Cytokinin Metabolism of Pathogenic Fungus Leptosphaeria maculans Involves Isopentenyltransferase, Adenosine Kinase and Cytokinin Oxidase/Dehydrogenase
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28785249
PubMed Central
PMC5521058
DOI
10.3389/fmicb.2017.01374
Knihovny.cz E-zdroje
- Klíčová slova
- Leptosphaeria maculans, adenosine kinase, cytokinin, cytokinin oxidase/dehydrogenase, isopentenyltransferase, zeatin cis/trans isomerase,
- Publikační typ
- časopisecké články MeSH
Among phytohormones, cytokinins (CKs) play an important role in controlling crucial aspects of plant development. Not only plants but also diverse microorganisms are able to produce phytohormones, including CKs, though knowledge concerning their biosynthesis and metabolism is still limited. In this work we demonstrate that the fungus Leptosphaeria maculans, a hemi-biotrophic pathogen of oilseed rape (Brassica napus), causing one of the most damaging diseases of this crop, is able to modify the CK profile in infected B. napus tissues, as well as produce a wide range of CKs in vitro, with the cis-zeatin derivatives predominating. The endogenous CK spectrum of L. maculans in vitro consists mainly of free CK bases, as opposed to plants, where other CK forms are mostly more abundant. Using functional genomics, enzymatic and feeding assays with CK bases supplied to culture media, we show that L. maculans contains a functional: (i) isopentenyltransferase (IPT) involved in cZ production; (ii) adenosine kinase (AK) involved in phosphorylation of CK ribosides to nucleotides; and (iii) CK-degradation enzyme cytokinin oxidase/dehydrogenase (CKX). Our data further indicate the presence of cis-trans isomerase, zeatin O-glucosyltransferase(s) and N6-(Δ2-isopentenyl)adenine hydroxylating enzyme. Besides, we report on a crucial role of LmAK for L. maculans fitness and virulence. Altogether, in this study we characterize in detail the CK metabolism of the filamentous fungi L. maculans and report its two novel components, the CKX and CK-related AK activities, according to our knowledge for the first time in the fungal kingdom. Based on these findings, we propose a model illustrating CK metabolism pathways in L. maculans.
Department of Biochemistry and Microbiology Institute of Chemical TechnologyPrague Czechia
Institute of Experimental Botany The Czech Academy of SciencesPrague Czechia
Zobrazit více v PubMed
Akiyoshi D. E., Klee H., Amasino R. M., Nester E. W., Gordon M. P. (1984). T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 81 5994–5998. 10.1073/pnas.81.19.5994 PubMed DOI PMC
Ansan-Melayah D., Balesdent M. H., Buee M., Rouxel T. (1995). Genetic characterization of AvrLm1, the first avirulence gene of Leptosphaeria maculans. Phytopathology 85 1525–1529. 10.1094/Phyto-85-1525 DOI
Armstrong D. J. (1994). Cytokinin Oxidase and the Regulation of Cytokinin Degradation. Boca Raton, FL: CRC Press.
Armstrong D. J., Firtel R. A. (1989). Cytokinin oxidase activity in the cellular slime mold, Dictyostelium discoideum. Dev. Biol. 136 491–499. 10.1016/0012-1606(89)90274-1 PubMed DOI
Balesdent M. H., Attard A., Ansan-Melayah D., Delourme R., Renard M., Rouxel T. (2001). Genetic control and host range of avirulence toward Brassica napus cultivars quinta and jet neuf in Leptosphaeria maculans. Phytopathology 91 70–76. 10.1094/PHYTO.2001.91.1.70 PubMed DOI
Barker S. J., Tagu D. (2000). The roles of auxins and cytokinins in mycorrhizal symbioses. J. Plant Growth Regul. 19 144–154. PubMed
Bassil N. V., Mok D., Mok M. C. (1993). Partial purification of a cis-trans-isomerase of zeatin from immature seed of Phaseolus vulgaris L. Plant Physiol. 102 867–872. 10.1104/pp.102.3.867 PubMed DOI PMC
Behr M., Motyka V., Weihmann F., Malbeck J., Deising H. B., Wirsel S. G. (2012). Remodeling of cytokinin metabolism at infection sites of Colletotrichum graminicola on maize leaves. Mol. Plant Microbe Interact. 25 1073–1082. 10.1094/MPMI-01-12-0012-R PubMed DOI
Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 248–254. 10.1016/0003-2697(76)90527-3 PubMed DOI
Bruce S. A., Saville B. J., Emery R. J. N. (2011). Ustilago maydis produces cytokinins and abscisic acid for potential regulation of tumor formation in maize. J. Plant Growth Regul. 30 51–63. 10.1007/s00344-010-9166-8 DOI
Chanclud E., Kisiala A., Emery N. R., Chalvon V., Ducasse A., Romiti-Michel C., et al. (2016). Cytokinin production by the rice blast fungus is a pivotal requirement for full virulence. PLoS Pathog. 12:e1005457 10.1371/journal.ppat.1005457 PubMed DOI PMC
Chanclud E., Morel J. B. (2016). Plant hormones: a fungal point of view. Mol. Plant Pathol. 17 1289–1297. 10.1111/mpp.12393 PubMed DOI PMC
Chen C. M., Eckert R. L. (1977). Phosphorylation of cytokinin by adenosine kinase from wheat germ. Plant Physiol. 59 443–447. 10.1104/pp.59.3.443 PubMed DOI PMC
Connolly D. M., Winkler M. E. (1991). Structure of Escherichia coli K-12 miaA and characterization of the mutator phenotype caused by miaA insertion mutations. J. Bacteriol. 173 1711–1721. 10.1128/jb.173.5.1711-1721.1991 PubMed DOI PMC
Crafts C. B., Miller C. O. (1974). Detection and identification of cytokinins produced by mycorrhizal fungi. Plant Physiol. 54 586–588. 10.1104/pp.54.4.586 PubMed DOI PMC
Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., et al. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36 W465–W469. 10.1093/nar/gkn180 PubMed DOI PMC
Dihanich M. E., Najarian D., Clark R., Gillman E. C., Martin N. C., Hopper A. K. (1987). Isolation and characterization of MOD5, a gene required for isopentenylation of cytoplasmic and mitochondrial tRNAs of Saccharomyces cerevisiae. Mol. Cell. Biol. 7 177–184. 10.1128/MCB.7.1.177 PubMed DOI PMC
Djilianov D. L., Dobrev P. I., Moyankova D. P., Vankova R., Georgieva D. T., Gajdošová S., et al. (2013). Dynamics of endogenous phytohormones during desiccation and recovery of the resurrection plant species Haberlea rhodopensis. J. Plant Growth Regul. 32 564–574. 10.1007/s00344-013-9323-y DOI
Dobrev P. I., Kaminek M. (2002). Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A 950 21–29. 10.1016/S0021-9673(02)00024-9 PubMed DOI
Elliott R. F. (1967). Effects of kinetin and related compounds on growth and sexual reproduction of Saprolegnia australis. Planta 77 164–175. 10.1007/BF00387453 PubMed DOI
Fox E. M., Gardiner D. M., Keller N. P., Howlett B. J. (2008). A Zn(II)2Cys6 DNA binding protein regulates the sirodesmin PL biosynthetic gene cluster in Leptosphaeria maculans. Fungal Genet. Biol. 45 671–682. 10.1016/j.fgb.2007.10.005 PubMed DOI PMC
Frébort I., Kowalska M., Hluska T., Frébortová J., Galuszka P. (2011). Evolution of cytokinin biosynthesis and degradation. J. Exp. Bot. 62 2431–2452. 10.1093/jxb/err004 PubMed DOI
Fudal I., Ross S., Gout L., Blaise F., Kuhn M. L., Eckert M. R., et al. (2007). Heterochromatin-like regions as ecological niches for avirulence genes in the Leptosphaeria maculans genome: map-based cloning of AvrLm6. Mol. Plant Microbe Interact. 20 459–470. 10.1094/MPMI-20-4-0459 PubMed DOI
Gajdošová S., Spíchal L., Kamínek M., Hoyerová K., Novák O., Dobrev P. I., et al. (2011). Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J. Exp. Bot. 62 2827–2840. 10.1093/jxb/erq457 PubMed DOI
Galuszka P., Popelková H., Werner T., Frébortová J., Pospíšilová H., Mik V., et al. (2007). Biochemical characterization of cytokinin oxidases/dehydrogenases from Arabidopsis thaliana expressed in Nicotiana tabacum L. J. Plant Growth Regul. 26 255–267. 10.1007/s00344-007-9008-5 DOI
Gardiner D. M., Howlett B. J. (2004). Negative selection using thymidine kinase increases the efficiency of recovery of transformants with targeted genes in the filamentous fungus Leptosphaeria maculans. Curr. Genet. 45 249–255. 10.1007/s00294-004-0488-6 PubMed DOI
Gaudinová A., Dobrev P. I., Šolcová B., Novák O., Strnad M., Friedecký D., et al. (2005). The involvement of cytokinin oxidase/dehydrogenase and zeatin reductase in regulation of cytokinin levels in pea (Pisum sativum L.) Leaves. J. Plant Growth Regul. 24 188–200. 10.1007/s00344-005-0043-9 DOI
Gerhäuser D., Bopp M. (1990). Cytokinin oxidases in mosses: 2. metabolism of kinetin and benzyladenine in vitro. J. Plant Physiol. 135 714–718. 10.1016/S0176-1617(11)80885-0 DOI
Gouy M., Guindon S., Gascuel O. (2010). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27 221–224. 10.1093/molbev/msp259 PubMed DOI
Hammond K. E., Lewis B. G. (1987). The establishment of systemic infection in leaves of oilseed rape by Leptosphaeria maculans. Plant Pathol. 36 135–147. 10.1111/j.1365-3059.1987.tb02213.x DOI
Hann D. R., Domínguez-Ferreras A., Motyka V., Dobrev P. I., Schornack S., Jehle A., et al. (2014). The Pseudomonas type III effector HopQ1 activates cytokinin signaling and interferes with plant innate immunity. New Phytol. 201 585–598. 10.1111/nph.12544 PubMed DOI
Hinsch J., Galuszka P., Tudzynski P. (2016). Functional characterization of the first filamentous fungal tRNA-isopentenyltransferase and its role in the virulence of Claviceps purpurea. New Phytol. 211 980–992. 10.1111/nph.13960 PubMed DOI
Hinsch J., Vrabka J., Oeser B., Novák O., Galuszka P., Tudzynski P. (2015). De novo biosynthesis of cytokinins in the biotrophic fungus Claviceps purpurea. Environ. Microbiol. 17 2935–2951. 10.1111/1462-2920.12838 PubMed DOI
Hou B., Lim E. K., Higgins G. S., Bowles D. J. (2004). N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J. Biol. Chem. 279 47822–47832. 10.1074/jbc.M409569200 PubMed DOI
Howlett B. J. (2004). Current knowledge of the interaction between Brassica napus and Leptosphaeria maculans. Can. J. Plant Pathol. 26 245–252. 10.1111/j.1364-3703.2005.00282.x DOI
Jameson P. E. (2000). Cytokinins and auxins in plant-pathogen interactions – An overview. Plant Growth Regul. 32 369–380. 10.1023/a:1010733617543 DOI
Jiang C. J., Shimono M., Sugano S., Kojima M., Liu X., Inoue H., et al. (2013). Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. Mol. Plant Microbe Interact. 26 287–296. 10.1094/MPMI-06-12-0152-R PubMed DOI
Jin S. H., Ma X. M., Kojima M., Sakakibara H., Wang Y. W., Hou B. K. (2013). Overexpression of glucosyltransferase UGT85A1 influences trans-zeatin homeostasis and trans-zeatin responses likely through O-glucosylation. Planta 237 991–999. 10.1007/s00425-012-1818-4 PubMed DOI
Kakimoto T. (2001). Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate:ATP/ADP isopentenyltransferases. Plant Cell Physiol. 42 677–685. 10.1093/pcp/pce112 PubMed DOI
Kamínek M., Armstrong D. J. (1990). Genotypic variation in cytokinin oxidase from phaseolus callus cultures. Plant Physiol. 93 1530–1538. 10.1104/pp.93.4.1530 PubMed DOI PMC
Kamínek M., Březinová A., Gaudinová A., Motyka V., Vaňková R., Zaǎímalová E. (2000). Purine cytokinins: a proposal of abbreviations. Plant Growth Regul. 32 253–256. 10.1023/a:1010743522048 DOI
Kasahara H., Takei K., Ueda N., Hishiyama S., Yamaya T., Kamiya Y., et al. (2004). Distinct isoprenoid origins of cis- and trans-zeatin biosyntheses in Arabidopsis. J. Biol. Chem. 279 14049–14054. 10.1074/jbc.M314195200 PubMed DOI
Kazan K., Lyons R. (2014). Intervention of phytohormone pathways by pathogen effectors. Plant Cell 26 2285–2309. 10.1105/tpc.114.125419 PubMed DOI PMC
Konevega A. L., Soboleva N. G., Makhno V. I., Peshekhonov A. V., Katunin V. I. (2006). The effect of modification of tRNA nucleotide-37 on the tRNA interaction with the P- and A-site of the 70S ribosome Escherichia coli. Mol. Biol. (Mosk) 40 669–683. 10.1134/S0026893306040121 PubMed DOI
Kurakawa T., Ueda N., Maekawa M., Kobayashi K., Kojima M., Nagato Y., et al. (2007). Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445 652–655. 10.1038/nature05504 PubMed DOI
Kwade Z., Swiatek A., Azmi A., Goossens A., Inze D., Van Onckelen H., et al. (2005). Identification of four adenosine kinase isoforms in tobacco By-2 cells and their putative role in the cell cycle-regulated cytokinin metabolism. J. Biol. Chem. 280 17512–17519. 10.1074/jbc.M411428200 PubMed DOI
Lecoq K., Belloc I., Desgranges C., Daignan-Fornier B. (2001). Role of adenosine kinase in Saccharomyces cerevisiae: identification of the ADO1 gene and study of the mutant phenotypes. Yeast 18 335–342. 10.1002/1097-0061(20010315)18:4<335::AID-YEA674>3.0.CO;2-X PubMed DOI
LeJohn H. B., Stevenson R. M. (1973). Cytokinins and magnesium ions may control the flow of metabolites and calcium ions through fungal cell membranes. Biochem. Biophys. Res. Commun. 54 1061–1066. 10.1016/0006-291X(73)90801-2 PubMed DOI
Letham D. S., Wilson M. M., Parker C. W., Jenkins I. D., Macleod J. K., Summons R. E. (1975). Regulators of cell division in plant tissue. XXIII. The identity of an unusual metabolite of 6-benzylaminopurine. Biochim. Biophys. Acta 399 61–70. 10.1016/0304-4165(75)90211-1 PubMed DOI
Li J., Jia B., Liang X., Liu J., Wang Y., Yan H., et al. (2014). An adenosine kinase in apoplastic location is involved in Magnaporthe oryzae cold acclimation. J. Basic Microbiol. 54 269–277. 10.1002/jobm.201200481 PubMed DOI
Lindner A. C., Lang D., Seifert M., Podlesakova K., Novak O., Strnad M., et al. (2014). Isopentenyltransferase-1 (IPT1) knockout in Physcomitrella together with phylogenetic analyses of IPTs provide insights into evolution of plant cytokinin biosynthesis. J. Exp. Bot. 65 2533–2543. 10.1093/jxb/eru142 PubMed DOI PMC
Long M. C., Escuyer V., Parker W. B. (2003). Identification and characterization of a unique adenosine kinase from Mycobacterium tuberculosis. J. Bacteriol. 185 6548–6555. 10.1128/jb.185.22.6548-6555.2003 PubMed DOI PMC
Lu G. T., Tang Y. Q., Li C. Y., Li R. F., An S. Q., Feng J. X., et al. (2009). An adenosine kinase exists in Xanthomonas campestris pathovar campestris and is involved in extracellular polysaccharide production, cell motility, and virulence. J. Bacteriol. 191 3639–3648. 10.1128/JB.00009-09 PubMed DOI PMC
Martin R. C., Mok M. C., Habben J. E., Mok D. W. (2001). A maize cytokinin gene encoding an O-glucosyltransferase specific to cis-zeatin. Proc. Natl. Acad. Sci. U.S.A. 98 5922–5926. 10.1073/pnas.101128798 PubMed DOI PMC
Martin R. C., Mok M. C., Mok D. W. (1999). Isolation of a cytokinin gene, ZOG1, encoding zeatin O-glucosyltransferase from Phaseolus lunatus. Proc. Natl. Acad. Sci. U.S.A. 96 284–289. 10.1073/pnas.96.1.284 PubMed DOI PMC
Miller C. O. (1967). Zeatin and zeatin riboside from a mycorrhizal fungus. Science 157 1055–1057. 10.1126/science.157.3792.1055 PubMed DOI
Miransari M., Abrishamchi A., Khoshbakht K., Niknam V. (2014). Plant hormones as signals in arbuscular mycorrhizal symbiosis. Crit. Rev. Biotechnol. 34 123–133. 10.3109/07388551.2012.731684 PubMed DOI
Miyawaki K., Tarkowski P., Matsumoto-Kitano M., Kato T., Sato S., Tarkowska D., et al. (2006). Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 103 16598–16603. 10.1073/pnas.0603522103 PubMed DOI PMC
Moffatt B. A., Stevens Y. Y., Allen M. S., Snider J. D., Pereira L. A., Todorova M. I., et al. (2002). Adenosine kinase deficiency is associated with developmental abnormalities and reduced transmethylation. Plant Physiol. 128 812–821. 10.1104/pp.010880 PubMed DOI PMC
Moffatt B. A., Wang L., Allen M. S., Stevens Y. Y., Qin W., Snider J., et al. (2000). Adenosine kinase of Arabidopsis. Kinetic properties and gene expression. Plant Physiol. 124 1775–1785. 10.1104/pp.124.4.1775 PubMed DOI PMC
Mok D. W., Mok M. C. (2001). Cytokinin Metabolism and Action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52 89–118. 10.1146/annurev.arplant.52.1.89 PubMed DOI
Morrison E. N., Emery R. J., Saville B. J. (2015). Phytohormone involvement in the Ustilago maydis- Zea mays pathosystem: relationships between abscisic acid and cytokinin levels and strain virulence in infected cob tissue. PLoS ONE 10:e0130945 10.1371/journal.pone.0130945 PubMed DOI PMC
Motyka V., Vaňková R., Čapková V., Petrášek J., Kamínek M., Schmülling T. (2003). Cytokinin-induced upregulation of cytokinin oxidase activity in tobacco includes changes in enzyme glycosylation and secretion. Physiol. Plant. 117 11–21. 10.1034/j.1399-3054.2003.1170102.x DOI
Murphy A. M., Pryce-Jones E., Johnstone K., Ashby A. M. (1997). Comparison of cytokinin production in vitro by Pyrenopeziza brassicae with other plant pathogens. Physiol. Mol. Plant Pathol. 50 53–65. 10.1006/pmpp.1996.0070 DOI
Persson B. C., Esberg B., Olafsson O., Bjork G. R. (1994). Synthesis and function of isopentenyl adenosine derivatives in tRNA. Biochimie 76 1152–1160. 10.1016/0300-9084(94)90044-2 PubMed DOI
Pertry I., Václavíková K., Depuydt S., Galuszka P., Spíchal L., Temmerman W., et al. (2009). Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proc. Natl. Acad. Sci. U.S.A. 106 929–934. 10.1073/pnas.0811683106 PubMed DOI PMC
Pertry I., Vaclavikova K., Gemrotova M., Spichal L., Galuszka P., Depuydt S., et al. (2010). Rhodococcus fascians impacts plant development through the dynamic fas-mediated production of a cytokinin mix. Mol. Plant Microbe Interact. 23 1164–1174. 10.1094/MPMI-23-9-1164 PubMed DOI
Rouxel T., Grandaubert J., Hane J. K., Hoede C., van de Wouw A. P., Couloux A., et al. (2011). Effector diversification within compartments of the Leptosphaeria maculans genome affected by repeat-induced point mutations. Nat. Commun. 2:202 10.1038/ncomms1189 PubMed DOI PMC
Sakakibara H. (2006). Cytokinins: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57 431–449. 10.1146/annurev.arplant.57.032905.105231 PubMed DOI
Šašek V., Nováková M., Dobrev P. I., Valentová O., Burketová L. (2012a). β-aminobutyric acid protects Brassica napus plants from infection by Leptosphaeria maculans. Resistance induction or a direct antifungal effect?. Eur. J. Plant Pathol. 133 279–289. 10.1007/s10658-011-9897-9 DOI
Šašek V., Nováková M., Jindřichová B., Boka K., Valentová O., Burketová L. (2012b). Recognition of avirulence gene AvrLm1 from hemibiotrophic ascomycete Leptosphaeria maculans triggers salicylic acid and ethylene signaling in Brassica napus. Mol. Plant Microbe Interact. 25 1238–1250. 10.1094/MPMI-02-12-0033-R PubMed DOI
Schäfer M., Brutting C., Meza-Canales I. D., Grosskinsky D. K., Vaňková R., Baldwin I. T., et al. (2015). The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J. Exp. Bot. 66 4873–4884. 10.1093/jxb/erv214 PubMed DOI PMC
Schmülling T., Werner T., Riefler M., Krupkova E., Bartrina y Manns I. (2003). Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J. Plant Res. 116 241–252. 10.1007/s10265-003-0096-4 PubMed DOI
Schoor S., Farrow S., Blaschke H., Lee S., Perry G., von Schwartzenberg K., et al. (2011). Adenosine kinase contributes to cytokinin interconversion in Arabidopsis. Plant Physiol. 157 659–672. 10.1104/pp.111.181560 PubMed DOI PMC
Sesma A., Osbourn A. E. (2004). The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature 431 582–586. 10.1038/nature02880 PubMed DOI
Spíchal L. (2012). Cytokinins – recent news and views of evolutionally old molecules. Funct. Plant Biol. 39 267–284. 10.1071/FP11276 PubMed DOI
Steiner A. A. (1984). “The Universal Nutrient Solution,” in Proceedings of IWOSC 1984 6th International Congress on Soilless Culture Wageningen: 633–650.
Suttle J. C., Banowetz G. M. (2000). Changes in cis-zeatin and cis-zeatin riboside levels and biological activity during potato tuber dormancy. Physiol. Plant. 109 68–74. 10.1034/j.1399-3054.2000.100110.x DOI
Takei K., Sakakibara H., Sugiyama T. (2001). Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. J. Biol. Chem. 276 26405–26410. 10.1074/jbc.M102130200 PubMed DOI
Takei K., Yamaya T., Sakakibara H. (2004). Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-Zeatin. J. Biol. Chem. 279 41866–41872. 10.1074/jbc.M406337200 PubMed DOI
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28 2731–2739. 10.1093/molbev/msr121 PubMed DOI PMC
Tsavkelova E. A., Klimova S., Cherdyntseva T. A., Netrusov A. I. (2006). Hormones and hormone-like substances of microorganisms: a review. Prikl. Biokhim. Mikrobiol. 42 261–268. 10.1134/s000368380603001x PubMed DOI
Van Kast C. A., Laten H. M. (1987). Cytokinin utilization by adenine-requiring mutants of the yeast Saccharomyces cerevisiae. Plant Physiol. 83 726–727. 10.1104/pp.83.4.726 PubMed DOI PMC
von Schwartzenberg K., Kruse S., Reski R., Moffatt B., Laloue M. (1998). Cloning and characterization of an adenosine kinase from Physcomitrella involved in cytokinin metabolism. Plant J. 13 249–257. 10.1046/j.1365-313X.1998.00011.x PubMed DOI
von Schwartzenberg K., Núñez M. F., Blaschke H., Dobrev P. I., Novák O., Motyka V., et al. (2007). Cytokinins in the bryophyte physcomitrella patens: analyses of activity, distribution, and cytokinin oxidase/dehydrogenase overexpression reveal the role of extracellular cytokinins. Plant Physiol. 145 786–800. 10.1104/pp.107.103176 PubMed DOI PMC
West J. S., Kharbanda P. D., Kharbanda M. J., Fitt B. D. L. (2001). Epidemiology and management of Leptosphaeria maculans (phoma stem canker) on oilseed rape in Australia, Canada and Europe. Plant Pathol. 50 10–27. 10.1046/j.1365-3059.2001.00546.x DOI
Yonekura-Sakakibara K., Kojima M., Yamaya T., Sakakibara H. (2004). Molecular characterization of cytokinin-responsive histidine kinases in maize. Differential Ligand Preferences and Response to cis-Zeatin. Plant Physiol. 134 1654–1661. 10.1104/pp.103.037176 PubMed DOI PMC
Zhang X., Chen Y., Lin X., Hong X., Zhu Y., Li W., et al. (2013). Adenine phosphoribosyl transferase 1 is a key enzyme catalyzing cytokinin conversion from nucleobases to nucleotides in Arabidopsis. Mol Plant 6 1661–1672. 10.1093/mp/sst071 PubMed DOI
Cytokinin N-glucosides: Occurrence, Metabolism and Biological Activities in Plants
New Insights Into the Metabolism and Role of Cytokinin N-Glucosides in Plants