Leptosphaeria maculans effector AvrLm4-7 affects salicylic acid (SA) and ethylene (ET) signalling and hydrogen peroxide (H2 O2 ) accumulation in Brassica napus

. 2016 Aug ; 17 (6) : 818-31. [epub] 20160106

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26575525

To achieve host colonization, successful pathogens need to overcome plant basal defences. For this, (hemi)biotrophic pathogens secrete effectors that interfere with a range of physiological processes of the host plant. AvrLm4-7 is one of the cloned effectors from the hemibiotrophic fungus Leptosphaeria maculans 'brassicaceae' infecting mainly oilseed rape (Brassica napus). Although its mode of action is still unknown, AvrLm4-7 is strongly involved in L. maculans virulence. Here, we investigated the effect of AvrLm4-7 on plant defence responses in a susceptible cultivar of B. napus. Using two isogenic L. maculans isolates differing in the presence of a functional AvrLm4-7 allele [absence ('a4a7') and presence ('A4A7') of the allele], the plant hormone concentrations, defence-related gene transcription and reactive oxygen species (ROS) accumulation were analysed in infected B. napus cotyledons. Various components of the plant immune system were affected. Infection with the 'A4A7' isolate caused suppression of salicylic acid- and ethylene-dependent signalling, the pathways regulating an effective defence against L. maculans infection. Furthermore, ROS accumulation was decreased in cotyledons infected with the 'A4A7' isolate. Treatment with an antioxidant agent, ascorbic acid, increased the aggressiveness of the 'a4a7' L. maculans isolate, but not that of the 'A4A7' isolate. Together, our results suggest that the increased aggressiveness of the 'A4A7' L. maculans isolate could be caused by defects in ROS-dependent defence and/or linked to suppressed SA and ET signalling. This is the first study to provide insights into the manipulation of B. napus defence responses by an effector of L. maculans.

Zobrazit více v PubMed

Ansan‐Melayah, D. , Balesdent, M. , Buée, M. and Rouxel, T. (1995) Genetic characterization of AvrLm1, the first avirulence gene of Leptosphaeria maculans . Phytopathology, 85, 1525–1529.

Apel, K. and Hirt, H. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399. PubMed

Balesdent, M. , Attard, A. , Kühn, M. and Rouxel, T. (2002) New avirulence genes in the phytopathogenic fungus Leptosphaeria maculans . Phytopathology, 92, 1122–1133. PubMed

Balesdent, M. , Barbetti, M. , Li, H. , Sivasithamparam, K. , Gout, L. and Rouxel, T. (2005) Analysis of Leptosphaeria maculans race structure in a worldwide collection of isolates. Phytopathology, 95, 1061–1071. PubMed

Balesdent, M.H. , Fudal, I. , Ollivier, B. , Bally, P. , Grandaubert, J. , Eber, F. , Chèvre, A.M. , Leflon, M. and Rouxel, T. (2013) The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa . New Phytol. 198, 887–898. PubMed

Balesdent, M.‐H. , Louvard, K. , Pinochet, X. and Rouxel, T. (2006) A large‐scale survey of races of Leptosphaeria maculans occurring on oilseed rape in France. Eur. J. Plant Pathol. 114, 53–65.

Bell, E. , Creelman, R.A. and Mullet, J.E. (1995) A chloroplast lipoxygenase is required for wound‐induced jasmonic acid accumulation in Arabidopsis . Proc. Natl. Acad. Sci. USA, 92, 8675–8679. PubMed PMC

Block, A. and Alfano, J.R. (2011) Plant targets for Pseudomonas syringae type III effectors: virulence targets or guarded decoys? Curr. Opin. Microbiol. 14, 39–46. PubMed PMC

Blondeau, K. , Blaise, F. , Graille, M. , Kale, S.D. , Linglin, J. , Ollivier, B. , Labarde, A. , Lazar, N. , Daverdin, G. , Balesdent, M.H. Choi, D.H.Y. , Tyler, B.M. , Rouxel, T. , van Tilbeurgh, H. and Fudal, I. (2015) Crystal structure of the effector AvrLm4–7 of Leptosphaeria maculans reveals insights into its translocation into plant cells and recognition by resistance proteins. Plant J. 83, 610–624. doi: 10.1111/tpj.12913. PubMed DOI

Buscaill, P. and Rivas, S. (2014) Transcriptional control of plant defence responses. Curr. Opin. Plant Biol. 20, 35–46. PubMed

Chisholm, S.T. , Coaker, G. , Day, B. and Staskawicz, B.J. (2006) Host–microbe interactions: shaping the evolution of the plant immune response. Cell, 124, 803–814. PubMed

Denancé, N. , Sánchez‐Vallet, A. , Goffner, D. and Molina, A. (2013) Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front. Plant Sci. 4, 155. PubMed PMC

Deslandes, L. and Rivas, S. (2012) Catch me if you can: bacterial effectors and plant targets. Trends Plant Sci. 17, 644–655. PubMed

Dobrev, P.I. and Kamínek, M. (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed‐mode solid‐phase extraction. J. Chromatogr. A, 950, 21–29. PubMed

Dobrev, P.I. and Vankova, R. (2012) Quantification of abscisic acid, cytokinin, and auxin content in salt‐stressed plant tissues In: Plant Salt Tolerance, pp. 251–261. Springer. PubMed

Dodds, P.N. and Rathjen, J.P. (2010) Plant immunity: towards an integrated view of plant–pathogen interactions. Nat. Rev. Genet. 11, 539–548. PubMed

Doehlemann, G. and Hemetsberger, C. (2013) Apoplastic immunity and its suppression by filamentous plant pathogens. New Phytol. 198, 1001–1016. PubMed

Dou, D. and Zhou, J.‐M. (2012) Phytopathogen effectors subverting host immunity: different foes, similar battleground. Cell Host Microbe, 12, 484–495. PubMed

Draper, J. (1997) Salicylate, superoxide synthesis and cell suicide in plant defence. Trends Plant Sci. 2, 162–165.

Foyer, C.H. and Noctor, G. (2013) Redox signaling in plants. Antioxid. Redox. Signal. 18, 2087–2090. PubMed

Fudal, I. , Ross, S. , Gout, L. , Blaise, F. , Kuhn, M. , Eckert, M. , Cattolico, L. , Bernard‐Samain, S. , Balesdent, M.H. and Rouxel, T. (2007) Heterochromatin‐like regions as ecological niches for avirulence genes in the Leptosphaeria maculans genome: map‐based cloning of AvrLm6 . Mol. Plant–Microbe Interact. 20, 459–470. PubMed

Gan, P. , Ikeda, K. , Irieda, H. , Narusaka, M. , O'Connell, R.J. , Narusaka, Y. , Takano, Y. , Kubo, Y. and Shirasu, K. (2013) Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol. 197, 1236–1249. PubMed

Gardiner, D.M. and Howlett, B.J. (2004) Negative selection using thymidine kinase increases the efficiency of recovery of transformants with targeted genes in the filamentous fungus Leptosphaeria maculans . Curr. Genet. 45, 249–255. PubMed

Ghanbarnia, K. , Fudal, I. , Larkan, N.J. , Links, M.G. , Balesdent, M.H. , Profotova, B. , Fernando, W. , Rouxel, T. and Borhan, M.H. (2015) Rapid identification of the Leptosphaeria maculans avirulence gene AvrLm2, using an intraspecific comparative genomics approach. Mol. Plant Pathol. 16, 699–709. PubMed PMC

Ghanbarnia, K. , Lydiate, D.J. , Rimmer, S.R. , Li, G. , Kutcher, H.R. , Larkan, N.J. , McVetty, P.B. and Fernando, W.D. (2012) Genetic mapping of the Leptosphaeria maculans avirulence gene corresponding to the LepR1 resistance gene of Brassica napus . Theor. Appl. Genet. 124, 505–513. PubMed

Giraldo, M.C. and Valent, B. (2013) Filamentous plant pathogen effectors in action. Nat. Rev. Microbiol. 11, 800–814. PubMed

Glazebrook, J. (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205–227. PubMed

Gout, L. , Fudal, I. , Kuhn, M.L. , Blaise, F. , Eckert, M. , Cattolico, L. , Balesdent, M.H. and Rouxel, T. (2006) Lost in the middle of nowhere: the AvrLm1 avirulence gene of the Dothideomycete Leptosphaeria maculans . Mol. Microbiol. 60, 67–80. PubMed

Hammond, K.E. and Lewis, B. (1987) The establishment of systemic infection in leaves of oilseed rape by Leptosphaeria maculans . Plant Pathol. 36, 135–147.

Hemetsberger, C. , Herrberger, C. , Zechmann, B. , Hillmer, M. and Doehlemann, G. (2012) The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathog. 8, e1002684. PubMed PMC

Herrera‐Vásquez, A. , Salinas, P. and Holuigue, L. (2015) Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Front. Plant Sci. 6, 1–9. PubMed PMC

Hogenhout, S.A. , Van der Hoorn, R.A. , Terauchi, R. and Kamoun, S. (2009) Emerging concepts in effector biology of plant‐associated organisms. Mol. Plant–Microbe Interact. 22, 115–122. PubMed

Howlett, B.J. (2004) Current knowledge of the interaction between Brassica napus and Leptosphaeria maculans . Can. J. Plant Pathol. 26, 245–252.

Huang, Y.‐J. , Balesdent, M.‐H. , Li, Z.‐Q. , Evans, N. , Rouxel, T. and Fitt, B.D. (2010) Fitness cost of virulence differs between the AvrLm1 and AvrLm4 loci in Leptosphaeria maculans (phoma stem canker of oilseed rape). Eur. J. Plant Pathol. 126, 279–291.

Huang, Y.‐J. , Li, Z.‐Q. , Evans, N. , Rouxel, T. , Fitt, B.D. and Balesdent, M.‐H. (2006) Fitness cost associated with loss of the AvrLm4 avirulence function in Leptosphaeria maculans (phoma stem canker of oilseed rape). Eur. J. Plant Pathol. 114, 77–89.

Janda, M. , Šašek, V. , Chmelařová, H. , Andrejch, J. , Nováková, M. , Hajšlová, J. , Burketová, L. and Valentová, O. (2015) Phospholipase D affects translocation of NPR1 to the nucleus in Arabidopsis thaliana . Front. Plant Sci. 6, 59. PubMed PMC

Jefferson, R.A. , Kavanagh, T.A. and Bevan, M.W. (1987) GUS fusions: beta‐glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907. PubMed PMC

Jindřichová, B. , Fodor, J. , Šindelářová, M. , Burketová, L. and Valentová, O. (2011) Role of hydrogen peroxide and antioxidant enzymes in the interaction between a hemibiotrophic fungal pathogen, Leptosphaeria maculans, and oilseed rape. Environ. Exp. Bot. 72, 149–156.

Jones, J.D. and Dangl, J.L. (2006) The plant immune system. Nature, 444, 323–329. PubMed

de Jong, A.J. , Yakimova, E.T. , Kapchina, V.M. and Woltering, E.J. (2002) A critical role for ethylene in hydrogen peroxide release during programmed cell death in tomato suspension cells. Planta, 214, 537–545. PubMed

Kazan, K. and Lyons, R. (2014) Intervention of phytohormone pathways by pathogen effectors. Plant Cell, 26, 2285–2309. PubMed PMC

Kim, J.‐G. , Stork, W. and Mudgett, M.B. (2013) Xanthomonas type III effector XopD desumoylates tomato transcription factor SlERF4 to suppress ethylene responses and promote pathogen growth. Cell Host Microbe, 13, 143–154. PubMed PMC

Kim, J.‐G. , Taylor, K.W. , Hotson, A. , Keegan, M. , Schmelz, E.A. and Mudgett, M.B. (2008) XopD SUMO protease affects host transcription, promotes pathogen growth, and delays symptom development in Xanthomonas‐infected tomato leaves. Plant Cell, 20, 1915–1929. PubMed PMC

Larkan, N. , Lydiate, D. , Parkin, I. , Nelson, M. , Epp, D. , Cowling, W. , Rimmer, S. and Borhan, M. (2013) The Brassica napus blackleg resistance gene LepR3 encodes a receptor‐like protein triggered by the Leptosphaeria maculans effector AVRLM1 . New Phytol. 197, 595–605. PubMed

Lee, S.‐J. and Rose, J.K. (2010) Mediation of the transition from biotrophy to necrotrophy in hemibiotrophic plant pathogens by secreted effector proteins. Plant Signal. Behav. 5, 769–772. PubMed PMC

Parlange, F. , Daverdin, G. , Fudal, I. , Kuhn, M.L. , Balesdent, M.H. , Blaise, F. , Grezes‐Besset, B. and Rouxel, T. (2009) Leptosphaeria maculans avirulence gene AvrLm4‐7 confers a dual recognition specificity by the Rlm4 and Rlm7 resistance genes of oilseed rape, and circumvents Rlm4‐mediated recognition through a single amino acid change. Mol. Microbiol. 71, 851–863. PubMed

Persson, M. , Staal, J. , Oide, S. and Dixelius, C. (2009) Layers of defense responses to Leptosphaeria maculans below the RLM1‐ and camalexin‐dependent resistances. New Phytol. 182, 470–482. PubMed

Pieterse, C.M. , Leon‐Reyes, A. , Van der Ent, S. and Van Wees, S.C. (2009) Networking by small‐molecule hormones in plant immunity. Nat. Chem. Biol. 5, 308–316. PubMed

Pieterse, C.M. , Van der Does, D. , Zamioudis, C. , Leon‐Reyes, A. and Van Wees, S.C. (2012) Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28, 489–521. PubMed

Rafiqi, M. , Ellis, J.G. , Ludowici, V.A. , Hardham, A.R. and Dodds, P.N. (2012) Challenges and progress towards understanding the role of effectors in plant–fungal interactions. Curr. Opin. Plant Biol. 15, 477–482. PubMed

Robert‐Seilaniantz, A. , Grant, M. and Jones, J.D. (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate–salicylate antagonism. Annu. Rev. Phytopathol. 49, 317–343. PubMed

Rouxel, T. and Balesdent, M.H. (2013) From model to crop plant–pathogen interactions: cloning of the first resistance gene to Leptosphaeria maculans in Brassica napus . New Phytol. 197, 356–358. PubMed

Rouxel, T. and de Wit, P.J. (2012) Dothideomycete effectors facilitating biotrophic and necrotrophic lifestyles In: Effectors in Plant–Microbe Interactions (Francis M. and Sophien K., eds). John Wiley & Sons.

Rudd, J. , Kanyuka, K. , Hassani‐Pak, K. , Derbyshire, M. , Devonshire, J. , Saqi, M. , Desai, N. , Powers, S. , Hooper, J. , Ambroso, L. , Bharti, A. , Farmer, A. , Hammond‐Kosack, K. , Dietrich, R. and Courbot, M. (2015) Transcriptome and metabolite profiling the infection cycle of Zymoseptoria tritici on wheat (Triticum aestivum) reveals a biphasic interaction with plant immunity involving differential pathogen chromosomal contributions, and a variation on the hemibiotrophic lifestyle definition. Plant Physiol. 167, 1158–1185. DOI:10.1104/pp.114.255927. PubMed DOI PMC

Šašek, V. , Janda, M. , Delage, E. , Puyaubert, J. , Guivarc'h, A. , López Maseda, E. , Dobrev, P.I. , Caius, J. , Bóka, K. and Valentová, O. (2014) Constitutive salicylic acid accumulation in pi4kIIIβ1β2 Arabidopsis plants stunts rosette but not root growth. New Phytol. 203, 805–816. PubMed

Šašek, V. , Nováková, M. , Jindrichová, B. , Bóka, K. , Valentová, O. and Burketová, L. (2012) Recognition of avirulence gene AvrLm1 from hemibiotrophic ascomycete Leptosphaeria maculans triggers salicylic acid and ethylene signaling in Brassica napus . Mol. Plant–Microbe Interact. 25, 1238–1250. PubMed

Schmidt, S.M. and Panstruga, R. (2011) Pathogenomics of fungal plant parasites: what have we learnt about pathogenesis? Curr. Opin. Plant Biol. 14, 392–399. PubMed

Soyer, J.L. , El Ghalid, M. , Glaser, N. , Ollivier, B. , Linglin, J. , Grandaubert, J. , Balesdent, M.‐H. , Connolly, L.R. , Freitag, M. , Rouxel, T. and Fudal, I. (2014) Epigenetic control of effector gene expression in the plant pathogenic fungus Leptosphaeria maculans . PLoS Genet. 10, e1004227. PubMed PMC

Thatcher, L.F. , Manners, J.M. and Kazan, K. (2009) Fusarium oxysporum hijacks COI1‐mediated jasmonate signaling to promote disease development in Arabidopsis . Plant J. 58, 927–939. PubMed

Tsuda, K. and Katagiri, F. (2010) Comparing signaling mechanisms engaged in pattern‐triggered and effector‐triggered immunity. Curr. Opin. Plant Biol. 13, 459–465. PubMed

Van de Wouw, A.P. , Lowe, R.G. , Elliott, C.E. , Dubois, D.J. and Howlett, B.J. (2014) An avirulence gene, AvrLmJ1, from the blackleg fungus, Leptosphaeria maculans, confers avirulence to Brassica juncea cultivars. Mol. Plant Pathol. 15, 523–530. PubMed PMC

West, J. , Kharbanda, P. , Barbetti, M. and Fitt, B.D. (2001) Epidemiology and management of Leptosphaeria maculans (phoma stem canker) on oilseed rape in Australia, Canada and Europe. Plant Pathol. 50, 10–27.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...