Manipulation of cytokinin level in the ergot fungus Claviceps purpurea emphasizes its contribution to virulence
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
16-10602S
Grantová Agentura České Republiky
GRK1409
University Graduate School
GZ928
Sino-German-Science Center
LO1204
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
29850931
DOI
10.1007/s00294-018-0847-3
PII: 10.1007/s00294-018-0847-3
Knihovny.cz E-zdroje
- Klíčová slova
- Claviceps purpurea, Cytokinin, Cytokinin oxidase/dehydrogenase, Phosphoribohydrolase, Virulence,
- MeSH
- Claviceps patogenita fyziologie MeSH
- cytokininy metabolismus MeSH
- interakce hostitele a patogenu fyziologie MeSH
- nemoci rostlin mikrobiologie MeSH
- žito * genetika metabolismus mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytokininy MeSH
Pathogen-derived cytokinins (CKs) have been recognized as important virulence factor in several host-pathogen interactions and it was demonstrated multiple times that phytopathogenic fungi form CKs via the tRNA degradation pathway. In contrast to previous studies, the focus of this study is on the second step of CK formation and CK degradation to improve our understanding of the biosynthesis in fungi on the one hand, and to understand CK contribution to the infection process of Claviceps purpurea on the other hand. The ergot fungus Claviceps purpurea is a biotrophic phytopathogen with a broad host range including economically important crops causing harvest intoxication upon infection. Its infection process is restricted to unfertilized ovaries without causing macroscopic defense symptoms. Thus, sophisticated host manipulation strategies are implicated. The cytokinin (CK) plant hormones are known to regulate diverse plant cell processes, and several plant pathogens alter CK levels during infection. C. purpurea synthesizes CKs via two mechanisms, and fungus-derived CKs influence the host-pathogen interaction but not fungus itself. CK deficiency in fungi with impact on virulence has only been achieved to date by deletion of a tRNA-ipt gene that is also involved in a process of translation regulation. To obtain a better understanding of CK biosynthesis and CKs' contribution to the plant-fungus interaction, we applied multiple approaches to generate strains with altered or depleted CK content. The first approach is based on deletion of the two CK phosphoribohydrolase (LOG)-encoding genes, which are believed to be essential for the release of active CKs. Single and double deletion strains were able to produce all types of CKs. Apparently, log gene products are dispensable for the formation of CKs and so alternative activation pathways must be present. The CK biosynthesis pathway remains unaffected in the second approach, because it is based on heterologous overexpression of CK-degrading enzymes from maize (ZmCKX1). Zmckx1 overexpressing C. purpurea strains shows strong CKX activity and drastically reduced CK levels. The strains are impaired in virulence, which reinforces the assumption that fungal-derived CKs are crucial for full virulence. Taken together, this study comprises the first analysis of a log depletion mutant that proved the presence of alternative cytokinin activation pathways in fungi and showed that heterologous CKX expression is a suitable approach for CK level reduction.
Zobrazit více v PubMed
Plant Physiol. 2013 Dec;163(4):1568-83 PubMed
Science. 2012 Apr 20;336(6079):355-9 PubMed
Yeast. 1995 Jan;11(1):53-5 PubMed
Anal Biochem. 2002 Jul 1;306(1):1-7 PubMed
Plant Sci. 2016 Jun;247:127-37 PubMed
Mol Plant Microbe Interact. 2013 Mar;26(3):287-96 PubMed
Mol Cell. 2015 Mar 19;57(6):984-994 PubMed
Planta. 2003 Jan;216(3):413-21 PubMed
Nucleic Acids Res. 1992 May 11;20(9):2380 PubMed
Nature. 2007 Feb 8;445(7128):652-5 PubMed
Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):929-34 PubMed
Mol Plant Pathol. 2018 May;19(5):1140-1154 PubMed
Plant Cell. 2003 Nov;15(11):2532-50 PubMed
Curr Genet. 1994 Feb;25(2):101-6 PubMed
PLoS Pathog. 2016 Feb 22;12(2):e1005457 PubMed
Plant Physiol. 2003 Mar;131(3):1270-82 PubMed
Proteins. 2015 Aug;83(8):1539-46 PubMed
ACS Chem Biol. 2011 Oct 21;6(10):1036-40 PubMed
Environ Microbiol. 2015 Aug;17(8):2935-51 PubMed
J Bacteriol. 1998 Jun;180(12):3144-51 PubMed
BMC Genomics. 2017 Apr 4;18(1):273 PubMed
Genome Biol. 2013 Apr 25;14(4):R36 PubMed
Methods. 2001 Dec;25(4):402-8 PubMed
Mol Genet Genomics. 2008 Apr;279(4):415-27 PubMed
Proc Natl Acad Sci U S A. 1984 Oct;81(19):5994-8 PubMed
Mol Cell Biol. 1987 Jan;7(1):177-84 PubMed
Plant Mol Biol. 2002 May;49(2):161-9 PubMed
Biosci Rep. 2008 Dec;28(6):335-47 PubMed
J Biol Chem. 2004 Oct 1;279(40):41866-72 PubMed
Science. 1995 Dec 22;270(5244):1986-8 PubMed
Semin Cell Dev Biol. 2016 Aug;56:174-189 PubMed
Mol Cell Biol. 2013 Aug;33(15):2918-29 PubMed
Mol Plant Pathol. 2002 Jan 1;3(1):9-22 PubMed
Mol Plant Microbe Interact. 2012 Aug;25(8):1073-82 PubMed
Plant Cell. 2013 Apr;25(4):1463-81 PubMed
Genome Biol Evol. 2016 Dec 31;8(11):3574-3599 PubMed
Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10352-10357 PubMed
Mol Biol (Mosk). 2006 Jul-Aug;40(4):669-83 PubMed
J Biol Chem. 2016 Dec 30;291(53):27403-27420 PubMed
Mol Microbiol. 2003 Nov;50(3):911-29 PubMed
Front Microbiol. 2017 Jul 21;8:1374 PubMed
New Phytol. 2016 Aug;211(3):980-92 PubMed
Biochimie. 2005 Nov;87(11):1011-22 PubMed
Mol Cell Biol. 1994 Apr;14(4):2298-306 PubMed
Trends Plant Sci. 2006 Dec;11(12):581-6 PubMed
Fungal Genet Biol. 2005 Mar;42(3):257-63 PubMed
Fungal Genet Biol. 2012 Jun;49(6):483-97 PubMed
Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):E3081-9 PubMed
Plant Physiol. 2001 Jan;125(1):378-86 PubMed
Planta. 2002 May;215(1):158-66 PubMed
Trends Plant Sci. 2015 Dec;20(12):781-783 PubMed
Gene. 1992 Jan 2;110(1):119-22 PubMed
J Gen Microbiol. 1976 Apr;93(2):321-34 PubMed
Phytochemistry. 2009 May;70(8):957-69 PubMed
Ann Bot. 2017 Mar 1;119(5):725-735 PubMed
PLoS Genet. 2013;9(2):e1003323 PubMed
J Exp Bot. 2015 Apr;66(7):1851-63 PubMed
New Phytol. 2014 Jan;201(2):585-98 PubMed
EMBO J. 1992 Mar;11(3):795-804 PubMed
Mycol Res. 2006 Apr;110(Pt 4):465-70 PubMed
Bioinformatics. 2014 Apr 1;30(7):923-30 PubMed
Genes Dev. 2010 Sep 1;24(17):1832-60 PubMed
MBio. 2017 Jan 31;8(1): PubMed
Mycologia. 2015 Mar-Apr;107(2):245-57 PubMed
Plant Cell. 2004 May;16(5):1276-87 PubMed
Theor Appl Genet. 1978 Jul;53(4):145-9 PubMed
Mol Plant Pathol. 2016 Oct;17(8):1289-97 PubMed
Annu Rev Plant Biol. 2006;57:431-49 PubMed
PLoS Genet. 2012 Jan;8(1):e1002448 PubMed
Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 PubMed
J Plant Res. 2003 Jun;116(3):241-52 PubMed
Theor Appl Genet. 2015 Jan;128(1):131-43 PubMed
Annu Rev Genet. 2012;46:69-95 PubMed
Genome Biol. 2014;15(12):550 PubMed
Role of Cytokinins for Interactions of Plants With Microbial Pathogens and Pest Insects