Actin depolymerization is able to increase plant resistance against pathogens via activation of salicylic acid signalling pathway

. 2019 Jul 18 ; 9 (1) : 10397. [epub] 20190718

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31320662
Odkazy

PubMed 31320662
PubMed Central PMC6639534
DOI 10.1038/s41598-019-46465-5
PII: 10.1038/s41598-019-46465-5
Knihovny.cz E-zdroje

The integrity of the actin cytoskeleton is essential for plant immune signalling. Consequently, it is generally assumed that actin disruption reduces plant resistance to pathogen attack. Here, we demonstrate that actin depolymerization induced a dramatic increase in salicylic acid (SA) levels in Arabidopsis thaliana. Transcriptomic analysis showed that the SA pathway was activated due to the action of isochorismate synthase (ICS). The effect was also confirmed in Brassica napus. This raises the question of whether actin depolymerization could, under particular conditions, lead to increased resistance to pathogens. Thus, we explored the effect of pretreatment with actin-depolymerizing drugs on the resistance of Arabidopsis thaliana to the bacterial pathogen Pseudomonas syringae, and on the resistance of an important crop Brassica napus to its natural fungal pathogen Leptosphaeria maculans. In both pathosystems, actin depolymerization activated the SA pathway, leading to increased plant resistance. To our best knowledge, we herein provide the first direct evidence that disruption of the actin cytoskeleton can actually lead to increased plant resistance to pathogens, and that SA is crucial to this process.

Zobrazit více v PubMed

Day B, Henty JL, Porter KJ, Staiger CJ. The pathogen-actin connection: a platform for defense signaling in plants. Annu Rev Phytopathol. 2011;49:483–506. doi: 10.1146/annurev-phyto-072910-095426. PubMed DOI

Li, P. & Day, B. Battlefield Cytoskeleton: Turning the Tide on Plant Immunity. Mol Plant Microbe Interact, MPMI07180195FI, 10.1094/MPMI-07-18-0195-FI (2018). PubMed PMC

Hardham AR, Jones DA, Takemoto D. Cytoskeleton and cell wall function in penetration resistance. Curr Opin Plant Biol. 2007;10:342–348. doi: 10.1016/j.pbi.2007.05.001. PubMed DOI

Henty-Ridilla JL, Li J, Day B, Staiger CJ. ACTIN DEPOLYMERIZING FACTOR4 regulates actin dynamics during innate immune signaling in Arabidopsis. Plant Cell. 2014;26:340–352. doi: 10.1105/tpc.113.122499. PubMed DOI PMC

Henty-Ridilla JL, et al. The plant actin cytoskeleton responds to signals from microbe-associated molecular patterns. PLoS Pathog. 2013;9:e1003290. doi: 10.1371/journal.ppat.1003290. PubMed DOI PMC

Jelenska J, Kang Y, Greenberg JT. Plant pathogenic bacteria target the actin microfilament network involved in the trafficking of disease defense components. Bioarchitecture. 2014;4:149–153. doi: 10.4161/19490992.2014.980662. PubMed DOI PMC

Kang Y, et al. HopW1 from Pseudomonas syringae disrupts the actin cytoskeleton to promote virulence in Arabidopsis. PLoS Pathog. 2014;10:e1004232. doi: 10.1371/journal.ppat.1004232. PubMed DOI PMC

Tian M, et al. Arabidopsis actin-depolymerizing factor AtADF4 mediates defense signal transduction triggered by the Pseudomonas syringae effector AvrPphB. Plant Physiol. 2009;150:815–824. doi: 10.1104/pp.109.137604. PubMed DOI PMC

Porter K, Shimono M, Tian M, Day B. Arabidopsis Actin-Depolymerizing Factor-4 links pathogen perception, defense activation and transcription to cytoskeletal dynamics. PLoS Pathog. 2012;8:e1003006. doi: 10.1371/journal.ppat.1003006. PubMed DOI PMC

Inada N, Higaki T, Hasezawa S. Nuclear Function of Subclass I Actin-Depolymerizing Factor Contributes to Susceptibility in Arabidopsis to an Adapted Powdery Mildew Fungus. Plant Physiol. 2016;170:1420–1434. doi: 10.1104/pp.15.01265. PubMed DOI PMC

Shimono M, et al. The Pseudomonas syringae Type III Effector HopG1 Induces Actin Remodeling to Promote Symptom Development and Susceptibility during Infection. Plant Physiol. 2016;171:2239–2255. doi: 10.1104/pp.16.01593. PubMed DOI PMC

Shimada C, et al. Nonhost resistance in Arabidopsis-Colletotrichum interactions acts at the cell periphery and requires actin filament function. Mol Plant Microbe Interact. 2006;19:270–279. doi: 10.1094/MPMI-19-0270. PubMed DOI

Miklis M, et al. Barley MLO modulates actin-dependent and actin-independent antifungal defense pathways at the cell periphery. Plant Physiol. 2007;144:1132–1143. doi: 10.1104/pp.107.098897. PubMed DOI PMC

Kobayashi Y, Yamada M, Kobayashi I, Kunoh H. Actin microfilaments are required for the expression of nonhost resistance in higher plants. Plant Cell Physiol. 1997;38:725–733. doi: 10.1093/oxfordjournals.pcp.a029226. DOI

Yun BW, et al. Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non-host resistance in Arabidopsis against wheat powdery mildew. Plant J. 2003;34:768–777. doi: 10.1046/j.1365-313X.2003.01773.x. PubMed DOI

Kobayashi YKI. Depolymerization of the actin cytoskeleton inducesdefense responses in tobacco plants. Journal of General Plant Pathology. 2007;73:360–364. doi: 10.1007/s10327-007-0029-5. DOI

Matouskova J, et al. Changes in actin dynamics are involved in salicylic acid signaling pathway. Plant Sci. 2014;223:36–44. doi: 10.1016/j.plantsci.2014.03.002. PubMed DOI

Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF. Salicylic Acid biosynthesis and metabolism. Arabidopsis Book. 2011;9:e0156. doi: 10.1199/tab.0156. PubMed DOI PMC

Vlot AC, Dempsey DA, Klessig DF. Salicylic Acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol. 2009;47:177–206. doi: 10.1146/annurev.phyto.050908.135202. PubMed DOI

Wildermuth MC, Dewdney J, Wu G, Ausubel FM. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature. 2001;414:562–565. doi: 10.1038/35107108. PubMed DOI

Ishiga Y, Ishiga T, Uppalapati SR, Mysore KS. Arabidopsis seedling flood-inoculation technique: a rapid and reliable assay for studying plant-bacterial interactions. Plant Methods. 2011;7:32. doi: 10.1186/1746-4811-7-32. PubMed DOI PMC

Katagiri F, Thilmony R, He SY. The Arabidopsis thaliana-pseudomonas syringae interaction. Arabidopsis Book. 2002;1:e0039. doi: 10.1199/tab.0039. PubMed DOI PMC

Delaney TP, et al. A central role of salicylic Acid in plant disease resistance. Science. 1994;266:1247–1250. doi: 10.1126/science.266.5188.1247. PubMed DOI

Nawrath C, Metraux JP. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell. 1999;11:1393–1404. PubMed PMC

Sasek V, et al. Recognition of avirulence gene AvrLm1 from hemibiotrophic ascomycete Leptosphaeria maculans triggers salicylic acid and ethylene signaling in Brassica napus. Mol Plant Microbe Interact. 2012;25:1238–1250. doi: 10.1094/MPMI-02-12-0033-R. PubMed DOI

Cameron RK, Zaton K. Intercellular salicylic acid accumulation is important for age-related resistance in Arabidopsis to Pseudomonas syringae. Physiol. Mol Plant P. 2004;65:197–209. doi: 10.1016/j.pmpp.2005.02.002. DOI

Kus JV, Zaton K, Sarkar R, Cameron RK. Age-related resistance in Arabidopsis is a developmentally regulated defense response to Pseudomonas syringae. Plant Cell. 2002;14:479–490. doi: 10.1105/tpc.010481. PubMed DOI PMC

Wilson DC, Kempthorne CJ, Carella P, Liscombe DK, Cameron RK. Age-Related Resistance in Arabidopsis thaliana Involves the MADS-Domain Transcription Factor SHORT VEGETATIVE PHASE and Direct Action of Salicylic Acid on Pseudomonas syringae. Mol Plant Microbe Interact. 2017;30:919–929. doi: 10.1094/MPMI-07-17-0172-R. PubMed DOI

Janda M, Matouskova J, Burketova L, Valentova O. Interconnection between actin cytoskeleton and plant defense signaling. Plant Signal Behav. 2014;9:e976486. doi: 10.4161/15592324.2014.976486. PubMed DOI PMC

Sun H, et al. Profilin Negatively Regulates Formin-Mediated Actin Assembly to Modulate PAMP-Triggered Plant Immunity. Curr Biol. 2018;28:1882–1895 e1887. doi: 10.1016/j.cub.2018.04.045. PubMed DOI

Tsuda K, Glazebrook J, Katagiri F. The interplay between MAMP and SA signaling. Plant Signal Behav. 2008;3:359–361. doi: 10.4161/psb.3.6.5702. PubMed DOI PMC

Tsuda K, Sato M, Glazebrook J, Cohen JD, Katagiri F. Interplay between MAMP-triggered and SA-mediated defense responses. Plant J. 2008;53:763–775. doi: 10.1111/j.1365-313X.2007.03369.x. PubMed DOI

Beck M, Zhou J, Faulkner C, MacLean D, Robatzek S. Spatio-temporal cellular dynamics of the Arabidopsis flagellin receptor reveal activation status-dependent endosomal sorting. Plant Cell. 2012;24:4205–4219. doi: 10.1105/tpc.112.100263. PubMed DOI PMC

Preuss ML, et al. A role for the RabA4b effector protein PI-4Kbeta1 in polarized expansion of root hair cells in Arabidopsis thaliana. J Cell Biol. 2006;172:991–998. doi: 10.1083/jcb.200508116. PubMed DOI PMC

Sasek V, et al. Constitutive salicylic acid accumulation in pi4kIIIbeta1beta2 Arabidopsis plants stunts rosette but not root growth. New Phytol. 2014;203:805–816. doi: 10.1111/nph.12822. PubMed DOI

Cvrckova F, Oulehlova D. A new kymogram-based method reveals unexpected effects of marker protein expression and spatial anisotropy of cytoskeletal dynamics in plant cell cortex. Plant Methods. 2017;13:19. doi: 10.1186/s13007-017-0171-9. PubMed DOI PMC

Rouxel T, et al. Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations. Nat Commun. 2011;2:202. doi: 10.1038/ncomms1189. PubMed DOI PMC

Trda L, et al. Cytokinin Metabolism of Pathogenic Fungus Leptosphaeria maculans Involves Isopentenyltransferase, Adenosine Kinase and Cytokinin Oxidase/Dehydrogenase. Front Microbiol. 2017;8:1374. doi: 10.3389/fmicb.2017.01374. PubMed DOI PMC

Marshall OJ. PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics. 2004;20:2471–2472. doi: 10.1093/bioinformatics/bth254. PubMed DOI

Dobrev PI, Kaminek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A. 2002;950:21–29. doi: 10.1016/S0021-9673(02)00024-9. PubMed DOI

Dobrev PI, Hoyerova K, Petrasek J. Analytical Determination of Auxins and Cytokinins. Methods Mol Biol. 2017;1569:31–39. doi: 10.1007/978-1-4939-6831-2_2. PubMed DOI

Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Fernández-Bautista, N., Domínguez-Núñez, J. A., Moreno, M. M. C. & Berrocal-Lobo, L. Plant Tissue Trypan Blue Staining During Phytopathogen Infection. BioProtocol6, 10.21769/BioProtoc.2078 (2016).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...