Dual Mode of the Saponin Aescin in Plant Protection: Antifungal Agent and Plant Defense Elicitor
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31850004
PubMed Central
PMC6893899
DOI
10.3389/fpls.2019.01448
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, Brassica napus, EC50, Leptosphaeria maculans, Pseudomonas syringae, fungicide, salicylic acid,
- Publikační typ
- časopisecké články MeSH
Being natural plant antimicrobials, saponins have potential for use as biopesticides. Nevertheless, their activity in plant-pathogen interaction is poorly understood. We performed a comparative study of saponins' antifungal activities on important crop pathogens based on their effective dose (EC50) values. Among those saponins tested, aescin showed itself to be the strongest antifungal agent. The antifungal effect of aescin could be reversed by ergosterol, thus suggesting that aescin interferes with fungal sterols. We tested the effect of aescin on plant-pathogen interaction in two different pathosystems: Brassica napus versus (fungus) Leptosphaeria maculans and Arabidopsis thaliana versus (bacterium) Pseudomonas syringae pv tomato DC3000 (Pst DC3000). We analyzed resistance assays, defense gene transcription, phytohormonal production, and reactive oxygen species production. Aescin activated B. napus defense through induction of the salicylic acid pathway and oxidative burst. This defense response led finally to highly efficient plant protection against L. maculans that was comparable to the effect of fungicides. Aescin also inhibited colonization of A. thaliana by Pst DC3000, the effect being based on active elicitation of salicylic acid (SA)-dependent immune mechanisms and without any direct antibacterial effect detected. Therefore, this study brings the first report on the ability of saponins to trigger plant immune responses. Taken together, aescin in addition to its antifungal properties activates plant immunity in two different plant species and provides SA-dependent resistance against both fungal and bacterial pathogens.
Department of Botany Faculty of Science Palacký University in Olomouc Olomouc Czechia
Department of Plant Pathology Agrotest Fyto Ltd Kroměrˇíž Czechia
Zobrazit více v PubMed
Arneson P. A., Durbin R. D. (1967). Hydrolysis of tomatine by Septoria lycopersici: a detoxification mechanism. Phytopathology 57, 1358–1360.
Augustin J. M., Kuzina V., Andersen S. B., Bak S. (2011). Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 72 (6), 435–457. 10.1016/j.phytochem.2011.01.015 PubMed DOI
Balesdent M. H., Attard A., Ansan-Melayah D., Delourme R., Renard M., Rouxel T. (2001). Genetic control and host range of avirulence toward Brassica napus Cultivars Quinta and Jet Neuf in Leptosphaeria maculans. Phytopathology 91 (1), 70–76. 10.1094/PHYTO.2001.91.1.70 PubMed DOI
Barile E., Bonanomi G., Antignani V., Zolfaghari B., Sajjadi S. E., Scala F., et al. (2007). Saponins from Allium minutiflorum with antifungal activity. Phytochemistry 68 (5), 596–603. 10.1016/j.phytochem.2006.10.009 PubMed DOI
Becker P., Weltring K. M. (1998). Purification and characterization of alpha-chaconinase of Gibberella pulicaris. FEMS Microbiol. Lett. 167, 197–202. 10.1111/j.1574-6968.1998.tb13228.x DOI
Bowyer P., Clarke B. R., Lunness P., Daniels M. J., Osbourn A. E. (1995). Host-range of a plant-pathogenic fungus determined by a Saponin detoxifying enzyme. Science 267, 371–374. 10.1126/science.7824933 PubMed DOI
Burketová L., Trdá L., Ott P. G., Valentová O. (2015). Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnol. Adv. 33 (6 Pt 2), 994–1004. 10.1016/j.biotechadv.2015.01.004 PubMed DOI
Child R. D., Evans D. E., Allen J., Arnold G. M. (1993). Growth responses in oilseed rape (Brassica napus L.) to combined applications of the triazole chemicals triapenthenol and tebuconazole and interactions with gibberellin. Plant Growth Regul. 13 (2), 203–212. 10.1007/BF00024263 DOI
Cook D. E., Mesarich C. H., Thomma B. P. (2015). Understanding plant immunity as a surveillance system to detect invasion. Annu. Rev. Phytopathol. 53, 541–563. 10.1146/annurev-phyto-080614-120114 PubMed DOI
da Cruz Cabral L., Fernandez Pinto V., Patriarca A. (2013). Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. Int. J. Food Microbiol. 166 (1), 1–14. 10.1016/j.ijfoodmicro.2013.05.026 PubMed DOI
Dave A., Graham I. A. (2012). Oxylipin signaling: a distinct role for the Jasmonic acid precursor cis-(+)-12-Oxo-Phytodienoic Acid (cis-OPDA). Front. Plant Sci. 3, 42. 10.3389/fpls.2012.00042 PubMed DOI PMC
Defago G., Kern H. (1983). Induction of Fusarium-solani mutants insensitive to Tomatine, their pathogenicity and aggressiveness to tomato fruits and pea-plants. Physiol. Plant Pathol. 22, 29–37. 10.1016/S0048-4059(83)81035-2 DOI
Delaney T. P., Uknes S., Vernooij B., Friedrich L., Weymann K., Negrotto D., et al. (1994). A central role of salicylic Acid in plant disease resistance. Science 266 (5188), 1247–1250. 10.1126/science.266.5188.1247 PubMed DOI
Djilianov D. L., Dobrev P. I., Moyankova D. P., Vankova R., Georgieva D. T., Gajdošová S., et al. (2013). Dynamics of endogenous phytohormones during desiccation and recovery of the resurrection plant species Haberlea rhodopensis. J. Plant Growth Regul. 32, 564–574. 10.1007/s00344-013-9323-y DOI
Dobrev P. I., Kaminek M. (2002). Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A 950 (1–2), 21–29. 10.1016/S0021-9673(02)00024-9 PubMed DOI
Dodds P. N., Rathjen J. P. (2010). Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11 (8), 539–548. 10.1038/nrg2812 PubMed DOI
Field B., Jordán F., Osbourn A. (2006). First encounters–deployment of defence-related natural products by plants. New Phytol. 172 (2), 193–207. 10.1111/j.1469-8137.2006.01863.x PubMed DOI
Finney D. J. (1971). Probit Analysis. Cambridge: Cambridge University Press.
Fisher M. C., Hawkins N. J., Sanglard D., Gurr S. J. (2018). Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 360 (6390), 739–742. 10.1126/science.aap7999 PubMed DOI
Franiczek R., Glensk M., Krzyzanowska B., Wlodarczyk M. (2015). beta-Aescin at subinhibitory concentration (sub-MIC) enhances susceptibility of Candida glabrata clinical isolates to nystatin. Med. Mycol. 53, 845–851. 10.1093/mmy/myv035 PubMed DOI
Friedrich L., Lawton K., Ruess W., Masner P., Specker N., Rella M. G., et al. (1996). A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J. 10, 61–70. 10.1046/j.1365-313X.1996.10010061.x DOI
Glazebrook J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205–227. 10.1146/annurev.phyto.43.040204.135923 PubMed DOI
Griffiths K. M., Howlett B. J. (2002). Transcription of sterol Delta(5,6)-desaturase and sterol 14alpha-demethylase is induced in the plant pathogenic ascomycete, Leptosphaeria maculans, during treatment with a triazole fungicide. FEMS Microbiol. Lett. 217 (1), 81–87. 10.1111/j.1574-6968.2002.tb11459.x PubMed DOI
Gruiz K. (1996). Fungitoxic activity of saponins: practical use and fundamental principles. Adv. Exp. Med. Biol. 404, 527–534. 10.1007/978-1-4899-1367-8_43 PubMed DOI
Hoagland R. E., Zablotowicz R. M., Reddy K. N., (1996). “Studies of the Phytotoxicity of Saponins on Weed and Crop Plants,” in Saponins Used in Food and Agriculture. Advances in Experimental Medicine and Biology, vol. 405 . Eds. Waller G. R., Yamasaki K. (Boston, MA Springer). 10.1007/978-1-4613-0413-5_6 PubMed DOI
Hoagland R. E. (2009). Toxicity of tomatine and tomatidine on weeds, crops and phytopathogenetic fungi. Allelopathy J. 23 (2), 425–436.
Hostettmann K., Marston A., (1995). Saponins. Cambridge University Press. 10.1017/CBO9780511565113 DOI
Huang H. C., Liao S. C., Chang F. R., Kuo Y. H., Wu Y. C. (2003). Molluscicidal saponins from Sapindus mukorossi, inhibitory agents of golden apple snails, Pomacea canaliculata. J. Agric. Food Chem. 51 (17), 4916–4919. 10.1021/jf0301910 PubMed DOI
Janda M., Ruelland E. (2015). Magical mystery tour: Salicylic acid signaling. Environ. Exp. Bot. 114, 117–128. 10.1016/j.envexpbot.2014.07.003 DOI
Kachroo A., Robin G. P. (2013). Systemic signaling during plant defense. Curr. Opin. Plant Biol. 16, 527–533. PubMed
Katagiri F., Thilmony R., He S. Y. (2002). The Arabidopsis thaliana-pseudomonas syringae interaction. Arabidopsis Book. 1, e0039. 10.1199/tab.0039 PubMed DOI PMC
Lamb C., Dixon R. A. (1997). The cxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 251–275. 10.1199/tab.0039 PubMed DOI
Leontovyčová H., Kalachova T., Trdá L., Pospíchalová R., Lamparová L., Dobrev P. I., et al. (2019). Actin depolymerization is able to increase plant resistance against pathogens via activation of salicylic acid signalling pathway. Sci. Rep. 9 (1), 10397. 10.1038/s41598-019-46465-5 PubMed DOI PMC
Lloyd S. R., Schoonbeek H. J., Trick M., Zipfel C., Ridout C. J. (2014). Methods to study PAMP-triggered immunity in Brassica species. Mol. Plant Microbe Interact. 27 (3), 286–295. 10.1094/MPMI-05-13-0154-FI PubMed DOI
Marshall O. J. (2004). PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 20 (15), 2471–2472. 10.1093/bioinformatics/bth254 PubMed DOI
Marty-Roix R., Vladimer G. I., Pouliot K., Weng D., Buglione-Corbett R., West K., et al. (2016). Identification of QS-21 as an inflammasome-activating molecular component of saponin adjuvants. J. Biol. Chem. 291 (3), 1123–1136. 10.1074/jbc.M115.683011 PubMed DOI PMC
Matušinský P., Svačinová I., Jonavičiené A., Tvarůžek L. (2017). Long-term dynamics of causative agents of stem base diseases in winter wheat and reaction of Czech Oculimacula spp. and Microdochium spp. populations to prochloraz. Eur. J. Plant Pathol. 148, 199–206. 10.1007/s10658-016-1082-8 DOI
Matušinský P., Zouhar M., Pavela R., Nový P. (2015). Antifungal effect of five essential oils against important pathogenic fungi of cereals. Ind. Crops Prod. 67, 208–215. 10.1016/j.indcrop.2015.01.022 DOI
Morrissey J. P., Osbourn A. E. (1999). Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol. Mol. Biol. Rev. 63 (3), 708–724. PubMed PMC
Moses T., Papadopoulou K. K., Osbourn A. (2014). Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit. Rev. Biochem. Mol. Biol. 49 (6), 439–462. 10.3109/10409238.2014.953628 PubMed DOI PMC
Nielsen J. K., Nagao T., Okabe H., Shinoda T. (2010). Resistance in the plant, Barbarea vulgaris, and counter-adaptations in flea beetles mediated by saponins. J. Chem. Ecol. 36 (3), 277–285. 10.1007/s10886-010-9758-6 PubMed DOI
Nováková M, Sašek V, Dobrev PI, Valentová O, Burketová L. (2014). Plant hormones in defense response of Brassica napus to Sclerotinia sclerotiorum - reassessing the role of salicylic acid in the interaction with a necrotroph. Plant Physiol. Biochem. 80, 308–317. 10.1016/j.plaphy.2014.04.019 PubMed DOI
Nováková M., Šašek V., Trdá L., Krutinová H., Mongin T., Valentová O., et al. (2016). Leptosphaeria maculans effector AvrLm4-7 affects salicylic acid (SA) and ethylene (ET) signalling and hydrogen peroxide (H2O2) accumulation in Brassica napus. Mol. Plant Pathol. 17, 818–831. 10.1111/mpp.12332 PubMed DOI PMC
Olsen R. A. (1973). Triterpeneglycosides as inhibitors of fungal growth and metabolism.6. Effect of Aescin on fungi with reduced sterol contents. Physiol. Plant 29, 145–149. 10.1111/j.1399-3054.1973.tb03082.x DOI
Osbourn A. (1996). Saponins and plant defence - A soap story. Trends Plant Sci. 1, 4–9. 10.1016/S1360-1385(96)80016-1 DOI
Papadopoulou K., Melton R. E., Leggett M., Daniels M. J., Osbourn A. E. (1999). Compromised disease resistance in saponin-deficient plants. Proc. Natl. Acad. Sci. U.S.A. 96, 12923–12928. 10.1073/pnas.96.22.12923 PubMed DOI PMC
Pieterse C. M., Leon-Reyes A., Van der Ent S., Van Wees S. C. (2009). Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5 (5), 308–316. 10.1038/nchembio.164 PubMed DOI
Podolak I., Galanty A., Sobolewska D. (2010). Saponins as cytotoxic agents: a review. Phytochem. Rev. 9 (3), 425–474. 10.1007/s11101-010-9183-z PubMed DOI PMC
Porsche F. M., Molitor D., Beyer M., Charton S., Andre C., Kollar A. (2018). Antifungal activity of saponins from the fruit pericarp of Sapindus mukorossi against Venturia inaequalis and Botrytis cinerea. Plant Dis. 102 (5), 991–1000. 10.1094/PDIS-06-17-0906-RE PubMed DOI
Potlakayala S. D., Reed D. W., Covello P. S., Fobert P. R. (2007). Systemic acquired resistance in canola is linked with pathogenesis-related gene expression and requires salicylic acid. Phytopathology 97, 794–802. 10.1094/PHYTO-97-7-0794 PubMed DOI
Price K. R., Johnson I. T., Fenwick G. R., Malinow M. R. (1987). The chemistry and biological significance of saponins in foods and feedingstuffs. Crit. Rev. Food Sci. Nutr. 26 (1), 27–135. 10.1080/10408398709527461 PubMed DOI
Qi J., Wang J., Gong Z., Zhou J. M. (2017). Apoplastic ROS signaling in plant immunity. Curr. Opin. Plant Biol. 38, 92–100. 10.1016/j.pbi.2017.04.022 PubMed DOI
Qi G., Chen J., Chang M., Chen H., Hall K., Korin J., et al. (2018). Pandemonium breaks out: disruption of salicylic acid-mediated defense by plant pathogens. Mol. Plant 11 (12), 1427–1439. 10.1016/j.molp.2018.10.002 PubMed DOI
Saha S., Walia S., Kumar J., Parmar B. S. (2010). Structure-biological activity relationships in triterpenic saponins: the relative activity of protobassic acid and its derivatives against plant pathogenic fungi. Pest Manage. Sci. 66, 825–831. 10.1002/ps.1947 PubMed DOI
Saleem M., Nazir M., Ali M. S., Hussain H., Lee Y. S., Riaz N., et al. (2010). Antimicrobial natural products: an update on future antibiotic drug candidates. Nat. Prod Rep. 27 (2), 238–254. 10.1039/B916096E PubMed DOI
Sanati H., Belanger P., Fratti R., Ghannoum M. (1997). A new triazole, voriconazole (UK-109,496), blocks sterol biosynthesis in Candida albicans and Candida krusei. Antimicrob. Agents Chemother. 41, 2492–2496. 10.1128/AAC.41.11.2492 PubMed DOI PMC
Saniewska A., Jarecka A., Bialy Z., Jurzysta M. (2006). Antifungal activity of saponins originated from Medicago hybrida against some ornamental plant pathogens. Acta Agrobotanica 59 (2), 51–58. 10.5586/aa.2006.061 DOI
Šašek V., Nováková M., Dobrev P. I., Valentová O., Burketová L. (2012. a). β-aminobutyric acid protects Brassica napus plants from infection by Leptosphaeria maculans. Resistance induction or a direct antifungal effect? Eur. J. Plant Pathol. 133, 279–289. 10.1007/s10658-011-9897-9 DOI
Šašek V., Nováková M., Jindřichová B., Boka K., Valentová O., Burketová L. (2012. b). Recognition of avirulence gene AvrLm1 from hemibiotrophic ascomycete Leptosphaeria maculans triggers salicylic acid and ethylene signaling in Brassica napus. Mol. Plant Microbe Interact. 25, 1238–1250. 10.1094/MPMI-02-12-0033-R PubMed DOI
Singh B., Kaur A. (2018). Control of insect pests in crop plants and stored food grains using plant saponins: a review. LWT 87, 93–101. 10.1016/j.lwt.2017.08.077 DOI
Soltysik S., Wu J. Y., Recchia J., Wheeler D. A., Newman M. J., Coughlin R. T., et al. (1995). Structure-function studies of Qs-21 adjuvant - assessment of triterpene aldehyde and glucuronic-acid roles in adjuvant function. Vaccine 13, 1403–1410. 10.1016/0264-410X(95)00077-E PubMed DOI
Sreij R., Dargel C., Schweins R., Prevost S., Dattani R., Hellweg T. (2019). Aescin-cholesterol complexes in DMPC model membranes: a DSC and temperature-dependent scattering study. Sci. Rep. 9 (1), 5542. 10.1038/s41598-019-41865-z PubMed DOI PMC
Steel C. C., Drysdale R. B. (1988). Electrolyte leakage from plant and fungal tissues and disruption of liposome membranes by alpha-tomatine. Phytochemistry 27, 1025–1030. 10.1016/0031-9422(88)80266-8 DOI
Steiner A. A. (1984). The Universal Nutrient Solution. Proceedings of IWOSC 6th International Congress on Soilless Culture, Netherlands: Wageningen; pp. 633–650, Wageningen, Netherlands. 10.1016/j.vaccine.2009.01.091 DOI
Sun H. X., Xie Y., Ye Y. P. (2009). Advances in saponin-based adjuvants. Vaccine 27, 1787–1796. 10.1016/j.vaccine.2009.01.091 PubMed DOI
Teshima Y., Ikeda T., Imada K., Sasaki K., El-Sayed M. A., Shigyo M., et al. (2013). Identification and biological activity of antifungal saponins from shallot (Allium cepa L. Aggregatum group). J. Agric. Food Chem. 61 (31), 7440–7445. 10.1021/jf401720q PubMed DOI
Torres M. A., Jones J. D., Dangl J. L. (2005). Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat. Genet. 37 (10), 1130–1134. 10.1038/ng1639 PubMed DOI
Trdá L., Boutrot F., Claverie J., Brulé D., Dorey S., Poinssot B. (2015). Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline. Front. Plant Sci. 6, 219. 10.3389/fpls.2015.00219 PubMed DOI PMC
Tsuda K., Sato M., Glazebrook J., Cohen J. D., Katagiri F. (2008). Interplay between MAMP-triggered and SA-mediated defense responses. Plant J. 53 (5), 763–775. 10.1111/j.1365-313X.2007.03369.x PubMed DOI
Tsuda K., Mine A., Bethke G., Igarashi D., Botanga C. J., Tsuda Y., et al. (2013). Dual regulation of gene expression mediated by extended MAPK activation and salicylic acid contributes to robust innate immunity in Arabidopsis thaliana. PloS Genet. 9 (12), e1004015. 10.1371/journal.pgen.1004015 PubMed DOI PMC
Turner E. M. C. (1960). The nature of the resistance of oats to the take-all fungus.3. Distribution of the inhibitor in oat seedlings. J. Exp. Bot. 11, 403–412. 10.1093/jxb/11.3.403 DOI
Waller G. R., Jurzysta M., Thorne R. L. Z. (1993). Allelopathic activity of root Saponins from Alfalfa (Medicago-Sativa L) on weeds and wheat. Bot. Bull. Acad. Sin. 34, 1–11.
Walters D. R., Ratsep J., Havis N. D. (2013). Controlling crop diseases using induced resistance: challenges for the future. J. Exp. Bot. 64, 1263–1280. 10.1093/jxb/ert026 PubMed DOI
Wolters B. (1966). [On antimicrobial activity of plant steroids and triterpenes]. Planta Med. 14, 392–399. 10.1055/s-0028-1100066 PubMed DOI
Xin X. F., He S. Y. (2013). Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Annu. Rev. Phytopathol. 51, 473–498. 10.1146/annurev-phyto-082712-102321 PubMed DOI
Xin X. F., Kvitko B., He S. Y. (2018). Pseudomonas syringae: what it takes to be a pathogen. Nat. Rev. Microbiol. 16 (5), 316–328. 10.1038/nrmicro.2018.17 PubMed DOI PMC
Yang C. R., Zhang Y., Jacob M. R., Khan S. I., Zhang Y. J., Li X. C. (2006). Antifungal activity of C-27 steroidal saponins. Antimicrob. Agents Chemother. 50 (5), 1710–1714. 10.1128/AAC.50.5.1710-1714.2006 PubMed DOI PMC
Zablotowicz R. M., Hoagland R. E., Wagner S. C. (1996). Effect of saponins on the growth and activity of rhizosphere bacteria. Saponins Used Food Agric. 405, 83–95. 10.1007/978-1-4613-0413-5_8 PubMed DOI
Zhao Y. L., Cai G. M., Hong X., Shan L. M., Xiao X. H. (2008). Anti-hepatitis B virus activities of triterpenoid saponin compound from Potentilla anserine L. Phytomedicine 15 (4), 253–258. 10.1016/j.phymed.2008.01.005 PubMed DOI
Zhu Y., Chen H., Fan J., Wang Y., Li Y., Chen J., et al. (2000). Genetic diversity and disease control in rice. Nature 406 (6797), 718–722. 10.1038/35021046 PubMed DOI
Zhou M., Wang W. (2018). Recent advances in synthetic chemical inducers of plant immunity. Front. Plant Sci. 9, 1–10. 10.3389/fpls.2018.01613 PubMed DOI PMC