Actin depolymerization is able to increase plant resistance against pathogens via activation of salicylic acid signalling pathway
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31320662
PubMed Central
PMC6639534
DOI
10.1038/s41598-019-46465-5
PII: 10.1038/s41598-019-46465-5
Knihovny.cz E-zdroje
- MeSH
- aktiny metabolismus MeSH
- Arabidopsis metabolismus mikrobiologie MeSH
- Ascomycota patogenita MeSH
- Brassica napus metabolismus mikrobiologie MeSH
- intramolekulární transferasy metabolismus MeSH
- kyselina salicylová metabolismus MeSH
- nemoci rostlin mikrobiologie MeSH
- proteiny huseníčku metabolismus MeSH
- Pseudomonas syringae patogenita MeSH
- regulace genové exprese u rostlin fyziologie MeSH
- signální transdukce fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aktiny MeSH
- intramolekulární transferasy MeSH
- isochorismate synthase MeSH Prohlížeč
- kyselina salicylová MeSH
- proteiny huseníčku MeSH
The integrity of the actin cytoskeleton is essential for plant immune signalling. Consequently, it is generally assumed that actin disruption reduces plant resistance to pathogen attack. Here, we demonstrate that actin depolymerization induced a dramatic increase in salicylic acid (SA) levels in Arabidopsis thaliana. Transcriptomic analysis showed that the SA pathway was activated due to the action of isochorismate synthase (ICS). The effect was also confirmed in Brassica napus. This raises the question of whether actin depolymerization could, under particular conditions, lead to increased resistance to pathogens. Thus, we explored the effect of pretreatment with actin-depolymerizing drugs on the resistance of Arabidopsis thaliana to the bacterial pathogen Pseudomonas syringae, and on the resistance of an important crop Brassica napus to its natural fungal pathogen Leptosphaeria maculans. In both pathosystems, actin depolymerization activated the SA pathway, leading to increased plant resistance. To our best knowledge, we herein provide the first direct evidence that disruption of the actin cytoskeleton can actually lead to increased plant resistance to pathogens, and that SA is crucial to this process.
Zobrazit více v PubMed
Day B, Henty JL, Porter KJ, Staiger CJ. The pathogen-actin connection: a platform for defense signaling in plants. Annu Rev Phytopathol. 2011;49:483–506. doi: 10.1146/annurev-phyto-072910-095426. PubMed DOI
Li, P. & Day, B. Battlefield Cytoskeleton: Turning the Tide on Plant Immunity. Mol Plant Microbe Interact, MPMI07180195FI, 10.1094/MPMI-07-18-0195-FI (2018). PubMed PMC
Hardham AR, Jones DA, Takemoto D. Cytoskeleton and cell wall function in penetration resistance. Curr Opin Plant Biol. 2007;10:342–348. doi: 10.1016/j.pbi.2007.05.001. PubMed DOI
Henty-Ridilla JL, Li J, Day B, Staiger CJ. ACTIN DEPOLYMERIZING FACTOR4 regulates actin dynamics during innate immune signaling in Arabidopsis. Plant Cell. 2014;26:340–352. doi: 10.1105/tpc.113.122499. PubMed DOI PMC
Henty-Ridilla JL, et al. The plant actin cytoskeleton responds to signals from microbe-associated molecular patterns. PLoS Pathog. 2013;9:e1003290. doi: 10.1371/journal.ppat.1003290. PubMed DOI PMC
Jelenska J, Kang Y, Greenberg JT. Plant pathogenic bacteria target the actin microfilament network involved in the trafficking of disease defense components. Bioarchitecture. 2014;4:149–153. doi: 10.4161/19490992.2014.980662. PubMed DOI PMC
Kang Y, et al. HopW1 from Pseudomonas syringae disrupts the actin cytoskeleton to promote virulence in Arabidopsis. PLoS Pathog. 2014;10:e1004232. doi: 10.1371/journal.ppat.1004232. PubMed DOI PMC
Tian M, et al. Arabidopsis actin-depolymerizing factor AtADF4 mediates defense signal transduction triggered by the Pseudomonas syringae effector AvrPphB. Plant Physiol. 2009;150:815–824. doi: 10.1104/pp.109.137604. PubMed DOI PMC
Porter K, Shimono M, Tian M, Day B. Arabidopsis Actin-Depolymerizing Factor-4 links pathogen perception, defense activation and transcription to cytoskeletal dynamics. PLoS Pathog. 2012;8:e1003006. doi: 10.1371/journal.ppat.1003006. PubMed DOI PMC
Inada N, Higaki T, Hasezawa S. Nuclear Function of Subclass I Actin-Depolymerizing Factor Contributes to Susceptibility in Arabidopsis to an Adapted Powdery Mildew Fungus. Plant Physiol. 2016;170:1420–1434. doi: 10.1104/pp.15.01265. PubMed DOI PMC
Shimono M, et al. The Pseudomonas syringae Type III Effector HopG1 Induces Actin Remodeling to Promote Symptom Development and Susceptibility during Infection. Plant Physiol. 2016;171:2239–2255. doi: 10.1104/pp.16.01593. PubMed DOI PMC
Shimada C, et al. Nonhost resistance in Arabidopsis-Colletotrichum interactions acts at the cell periphery and requires actin filament function. Mol Plant Microbe Interact. 2006;19:270–279. doi: 10.1094/MPMI-19-0270. PubMed DOI
Miklis M, et al. Barley MLO modulates actin-dependent and actin-independent antifungal defense pathways at the cell periphery. Plant Physiol. 2007;144:1132–1143. doi: 10.1104/pp.107.098897. PubMed DOI PMC
Kobayashi Y, Yamada M, Kobayashi I, Kunoh H. Actin microfilaments are required for the expression of nonhost resistance in higher plants. Plant Cell Physiol. 1997;38:725–733. doi: 10.1093/oxfordjournals.pcp.a029226. DOI
Yun BW, et al. Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non-host resistance in Arabidopsis against wheat powdery mildew. Plant J. 2003;34:768–777. doi: 10.1046/j.1365-313X.2003.01773.x. PubMed DOI
Kobayashi YKI. Depolymerization of the actin cytoskeleton inducesdefense responses in tobacco plants. Journal of General Plant Pathology. 2007;73:360–364. doi: 10.1007/s10327-007-0029-5. DOI
Matouskova J, et al. Changes in actin dynamics are involved in salicylic acid signaling pathway. Plant Sci. 2014;223:36–44. doi: 10.1016/j.plantsci.2014.03.002. PubMed DOI
Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF. Salicylic Acid biosynthesis and metabolism. Arabidopsis Book. 2011;9:e0156. doi: 10.1199/tab.0156. PubMed DOI PMC
Vlot AC, Dempsey DA, Klessig DF. Salicylic Acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol. 2009;47:177–206. doi: 10.1146/annurev.phyto.050908.135202. PubMed DOI
Wildermuth MC, Dewdney J, Wu G, Ausubel FM. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature. 2001;414:562–565. doi: 10.1038/35107108. PubMed DOI
Ishiga Y, Ishiga T, Uppalapati SR, Mysore KS. Arabidopsis seedling flood-inoculation technique: a rapid and reliable assay for studying plant-bacterial interactions. Plant Methods. 2011;7:32. doi: 10.1186/1746-4811-7-32. PubMed DOI PMC
Katagiri F, Thilmony R, He SY. The Arabidopsis thaliana-pseudomonas syringae interaction. Arabidopsis Book. 2002;1:e0039. doi: 10.1199/tab.0039. PubMed DOI PMC
Delaney TP, et al. A central role of salicylic Acid in plant disease resistance. Science. 1994;266:1247–1250. doi: 10.1126/science.266.5188.1247. PubMed DOI
Nawrath C, Metraux JP. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell. 1999;11:1393–1404. PubMed PMC
Sasek V, et al. Recognition of avirulence gene AvrLm1 from hemibiotrophic ascomycete Leptosphaeria maculans triggers salicylic acid and ethylene signaling in Brassica napus. Mol Plant Microbe Interact. 2012;25:1238–1250. doi: 10.1094/MPMI-02-12-0033-R. PubMed DOI
Cameron RK, Zaton K. Intercellular salicylic acid accumulation is important for age-related resistance in Arabidopsis to Pseudomonas syringae. Physiol. Mol Plant P. 2004;65:197–209. doi: 10.1016/j.pmpp.2005.02.002. DOI
Kus JV, Zaton K, Sarkar R, Cameron RK. Age-related resistance in Arabidopsis is a developmentally regulated defense response to Pseudomonas syringae. Plant Cell. 2002;14:479–490. doi: 10.1105/tpc.010481. PubMed DOI PMC
Wilson DC, Kempthorne CJ, Carella P, Liscombe DK, Cameron RK. Age-Related Resistance in Arabidopsis thaliana Involves the MADS-Domain Transcription Factor SHORT VEGETATIVE PHASE and Direct Action of Salicylic Acid on Pseudomonas syringae. Mol Plant Microbe Interact. 2017;30:919–929. doi: 10.1094/MPMI-07-17-0172-R. PubMed DOI
Janda M, Matouskova J, Burketova L, Valentova O. Interconnection between actin cytoskeleton and plant defense signaling. Plant Signal Behav. 2014;9:e976486. doi: 10.4161/15592324.2014.976486. PubMed DOI PMC
Sun H, et al. Profilin Negatively Regulates Formin-Mediated Actin Assembly to Modulate PAMP-Triggered Plant Immunity. Curr Biol. 2018;28:1882–1895 e1887. doi: 10.1016/j.cub.2018.04.045. PubMed DOI
Tsuda K, Glazebrook J, Katagiri F. The interplay between MAMP and SA signaling. Plant Signal Behav. 2008;3:359–361. doi: 10.4161/psb.3.6.5702. PubMed DOI PMC
Tsuda K, Sato M, Glazebrook J, Cohen JD, Katagiri F. Interplay between MAMP-triggered and SA-mediated defense responses. Plant J. 2008;53:763–775. doi: 10.1111/j.1365-313X.2007.03369.x. PubMed DOI
Beck M, Zhou J, Faulkner C, MacLean D, Robatzek S. Spatio-temporal cellular dynamics of the Arabidopsis flagellin receptor reveal activation status-dependent endosomal sorting. Plant Cell. 2012;24:4205–4219. doi: 10.1105/tpc.112.100263. PubMed DOI PMC
Preuss ML, et al. A role for the RabA4b effector protein PI-4Kbeta1 in polarized expansion of root hair cells in Arabidopsis thaliana. J Cell Biol. 2006;172:991–998. doi: 10.1083/jcb.200508116. PubMed DOI PMC
Sasek V, et al. Constitutive salicylic acid accumulation in pi4kIIIbeta1beta2 Arabidopsis plants stunts rosette but not root growth. New Phytol. 2014;203:805–816. doi: 10.1111/nph.12822. PubMed DOI
Cvrckova F, Oulehlova D. A new kymogram-based method reveals unexpected effects of marker protein expression and spatial anisotropy of cytoskeletal dynamics in plant cell cortex. Plant Methods. 2017;13:19. doi: 10.1186/s13007-017-0171-9. PubMed DOI PMC
Rouxel T, et al. Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations. Nat Commun. 2011;2:202. doi: 10.1038/ncomms1189. PubMed DOI PMC
Trda L, et al. Cytokinin Metabolism of Pathogenic Fungus Leptosphaeria maculans Involves Isopentenyltransferase, Adenosine Kinase and Cytokinin Oxidase/Dehydrogenase. Front Microbiol. 2017;8:1374. doi: 10.3389/fmicb.2017.01374. PubMed DOI PMC
Marshall OJ. PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics. 2004;20:2471–2472. doi: 10.1093/bioinformatics/bth254. PubMed DOI
Dobrev PI, Kaminek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A. 2002;950:21–29. doi: 10.1016/S0021-9673(02)00024-9. PubMed DOI
Dobrev PI, Hoyerova K, Petrasek J. Analytical Determination of Auxins and Cytokinins. Methods Mol Biol. 2017;1569:31–39. doi: 10.1007/978-1-4939-6831-2_2. PubMed DOI
Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Fernández-Bautista, N., Domínguez-Núñez, J. A., Moreno, M. M. C. & Berrocal-Lobo, L. Plant Tissue Trypan Blue Staining During Phytopathogen Infection. BioProtocol6, 10.21769/BioProtoc.2078 (2016).
DIACYLGLYCEROL KINASE 5 participates in flagellin-induced signaling in Arabidopsis
Bundling up the Role of the Actin Cytoskeleton in Primary Root Growth
BODIPY Conjugate of Epibrassinolide as a Novel Biologically Active Probe for In Vivo Imaging
Dual Mode of the Saponin Aescin in Plant Protection: Antifungal Agent and Plant Defense Elicitor