed
Jung B, Flörchinger M, Kunz HH, Traub M, Wartenberg R, Jeblick W, Neuhaus HE, Möhlmann T. (2009) Uridine-ribohydrolase is a key regulator in the uridine degradation pathway of Arabidopsis. Plant Cell 21: 876–891 PubMed PMC
Jung B, Hoffmann C, Möhlmann T. (2011) Arabidopsis nucleoside hydrolases involved in intracellular and extracellular degradation of purines. Plant J 65: 703–711 PubMed
Kabsch W. (2010) XDS. Acta Crystallogr D Biol Crystallogr 66: 125–132 PubMed PMC
Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J. (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445: 652–655 PubMed
Mainguet SE, Gakière B, Majira A, Pelletier S, Bringel F, Guérard F, Caboche M, Berthomé R, Renou JP. (2009) Uracil salvage is necessary for early Arabidopsis development. Plant J 60: 280–291 PubMed
Massonneau A, Houba-Hérin N, Pethe C, Madzak C, Falque M, Mercy M, Kopecny D, Majira A, Rogowsky P, Laloue M. (2004) Maize cytokinin oxidase genes: differential expression and cloning of two new cDNAs. J Exp Bot 55: 2549–2557 PubMed
Moffatt B, Pethe C, Laloue M. (1991) Metabolism of benzyladenine is impaired in a mutant of Arabidopsis thaliana lacking adenine phosphoribosyltransferase activity. Plant Physiol 95: 900–908 PubMed PMC
Moffatt B, Somerville C. (1988) Positive selection for male-sterile mutants of Arabidopsis lacking adenine phosphoribosyl transferase activity. Plant Physiol 86: 1150–1154 PubMed PMC
Moffatt BA, Stevens YY, Allen MS, Snider JD, Pereira LA, Todorova MI, Summers PS, Weretilnyk EA, Martin-McCaffrey L, Wagner C. (2002) Adenosine kinase deficiency is associated with developmental abnormalities and reduced transmethylation. Plant Physiol 128: 812–821 PubMed PMC
Moffatt BA, Wang L, Allen MS, Stevens YY, Qin W, Snider J, von Schwartzenberg K. (2000) Adenosine kinase of Arabidopsis: kinetic properties and gene expression. Plant Physiol 124: 1775–1785 PubMed PMC
Mok DW, Mok MC. (2001) Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol 52: 89–118 PubMed
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30: 2785–2791 PubMed PMC
Muzzolini L, Versées W, Tornaghi P, Van Holsbeke E, Steyaert J, Degano M. (2006) New insights into the mechanism of nucleoside hydrolases from the crystal structure of the Escherichia coli YbeK protein bound to the reaction product. Biochemistry 45: 773–782 PubMed
Novák O, Hauserová E, Amakorová P, Doležal K, Strnad M. (2008) Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry 69: 2214–2224 PubMed
Parkin DW. (1996) Purine-specific nucleoside N-ribohydrolase from Trypanosoma brucei brucei: purification, specificity, and kinetic mechanism. J Biol Chem 271: 21713–21719 PubMed
Parkin DW, Horenstein BA, Abdulah DR, Estupiñán B, Schramm VL. (1991) Nucleoside hydrolase from Crithidia fasciculata: metabolic role, purification, specificity, and kinetic mechanism. J Biol Chem 266: 20658–20665 PubMed
Rensing SA, Ick J, Fawcett JA, Lang D, Zimmer A, Van de Peer Y, Reski R. (2007) An ancient genome duplication contributed to the abundance of metabolic genes in the moss Physcomitrella patens. BMC Evol Biol 7: 130. PubMed PMC
Riegler H, Geserick C, Zrenner R. (2011) Arabidopsis thaliana nucleosidase mutants provide new insights into nucleoside degradation. New Phytol 191: 349–359 PubMed PMC
Riewe D, Grosman L, Fernie AR, Zauber H, Wucke C, Geigenberger P. (2008) A cell wall-bound adenosine nucleosidase is involved in the salvage of extracellular ATP in Solanum tuberosum. Plant Cell Physiol 49: 1572–1579 PubMed
Sakakibara H. (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57: 431–449 PubMed
Schaefer D, Zryd JP, Knight CD, Cove DJ. (1991) Stable transformation of the moss Physcomitrella patens. Mol Gen Genet 226: 418–424 PubMed
Schaefer DG, Zrÿd JP. (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11: 1195–1206 PubMed
Schoor S, Farrow S, Blaschke H, Lee S, Perry G, von Schwartzenberg K, Emery N, Moffatt B. (2011) Adenosine kinase contributes to cytokinin interconversion in Arabidopsis. Plant Physiol 157: 659–672 PubMed PMC
Shi W, Schramm VL, Almo SC. (1999) Nucleoside hydrolase from Leishmania major: cloning, expression, catalytic properties, transition state inhibitors, and the 2.5-Å crystal structure. J Biol Chem 274: 21114–21120 PubMed
Stasolla C, Katahira R, Thorpe TA, Ashihara H. (2003) Purine and pyrimidine nucleotide metabolism in higher plants. J Plant Physiol 160: 1271–1295 PubMed
Storoni LC, McCoy AJ, Read RJ. (2004) Likelihood-enhanced fast rotation functions. Acta Crystallogr D Biol Crystallogr 60: 432–438 PubMed
Szuwart M, Starzynska E, Pietrowska-Borek M, Guranowski A. (2006) Calcium-stimulated guanosine-inosine nucleosidase from yellow lupin (Lupinus luteus). Phytochemistry 67: 1476–1485 PubMed
Versées W, Decanniere K, Pellé R, Depoorter J, Brosens E, Parkin DW, Steyaert J. (2001) Structure and function of a novel purine specific nucleoside hydrolase from Trypanosoma vivax. J Mol Biol 307: 1363–1379 PubMed
Versées W, Decanniere K, Van Holsbeke E, Devroede N, Steyaert J. (2002) Enzyme-substrate interactions in the purine-specific nucleoside hydrolase from Trypanosoma vivax. J Biol Chem 277: 15938–15946 PubMed
Versées W, Steyaert J. (2003) Catalysis by nucleoside hydrolases. Curr Opin Struct Biol 13: 731–738 PubMed
von Schwartzenberg K. (2009) Hormonal regulation of development by auxin and cytokinin in moss. Annu Plant Rev 36: 246-281
von Schwartzenberg K, Kruse S, Reski R, Moffatt B, Laloue M. (1998) Cloning and characterization of an adenosine kinase from Physcomitrella involved in cytokinin metabolism. Plant J 13: 249–257 PubMed
von Schwartzenberg K, Núñez MF, Blaschke H, Dobrev PI, Novák O, Motyka V, Strnad M. (2007) Cytokinins in the bryophyte Physcomitrella patens: analyses of activity, distribution, and cytokinin oxidase/dehydrogenase overexpression reveal the role of extracellular cytokinins. Plant Physiol 145: 786–800 PubMed PMC
Vyroubalová S, Václavíková K, Turecková V, Novák O, Smehilová M, Hluska T, Ohnoutková L, Frébort I, Galuszka P. (2009) Characterization of new maize genes putatively involved in cytokinin metabolism and their expression during osmotic stress in relation to cytokinin levels. Plant Physiol 151: 433–447 PubMed PMC
Wang TL, Cove DJ, Beutelmann P, Hartmann E. (1980) Isopentenyladenine from mutants of the moss, Physcomitrella patens. Phytochemistry 19: 1103–1105
Zhang X, Chen Y, Lin X, Hong X, Zhu Y, Li W, He W, An F, Guo H. (2013) Adenine phosphoribosyl transferase 1 is a key enzyme catalyzing cytokinin conversion from nucleobases to nucleotides in Arabidopsis. Mol Plant 6: 1661–1672 PubMed
Zrenner R, Stitt M, Sonnewald U, Boldt R. (2006) Pyrimidine and purine biosynthesis and degradation in plants. Annu Rev Plant Biol 57: 805–836 PubMed
Occurrence and biosynthesis of cytokinins in poplar