Manipulation of cytokinin level in the ergot fungus Claviceps purpurea emphasizes its contribution to virulence

. 2018 Dec ; 64 (6) : 1303-1319. [epub] 20180530

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29850931

Grantová podpora
16-10602S Grantová Agentura České Republiky
GRK1409 University Graduate School
GZ928 Sino-German-Science Center
LO1204 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 29850931
DOI 10.1007/s00294-018-0847-3
PII: 10.1007/s00294-018-0847-3
Knihovny.cz E-zdroje

Pathogen-derived cytokinins (CKs) have been recognized as important virulence factor in several host-pathogen interactions and it was demonstrated multiple times that phytopathogenic fungi form CKs via the tRNA degradation pathway. In contrast to previous studies, the focus of this study is on the second step of CK formation and CK degradation to improve our understanding of the biosynthesis in fungi on the one hand, and to understand CK contribution to the infection process of Claviceps purpurea on the other hand. The ergot fungus Claviceps purpurea is a biotrophic phytopathogen with a broad host range including economically important crops causing harvest intoxication upon infection. Its infection process is restricted to unfertilized ovaries without causing macroscopic defense symptoms. Thus, sophisticated host manipulation strategies are implicated. The cytokinin (CK) plant hormones are known to regulate diverse plant cell processes, and several plant pathogens alter CK levels during infection. C. purpurea synthesizes CKs via two mechanisms, and fungus-derived CKs influence the host-pathogen interaction but not fungus itself. CK deficiency in fungi with impact on virulence has only been achieved to date by deletion of a tRNA-ipt gene that is also involved in a process of translation regulation. To obtain a better understanding of CK biosynthesis and CKs' contribution to the plant-fungus interaction, we applied multiple approaches to generate strains with altered or depleted CK content. The first approach is based on deletion of the two CK phosphoribohydrolase (LOG)-encoding genes, which are believed to be essential for the release of active CKs. Single and double deletion strains were able to produce all types of CKs. Apparently, log gene products are dispensable for the formation of CKs and so alternative activation pathways must be present. The CK biosynthesis pathway remains unaffected in the second approach, because it is based on heterologous overexpression of CK-degrading enzymes from maize (ZmCKX1). Zmckx1 overexpressing C. purpurea strains shows strong CKX activity and drastically reduced CK levels. The strains are impaired in virulence, which reinforces the assumption that fungal-derived CKs are crucial for full virulence. Taken together, this study comprises the first analysis of a log depletion mutant that proved the presence of alternative cytokinin activation pathways in fungi and showed that heterologous CKX expression is a suitable approach for CK level reduction.

Zobrazit více v PubMed

Plant Physiol. 2013 Dec;163(4):1568-83 PubMed

Science. 2012 Apr 20;336(6079):355-9 PubMed

Yeast. 1995 Jan;11(1):53-5 PubMed

Anal Biochem. 2002 Jul 1;306(1):1-7 PubMed

Plant Sci. 2016 Jun;247:127-37 PubMed

Mol Plant Microbe Interact. 2013 Mar;26(3):287-96 PubMed

Mol Cell. 2015 Mar 19;57(6):984-994 PubMed

Planta. 2003 Jan;216(3):413-21 PubMed

Nucleic Acids Res. 1992 May 11;20(9):2380 PubMed

Nature. 2007 Feb 8;445(7128):652-5 PubMed

Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):929-34 PubMed

Mol Plant Pathol. 2018 May;19(5):1140-1154 PubMed

Plant Cell. 2003 Nov;15(11):2532-50 PubMed

Curr Genet. 1994 Feb;25(2):101-6 PubMed

PLoS Pathog. 2016 Feb 22;12(2):e1005457 PubMed

Plant Physiol. 2003 Mar;131(3):1270-82 PubMed

Proteins. 2015 Aug;83(8):1539-46 PubMed

ACS Chem Biol. 2011 Oct 21;6(10):1036-40 PubMed

Environ Microbiol. 2015 Aug;17(8):2935-51 PubMed

J Bacteriol. 1998 Jun;180(12):3144-51 PubMed

BMC Genomics. 2017 Apr 4;18(1):273 PubMed

Genome Biol. 2013 Apr 25;14(4):R36 PubMed

Methods. 2001 Dec;25(4):402-8 PubMed

Mol Genet Genomics. 2008 Apr;279(4):415-27 PubMed

Proc Natl Acad Sci U S A. 1984 Oct;81(19):5994-8 PubMed

Mol Cell Biol. 1987 Jan;7(1):177-84 PubMed

Plant Mol Biol. 2002 May;49(2):161-9 PubMed

Biosci Rep. 2008 Dec;28(6):335-47 PubMed

J Biol Chem. 2004 Oct 1;279(40):41866-72 PubMed

Science. 1995 Dec 22;270(5244):1986-8 PubMed

Semin Cell Dev Biol. 2016 Aug;56:174-189 PubMed

Mol Cell Biol. 2013 Aug;33(15):2918-29 PubMed

Mol Plant Pathol. 2002 Jan 1;3(1):9-22 PubMed

Mol Plant Microbe Interact. 2012 Aug;25(8):1073-82 PubMed

Plant Cell. 2013 Apr;25(4):1463-81 PubMed

Genome Biol Evol. 2016 Dec 31;8(11):3574-3599 PubMed

Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10352-10357 PubMed

Mol Biol (Mosk). 2006 Jul-Aug;40(4):669-83 PubMed

J Biol Chem. 2016 Dec 30;291(53):27403-27420 PubMed

Mol Microbiol. 2003 Nov;50(3):911-29 PubMed

Front Microbiol. 2017 Jul 21;8:1374 PubMed

New Phytol. 2016 Aug;211(3):980-92 PubMed

Biochimie. 2005 Nov;87(11):1011-22 PubMed

Mol Cell Biol. 1994 Apr;14(4):2298-306 PubMed

Trends Plant Sci. 2006 Dec;11(12):581-6 PubMed

Fungal Genet Biol. 2005 Mar;42(3):257-63 PubMed

Fungal Genet Biol. 2012 Jun;49(6):483-97 PubMed

Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):E3081-9 PubMed

Plant Physiol. 2001 Jan;125(1):378-86 PubMed

Planta. 2002 May;215(1):158-66 PubMed

Trends Plant Sci. 2015 Dec;20(12):781-783 PubMed

Gene. 1992 Jan 2;110(1):119-22 PubMed

J Gen Microbiol. 1976 Apr;93(2):321-34 PubMed

Phytochemistry. 2009 May;70(8):957-69 PubMed

Ann Bot. 2017 Mar 1;119(5):725-735 PubMed

PLoS Genet. 2013;9(2):e1003323 PubMed

J Exp Bot. 2015 Apr;66(7):1851-63 PubMed

New Phytol. 2014 Jan;201(2):585-98 PubMed

EMBO J. 1992 Mar;11(3):795-804 PubMed

Mycol Res. 2006 Apr;110(Pt 4):465-70 PubMed

Bioinformatics. 2014 Apr 1;30(7):923-30 PubMed

Genes Dev. 2010 Sep 1;24(17):1832-60 PubMed

MBio. 2017 Jan 31;8(1): PubMed

Mycologia. 2015 Mar-Apr;107(2):245-57 PubMed

Plant Cell. 2004 May;16(5):1276-87 PubMed

Theor Appl Genet. 1978 Jul;53(4):145-9 PubMed

Mol Plant Pathol. 2016 Oct;17(8):1289-97 PubMed

Annu Rev Plant Biol. 2006;57:431-49 PubMed

PLoS Genet. 2012 Jan;8(1):e1002448 PubMed

Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 PubMed

J Plant Res. 2003 Jun;116(3):241-52 PubMed

Theor Appl Genet. 2015 Jan;128(1):131-43 PubMed

Annu Rev Genet. 2012;46:69-95 PubMed

Genome Biol. 2014;15(12):550 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace