Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
25904927
PubMed Central
PMC4389352
DOI
10.3389/fpls.2015.00219
Knihovny.cz E-zdroje
- Klíčová slova
- FLS2, LysM, MAMP, PRR, evasion, flg22, innate immunity, plant–microbe interactions,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Plants are continuously monitoring the presence of microorganisms to establish an adapted response. Plants commonly use pattern recognition receptors (PRRs) to perceive microbe- or pathogen-associated molecular patterns (MAMPs/PAMPs) which are microorganism molecular signatures. Located at the plant plasma membrane, the PRRs are generally receptor-like kinases (RLKs) or receptor-like proteins (RLPs). MAMP detection will lead to the establishment of a plant defense program called MAMP-triggered immunity (MTI). In this review, we overview the RLKs and RLPs that assure early recognition and control of pathogenic or beneficial bacteria. We also highlight the crucial function of PRRs during plant-microbe interactions, with a special emphasis on the receptors of the bacterial flagellin and peptidoglycan. In addition, we discuss the multiple strategies used by bacteria to evade PRR-mediated recognition.
Zobrazit více v PubMed
Acharya B. R., Raina S., Maqbool S. B., Jagadeeswaran G., Mosher S. L., Appel H. M., et al. . (2007). Overexpression of CRK13, an Arabidopsis cysteine-rich receptor-like kinase, results in enhanced resistance to Pseudomonas syringae. Plant J. 50, 488–499. 10.1111/j.1365-313X.2007.03064.x PubMed DOI
Achouak W., Conrod S., Cohen V., Heulin T. (2004). Phenotypic variation of Pseudomonas brassicacearum as a plant root-colonization strategy. Mol. Plant Microbe Interact. 17, 872–879. 10.1094/MPMI.2004.17.8.872 PubMed DOI
Albert M., Jehle A. K., Lipschis M., Mueller K., Zeng Y., Felix G. (2010). Regulation of cell behaviour by plant receptor kinases: pattern recognition receptors as prototypical models. Eur. J. Cell Biol. 89, 200–207. 10.1016/j.ejcb.2009.11.015 PubMed DOI
Andersen-Nissen E., Smith K. D., Strobe K. L., Barrett S. L., Cookson B. T., Logan S. M., et al. . (2005). Evasion of Toll-like receptor 5 by flagellated bacteria. Proc. Natl. Acad. Sci. U.S.A. 102, 9247–9252. 10.1073/pnas.0502040102 PubMed DOI PMC
Ao Y., Li Z., Feng D., Xiong F., Liu J., Li J. F., et al. . (2014). OsCERK1 and OsRLCK176 play important roles in peptidoglycan and chitin signaling in rice innate immunity. Plant J. 80, 1072–1084. 10.1111/tpj.12710 PubMed DOI
Arnaud D., Desclos-Theveniau M., Zimmerli L. (2012). Disease resistance to Pectobacterium carotovorum is negatively modulated by the Arabidopsis Lectin Receptor Kinase LecRK-V.5. Plant Signal. Behav. 7, 1070–1072. 10.4161/psb.21013 PubMed DOI PMC
Arora S. K., Neely A. N., Blair B., Lory S., Ramphal R. (2005). Role of motility and flagellin glycosylation in the pathogenesis of Pseudomonas aeruginosa burn wound infections. Infect. Immun. 73, 4395–4398. 10.1128/IAI.73.7.4395-4398.2005 PubMed DOI PMC
Arrighi J. F., Barre A., Ben Amor B., Bersoult A., Soriano L. C., Mirabella R., et al. . (2006). The Medicago truncatula lysin motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol. 142, 265–279. 10.1104/pp.106.084657 PubMed DOI PMC
Bar M., Sharfman M., Ron M., Avni A. (2010). BAK1 is required for the attenuation of ethylene-inducing xylanase (Eix)-induced defense responses by the decoy receptor LeEix1. Plant J. 63, 791–800. 10.1111/j.1365-313X.2010.04282.x PubMed DOI
Bardoel B., van der Ent S., Pel M., Tommassen J., Pieterse C., van Kessel K., et al. . (2011). Pseudomonas evades immune recognition of flagellin in both mammals and plants. PLoS Pathog. 7:e1002206. 10.1371/journal.ppat.1002206 PubMed DOI PMC
Bauer Z., Gomez-Gomez L., Boller T., Felix G. (2001). Sensitivity of different ecotypes and mutants of Arabidopsis thaliana toward the bacterial elicitor flagellin correlates with the presence of receptor-binding sites. J. Biol. Chem. 276, 45669–45676. 10.1074/jbc.M102390200 PubMed DOI
Beardon E., Scholes J., Ton J. (2014). How do beneficial microbes induce systemic resistance? in Induced Resistance for Plant Defense: A Sustainable Approach to Crop Protection, eds Walters R. D., Newton A. C., Gary D. L. (Chichester: John Wiley and Sons, Ltd; ), 232–248 10.1002/9781118371848.ch11 DOI
Beck M., Wyrsch I., Strutt J., Wimalasekera R., Webb A., Boller T., et al. . (2014). Expression patterns of flagellin sensing 2 map to bacterial entry sites in plant shoots and roots. J. Exp. Bot. 65, 6487–6498. 10.1093/jxb/eru366 PubMed DOI PMC
Böhm H., Albert I., Fan L., Reinhard A., Nürnberger T. (2014). Immune receptor complexes at the plant cell surface. Curr. Opin. Plant Biol. 20, 47–54. 10.1016/j.pbi.2014.04.007 PubMed DOI
Boller T., Felix G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Ann. Rev. Plant Biol. 60, 379–406. 10.1146/annurev.arplant.57.032905.105346 PubMed DOI
Broghammer A., Krusell L., Blaise M., Sauer J., Sullivan J. T., Maolanon N., et al. . (2012). Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. Proc. Natl. Acad. Sci. U.S.A. 109, 13859–13864. 10.1073/pnas.1205171109 PubMed DOI PMC
Broz P., Monack D. M. (2013). Newly described pattern recognition receptors team up against intracellular pathogens. Nat. Rev. Immunol. 13, 551–565. 10.1038/nri3479 PubMed DOI
Burketová L., Trdá L., Ott P., Valentová O. (2015). Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnol. Adv. [Epub ahead of print]. 10.1016/j.biotechadv.2015.01.004 PubMed DOI
Cai R., Lewis J., Yan S., Liu H., Clarke C. R., Campanile F., et al. . (2011). The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLoS Pathog. 7:e1002130. 10.1371/journal.ppat.1002130 PubMed DOI PMC
Cao Y., Liang Y., Tanaka K., Nguyen C. T., Jedrzejczak R. P., Joachimiak A., et al. (2014). The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. Elife 3:e03766 10.7554/eLife.03766 PubMed DOI PMC
Chen C. W., Panzeri D., Yeh Y. H., Kadota Y., Huang P. Y., Tao C. N., et al. . (2014a). The Arabidopsis malectin-like leucine-rich repeat receptor-like kinase IOS1 associates with the pattern recognition receptors FLS2 and EFR and is critical for priming of pattern-triggered immunity. Plant Cell 26, 3201–3219. 10.1105/tpc.114.125682 PubMed DOI PMC
Chen X., Zuo S., Schwessinger B., Chern M., Canlas P. E., Ruan D., et al. . (2014b). An XA21-associated kinase (OsSERK2) regulates immunity mediated by the XA21 and XA3 immune receptors. Mol. Plant 7, 874–892. 10.1093/mp/ssu003 PubMed DOI PMC
Chinchilla D., Bauer Z., Regenass M., Boller T., Felix G. (2006). The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18, 465–476. 10.1105/tpc.105.036574 PubMed DOI PMC
Chinchilla D., Zipfel C., Robatzek S., Kemmerling B., Nürnberger T., Jones J. D., et al. . (2007). A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497–500. 10.1038/nature05999 PubMed DOI
Clarke C. R., Chinchilla D., Hind S. R., Taguchi F., Miki R., Ichinose Y., et al. . (2013). Allelic variation in two distinct Pseudomonas syringae flagellin epitopes modulates the strength of plant immune responses but not bacterial motility. New Phytol. 200, 847–860. 10.1111/nph.12408 PubMed DOI PMC
Cui H., Tsuda K., Parker J. E. (2014). Effector-triggered immunity: from pathogen perception to robust defense. Annu. Rev. Plant Biol. [Epub ahead of print]. 10.1146/annurev-arplant-050213-040012 PubMed DOI
Czaja L. F., Hogekamp C., Lamm P., Maillet F., Martinez E. A., Samain E., et al. . (2012). Transcriptional responses toward diffusible signals from symbiotic microbes reveal MtNFP- and MtDMI3-dependent reprogramming of host gene expression by arbuscular mycorrhizal fungal lipochitooligosaccharides. Plant Physiol. 159, 1671–1685. 10.1104/pp.112.195990 PubMed DOI PMC
Darrasse A., Carrère S., Barbe V., Boureau T., Arrieta-Ortiz M. L., Bonneau S., et al. . (2013). Genome sequence of Xanthomonas fuscans subsp. fuscans strain 4834-R reveals that flagellar motility is not a general feature of xanthomonads. BMC Genomics 14:761. 10.1186/1471-2164-14-761 PubMed DOI PMC
de Jonge R., van Esse H. P., Maruthachalam K., Bolton M. D., Santhanam P., Saber M. K., et al. . (2012). Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proc. Natl. Acad. Sci. U.S.A. 109, 5110–5115. 10.1073/pnas.1119623109 PubMed DOI PMC
Desclos-Theveniau M., Arnaud D., Huang T. Y., Lin G. J., Chen W. Y., Lin Y. C., et al. . (2012). The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000. PLoS Pathog. 8:e1002513. 10.1371/journal.ppat.1002513 PubMed DOI PMC
de Torres M., Mansfield J. W., Grabov N., Brown I. R., Ammouneh H., Tsiamis G., et al. . (2006). Pseudomonas syringae effector AvrPtoB suppresses basal defence in Arabidopsis. Plant J. 47, 368–382. 10.1111/j.1365-313X.2006.02798.x PubMed DOI
Ederli L., Madeo L., Calderini O., Gehring C., Moretti C., Buonaurio R., et al. . (2011). The Arabidopsis thaliana cysteine-rich receptor-like kinase CRK20 modulates host responses to Pseudomonas syringae pv. tomato DC3000 infection. J. Plant Physiol. 168, 1784–1794. 10.1016/j.jplph.2011.05.018 PubMed DOI
Endre G., Kereszt A., Kevei Z., Mihacea S., Kaló P., Kiss G. B. (2002). A receptor kinase gene regulating symbiotic nodule development. Nature 417, 962–966. 10.1038/nature00842 PubMed DOI
Felix G., Duran J. D., Volko S., Boller T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18, 265–276. 10.1046/j.1365-313X.1999.00265.x PubMed DOI
Fliegmann J., Canova S., Lachaud C., Uhlenbroich S., Gasciolli V., Pichereaux C., et al. . (2013). Lipo-chitooligosaccharidic symbiotic signals are recognized by LysM receptor-like kinase LYR3 in the legume Medicago truncatula. ACS Chem. Biol. 8, 1900–1906. 10.1021/cb400369u PubMed DOI
Fradin E. F., Zhang Z., Juarez Ayala J. C., Castroverde C. D., Nazar R. N., Robb J., et al. . (2009). Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiol. 150, 320–332. 10.1104/pp.109.136762 PubMed DOI PMC
Furukawa T., Inagaki H., Takai R., Hirai H., Che F. S. (2014). Two distinct EF-Tu epitopes induce immune responses in rice and Arabidopsis. Mol. Plant Microbe Interact. 27, 113–124. 10.1094/MPMI-10-13-0304-R PubMed DOI
Geurts R., Fedorova E., Bisseling T. (2005). Nod factor signaling genes and their function in the early stages of Rhizobium infection. Curr. Opin. Plant Biol. 8, 346–352. 10.1016/j.pbi.2005.05.013 PubMed DOI
Gimenez-Ibanez S., Ntoukakis V., Rathjen J. P. (2009). The LysM receptor kinase CERK1 mediates bacterial perception in Arabidopsis. Plant Signal. Behav. 4, 539–541. 10.4161/psb.4.6.8697 PubMed DOI PMC
Gomez-Gomez L., Boller T. (2000). FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5, 1003–1011. 10.1016/S1097-2765(00)80265-8 PubMed DOI
Gust A., Felix G. (2014). Receptor like proteins associate with SOBIR1-type of adaptors to form bimolecular receptor kinases. Curr. Opin. Plant Biol. 21, 104–111. 10.1016/j.pbi.2014.07.007 PubMed DOI
Gust A., Willmann R., Desaki Y., Grabherr H., Nurnberger T. (2012). Plant LysM proteins: modules mediating symbiosis and immunity. Trends Plant Sci. 17, 495–502. 10.1016/j.tplants.2012.04.003 PubMed DOI
Halter T., Imkampe J., Mazzotta S., Wierzba M., Postel S., Bücherl, et al. . (2014). The Leucine-rich repeat receptor kinase BIR2 is a negative regulator of BAK1 in plant immunity. Curr. Biol. 24, 134–143. 10.1016/j.cub.2013.11.047 PubMed DOI
Han Z., Sun Y., Chai J. (2014). Structural insight into the activation of plant receptor kinases. Curr. Opin. Plant Biol. 20, 55–63. 10.1016/j.pbi.2014.04.008 PubMed DOI
Hann D., Rathjen J. (2007). Early events in the pathogenicity of Pseudomonas syringae on Nicotiana benthamiana. Plant J. 49, 607–618. 10.1111/j.1365-313X.2006.02981.x PubMed DOI
Hatterman D. R., Ries S. M. (1989). Motility of Pseudomonas syringae pv. glycinea and its role in infection. Phytopathology 79, 284–289 10.1094/Phyto-79-284 DOI
Heese A., Hann D. R., Gimenez-Ibanez S., Jones A. M., He K., Li J., et al. . (2007). The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc. Natl. Acad. Sci. U.S.A. 104, 12217–12222. 10.1073/pnas.0705306104 PubMed DOI PMC
Hirai H., Takai R., Iwano M., Nakai M., Kondo M., Takayama S., et al. . (2011). Glycosylation regulates specific induction of rice immune responses by acidovorax avenae flagellin. J. Biol. Chem. 286, 25519–25530. 10.1074/jbc.M111.254029 PubMed DOI PMC
Howe T. R., Iglewski B. H. (1984). Isolation and characterization of alkaline protease-deficient mutants of Pseudomonas aeruginosa in vitro and in a mouse eye model. Infect. Immun. 43, 1058–1063. PubMed PMC
Hwang I. S., Hwang B. K. (2011). The pepper mannose-binding lectin gene CaMBL1 is required to regulate cell death and defense responses to microbial pathogens. Plant Physiol. 155, 447–463. 10.1104/pp.110.164848 PubMed DOI PMC
Ichinose Y., Taguchi F., Yamamoto M., Ohnishi-Kameyama M., Atsumi T., Iwaki M., et al. (2013). Flagellin glycosylation is ubiquitous in a broad range of phytopathogenic bacteria. J. Gen. Plant Pathol. 79, 359–365 10.1007/s10327-013-0464-4 DOI
Ishiga Y., Ishiga T., Uppalapati S. R., Mysore K. S. (2011). Arabidopsis seedling flood-inoculation technique: a rapid and reliable assay for studying plant-bacterial interactions. Plant Methods 7:32. 10.1186/1746-4811-7-32 PubMed DOI PMC
Jehle A. K., Lipschis M., Albert M., Fallahzadeh-Mamaghani V., Fürst U., Mueller K., et al. . (2013). The receptor-like protein ReMAX of Arabidopsis detects the microbe-associated molecular pattern eMax from Xanthomonas. Plant Cell 25, 2330–2340. 10.1105/tpc.113.110833 PubMed DOI PMC
Jones J. D. G., Dangl J. L. (2006). The plant immune system. Nature 444, 323–329. 10.1038/nature05286 PubMed DOI
Kaku H., Nishizawa Y., Ishii-Minami N., Akimoto-Tomiyama C., Dohmae N., Takio K., et al. . (2006). Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc. Natl. Acad. Sci. U.S.A. 103, 11086–11091. 10.1073/pnas.0508882103 PubMed DOI PMC
Katsuragi Y., Takai R., Furukawa T., Hirai H., Morimoto T., Katayama T., et al. . (2015). CD2-1, the C-terminal region of flagellin, modulates the induction of immune responses in rice. Mol. Plant Microbe Interact. [Epub ahead of print]. 10.1094/MPMI-11-14-0372-R PubMed DOI
Kouzai Y., Mochizuki S., Nakajima K., Desaki Y., Hayafune M., Miyazaki H., et al. . (2014). Targeted gene disruption of OsCERK1 reveals its indispensable role in chitin perception and involvement in the peptidoglycan response and immunity in rice. Mol. Plant Microbe Interact. 27, 975–982. 10.1094/MPMI-03-14-0068-R PubMed DOI
Kumar A. S., Lakshmanan V., Caplan J. L., Powell D., Czymmek K. J., Levia D. F., et al. . (2012). Rhizobacteria Bacillus subtilis restricts foliar pathogen entry through stomata. Plant J. 72, 694–706. 10.1111/j.1365-313X.2012.05116.x PubMed DOI
Lacombe S., Rougon-Cardoso A., Sherwood E., Peeters N., Dahlbeck D., van Esse H. P., et al. . (2010). Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat. Biotechnol. 28, 365–369. 10.1038/nbt.1613 PubMed DOI
Lakshmanan V., Castaneda R., Rudrappa T., Bais H. P. (2013). Root transcriptome analysis of Arabidopsis thaliana exposed to beneficial Bacillus subtilis FB17 rhizobacteria revealed genes for bacterial recruitment and plant defense independent of malate efflux. Planta 238, 657–668. 10.1007/s00425-013-1920-2 PubMed DOI
Le M. H., Cao Y., Zhang X. C., Stacey G. (2014). LIK1, a CERK1-interacting kinase, regulates plant immune responses in Arabidopsis. PLoS ONE 9:e102245. 10.1371/journal.pone.0102245 PubMed DOI PMC
Liang Y., Cao Y., Tanaka K., Thibivilliers S., Wan J., Choi J., et al. . (2013). Nonlegumes respond to rhizobial Nod factors by suppressing the innate immune response. Science 341, 1384–1387. 10.1126/science.1242736 PubMed DOI
Liebrand T. W., van den Berg G. C., Zhang Z., Smit P., Cordewener J. H., America A. H., et al. . (2013). Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proc. Natl. Acad. Sci. U.S.A. 110, 10010–10015. 10.1073/pnas.1220015110 PubMed DOI PMC
Liehl P., Blight M., Vodovar N., Boccard F., Lemaitre B. (2006). Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. PLoS Pathog. 2:e56. 10.1371/journal.ppat.0020056 PubMed DOI PMC
Limpens E., Franken C., Smit P., Willemse J., Bisseling T., Geurts R. (2003). LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science 302, 630–633. 10.1126/science.1090074 PubMed DOI
Limpens E., Mirabella R., Fedorova E., Franken C., Franssen H., Bisseling T., et al. . (2005). Formation of organelle-like N2-fixing symbiosomes in legume root nodules is controlled by DMI2. Proc. Natl. Acad. Sci. U.S.A. 102, 10375–10380. 10.1073/pnas.0504284102 PubMed DOI PMC
Liu B., Li J., Ao Y., Qu J., Li Z., Su J., et al. . (2012a). Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity. Plant Cell 24, 3406–3419. 10.1105/tpc.112.102475 PubMed DOI PMC
Liu J., Chen N., Grant J. N., Cheng Z. M., Stewart C. N., Hewezi T. (2015). Soybean kinome: functional classification and gene expression patterns. J. Exp. Bot. [Epub ahead of print]. 10.1093/jxb/eru537 PubMed DOI PMC
Liu J. Y., Maldonado-Mendoza I., Lopez-Meyer M., Cheung F., Town C. D., Harrison M. J. (2007). Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J. 50, 529–544. 10.1111/j.1365-313X.2007.03069.x PubMed DOI
Liu T., Liu Z., Song C., Hu Y., Han Z., She J., et al. . (2012b). Chitin-induced dimerization activates a plant immune receptor. Science 336, 1160–1164. 10.1126/science.1218867 PubMed DOI
Liu W., Liu J., Triplett L., Leach J. E., Wang G. L. (2014). Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu. Rev. Phytopathol. 52, 213–241. 10.1146/annurev-phyto-102313-045926 PubMed DOI
Loivamäki M., Stührwohldt N., Deeken R., Steffens B., Roitsch T., Hedrich R., et al. . (2010). A role for PSK signaling in wounding and microbial interactions in Arabidopsis. Physiol. Plant. 139, 348–357. 10.1111/j.1399-3054.2010.01371.x PubMed DOI
Lopez-Gomez M., Sandal N., Stougaard J., Boller T. (2012). Interplay of flg22-induced defence responses and nodulation in Lotus japonicus. J. Exp. Bot. 63, 393–401. 10.1093/jxb/err291 PubMed DOI PMC
Lu F., Wang H., Wang S., Jiang W., Shan C., Li B., et al. . (2015). Enhancement of innate immune system in monocot rice by transferring the dicotyledonous elongation factor Tu receptor EFR. J. Integr. Plant Biol. [Epub ahead of print]. 10.1111/jipb.12306 PubMed DOI
Lugtenberg B., Kamilova F. (2009). Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556. 10.1146/annurev.micro.62.081307.162918 PubMed DOI
Macho A. P., Zipfel C. (2014). Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Curr. Opin. Microbiol. 23C, 14–22. 10.1016/j.mib.2014.10.009 PubMed DOI
Madsen E. B., Madsen L. H., Radutoiu S., Olbryt M., Rakwalska M., Szczyglowski K., et al. . (2003). A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425, 637–640. 10.1038/nature02045 PubMed DOI
Maillet F., Poinsot V., André O., Puech-Pagès V., Haouy A., Gueunier M., et al. . (2011). Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469, 58–63. 10.1038/nature09622 PubMed DOI
Manikandan R., Raguchander T. (2014). Fusarium oxysporum f. sp., lycopersici retardation through induction of defensive response in tomato plants using a liquid formulation of Pseudomonas fluorescens (Pf1). Eur. J. Plant Pathol. 140, 469–480 10.1007/s10658-014-0481-y DOI
McCann H. C., Nahal H., Thakur S., Guttman D. S. (2012). Identification of innate immunity elicitors using molecular signatures of natural selection. Proc. Natl. Acad. Sci. U.S.A. 109, 4215–4220. 10.1073/pnas.1113893109 PubMed DOI PMC
Millet Y., Danna C., Clay N., Songnuan W., Simon M., Werck-Reichhart D., et al. . (2010). Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 22, 973–990. 10.1105/tpc.109.069658 PubMed DOI PMC
Miya A., Albert P., Shinya T., Desaki Y., Ichimura K., Shirasu K., et al. . (2007). CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 104, 19613–19618. 10.1073/pnas.0705147104 PubMed DOI PMC
Monaghan J., Zipfel C. (2012). Plant pattern recognition receptor complexes at the plasma membrane. Curr. Opin. Plant Biol. 15, 349–357. 10.1016/j.pbi.2012.05.006 PubMed DOI
Mosher S., Seybold H., Rodriguez P., Stahl M., Davies K. A., Dayaratne S., et al. . (2013). The tyrosine-sulfated peptide receptors PSKR1 and PSY1R modify the immunity of Arabidopsis to biotrophic and necrotrophic pathogens in an antagonistic manner. Plant J. 73, 469–482. 10.1111/tpj.12050 PubMed DOI
Nekrasov V., Li J., Batoux M., Roux M., Chu Z. H., Lacombe S., et al. . (2009). Control of the pattern-recognition receptor EFR by an ER protein complex in plant immunity. EMBO J. 28, 3428–3438. 10.1038/emboj.2009.262 PubMed DOI PMC
Newman M. A., Sundelin T., Nielsen J. T., Erbs G. (2013). MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front. Plant Sci. 4:139. 10.3389/fpls.2013.00139 PubMed DOI PMC
Ng A. C., Eisenberg J. M., Heath R. J., Huett A., Robinson C. M., Nau G. J., et al. . (2011). Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity. Proc. Natl. Acad. Sci. U.S.A. 108(Suppl. 1), 4631–4638. 10.1073/pnas.1000093107 PubMed DOI PMC
Nicaise V., Joe A., Jeong B. R., Korneli C., Boutrot F., Westedt I., et al. . (2013). Pseudomonas HopU1 modulates plant immune receptor levels by blocking the interaction of their mRNAs with GRP7. EMBO J. 32, 701–712. 10.1038/emboj.2013.15 PubMed DOI PMC
Oldroyd G. E., Murray J. D., Poole P. S., Downie J. A. (2011). The rules of engagement in the legume-rhizobial symbiosis. Annu. Rev. Genet. 45, 119–144. 10.1146/annurev-genet-110410-132549 PubMed DOI
Op den Camp R., Streng A., De Mita S., Cao Q., Polone E., Liu W., et al. . (2011). LysM-type mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume Parasponia. Science 331, 909–912. 10.1126/science.1198181 PubMed DOI
Paparella C., Savatin D. V., Marti L., De Lorenzo G., Ferrari S. (2014). The Arabidopsis LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE3 regulates the cross talk between immunity and abscisic acid responses. Plant Physiol. 165, 262–276. 10.1104/pp.113.233759 PubMed DOI PMC
Pel M. J., Pieterse C. M. (2013). Microbial recognition and evasion of host immunity. J. Exp. Bot. 64, 1237–1248. 10.1093/jxb/ers262 PubMed DOI
Pel M. J., van Dijken A. J., Bardoel B. W., Seidl M. F., van der Ent S., van Strijp J. A., et al. . (2014). Pseudomonas syringae evades host immunity by degrading flagellin monomers with alkaline protease AprA. Mol. Plant Microbe Interact. 27, 603–610. 10.1094/MPMI-02-14-0032-R PubMed DOI
Petutschnig E., Jones A., Serazetdinova L., Lipka U., Lipka V. (2010). The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J. Biol. Chem. 285, 28902–28911. 10.1074/jbc.M110.116657 PubMed DOI PMC
Pfund C., Tans-Kersten J., Dunning F., Alonso J., Ecker J., Allen C., et al. . (2004). Flagellin is not a major defense elicitor in Ralstonia solanacearum cells or extracts applied to Arabidopsis thaliana. Mol. Plant Microbe Interact. 17, 696–706. 10.1094/MPMI.2004.17.6.696 PubMed DOI
Pieterse C. M., Zamioudis C., Berendsen R. L., Weller D. M., Van Wees S. C., Bakker P. A. (2014). Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52, 347–375. 10.1146/annurev-phyto-082712-102340 PubMed DOI
Planchamp C., Glauser G., Mauch-Mani B. (2014). Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants. Front. Plant Sci. 5:719. 10.3389/fpls.2014.00719 PubMed DOI PMC
Radutoiu S., Madsen L. H., Madsen E. B., Felle H. H., Umehara Y., Grønlund M., et al. . (2003). Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425, 585–592. 10.1038/nature02039 PubMed DOI
Radutoiu S., Madsen L. H., Madsen E. B., Jurkiewicz A., Fukai E., Quistgaard E. M., et al. . (2007). LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range. EMBO J. 26, 3923–3935. 10.1038/sj.emboj.7601826 PubMed DOI PMC
Ramos H. C., Rumbo M., Sirard J. C. (2004). Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol. 12, 509–517. 10.1016/j.tim.2004.09.002 PubMed DOI
Ranf S., Gisch N., Schäffer M., Illig T., Westphal L., Knirel Y. A., et al. . (2015). A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nat. Immunol. 16, 426–433. 10.1038/ni.3124 PubMed DOI
Robatzek S., Bittel P., Chinchilla D., Kochner P., Felix G., Shiu S. H., et al. . (2007). Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. Plant Mol. Biol. 64, 539–547. 10.1007/s11103-007-9173-8 PubMed DOI
Ron M., Avni A. (2004). The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16, 1604–1615. 10.1105/tpc.022475 PubMed DOI PMC
Roux M., Schwessinger B., Albrecht C., Chinchilla D., Jones A., Holton N., et al. . (2011). The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell 23, 2440–2455. 10.1105/tpc.111.084301 PubMed DOI PMC
Sakamoto T., Deguchi M., Brustolini O. J., Santos A. A., Silva F. F., Fontes E. P. (2012). The tomato RLK superfamily: phylogeny and functional predictions about the role of the LRRII-RLK subfamily in antiviral defense. BMC Plant Biol. 12:229. 10.1186/1471-2229-12-229 PubMed DOI PMC
Savatin D. V., Gramegna G., Modesti V., Cervone F. (2014). Wounding in the plant tissue: the defense of a dangerous passage. Front. Plant Sci. 5:470. 10.3389/fpls.2014.00470 PubMed DOI PMC
Schoonbeek H. J., Wang H. H., Stefanato F. L., Craze M., Bowden S., Wallington E., et al. . (2015). Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat. New Phytol. 206, 606–613. 10.1111/nph.13356 PubMed DOI
Shimizu T., Nakano T., Takamizawa D., Desaki Y., Ishii-Minami N., Nishizawa Y., et al. . (2010). Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J. 64, 204–214. 10.1111/j.1365-313X.2010.04324.x PubMed DOI PMC
Shiu S. H., Bleecker A. B. (2001). Plant receptor-like kinase gene family: diversity, function, and signaling. Sci. STKE 2001:re22. 10.1126/stke.2001.113.re22 PubMed DOI
Shiu S. H., Karlowski W. M., Pan R., Tzeng Y. H., Mayer K. F., Li W. H. (2004). Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16, 1220–1234. 10.1105/tpc.020834 PubMed DOI PMC
Silipo A., Erbs G., Shinya T., Dow J. M., Parrilli M., Lanzetta R., et al. . (2010). Glyco-conjugates as elicitors or suppressors of plant innate immunity. Glycobiology 20, 406–419. 10.1093/glycob/cwp201 PubMed DOI
Singh P., Kuo Y. C., Mishra S., Tsai C. H., Chien C. C., Chen C. W., et al. . (2012). The lectin receptor kinase-VI.2 is required for priming and positively regulates Arabidopsis pattern-triggered immunity. Plant Cell 24, 1256–1270. 10.1105/tpc.112.095778 PubMed DOI PMC
Smit P., Limpens E., Geurts R., Fedorova E., Dolgikh E., Gough C., et al. . (2007). Medicago LYK3, an entry receptor in rhizobial nodulation factor signaling. Plant Physiol. 145, 183–191. 10.1104/pp.107.100495 PubMed DOI PMC
Stracke S., Kistner C., Yoshida S., Mulder L., Sato S., Kaneko T., et al. . (2002). A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417, 959–962. 10.1038/nature00841 PubMed DOI
Sun W., Dunning F., Pfund C., Weingarten R., Bent A. (2006). Within-species flagellin polymorphism in Xanthomonas campestris pv campestris and its impact on elicitation of Arabidopsis FLAGELLIN SENSING2-dependent defenses. Plant Cell 18, 764–779. 10.1105/tpc.105.037648 PubMed DOI PMC
Sun Y., Li L., Macho A. P., Han Z., Hu Z., Zipfel C., et al. . (2013). Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342, 624–628. 10.1126/science.1243825 PubMed DOI
Taguchi F., Shimizu R., Inagaki Y., Toyoda K., Shiraishi T., Ichinose Y. (2003). Post-translational modification of flagellin determines the specificity of HR induction. Plant Cell Physiol. 44, 342–349. 10.1093/pcp/pcg042 PubMed DOI
Taguchi F., Takeuchi K., Katoh E., Murata K., Suzuki T., Marutani M., et al. . (2006). Identification of glycosylation genes and glycosylated amino acids of flagellin in Pseudomonas syringae pv. tabaci. Cell. Microbiol. 8, 923–938. 10.1111/j.1462-5822.2005.00674.x PubMed DOI
Takai R., Isogai A., Takayama S., Che F. (2008). Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice. Mol. Plant Microbe Interact. 21, 1635–1642. 10.1094/MPMI-21-12-1635 PubMed DOI
Takeuchi K., Taguchi F., Inagaki Y., Toyoda K., Shiraishi T., Ichinose Y. (2003). Flagellin glycosylation island in Pseudomonas syringae pv. glycinea and its role in host specificity. J. Bacteriol. 185, 6658–6665. 10.1128/JB.185.22.6658-6665.2003 PubMed DOI PMC
Trdá L., Fernandez O., Boutrot F., Héloir M. C., Kelloniemi J., Daire X., et al. . (2014). The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacterium Burkholderia phytofirmans and plant pathogenic bacteria. New Phytol. 201, 1371–1384. 10.1111/nph.12592 PubMed DOI
Tsuda K., Somssich I. E. (2015). Transcriptional networks in plant immunity. New Phytol. [Epub ahead of print]. 10.1111/nph.13286 PubMed DOI
van Loon L., Bakker P., van der Heijdt W., Wendehenne D., Pugin A. (2008). Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance. Mol. Plant Microbe Interact. 21, 1609–1621. 10.1094/MPMI-21-12-1609 PubMed DOI
Van Wees S., Van der Ent S., Pieterse C. (2008). Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11, 443–448. 10.1016/j.pbi.2008.05.005 PubMed DOI
Veluchamy S., Hind S. R., Dunham D. M., Martin G. B., Panthee D. R. (2014). Natural variation for responsiveness to flg22, flgII-28, and csp22 and Pseudomonas syringae pv. tomato in heirloom tomatoes. PLoS ONE 9:e106119. 10.1371/journal.pone.0106119 PubMed DOI PMC
Vetter M., Kronholm I., He F., Haweker H., Reymond M., Bergelson J., et al. . (2012). Flagellin perception varies quantitatively in Arabidopsis thaliana and its relatives. Mol. Biol. Evol. 29, 1655–1667. 10.1093/molbev/mss011 PubMed DOI
Wan J., Tanaka K., Zhang X. C., Son G. H., Brechenmacher L., Nguyen T. H., et al. . (2012). LYK4, a lysin motif receptor-like kinase, is important for chitin signaling and plant innate immunity in Arabidopsis. Plant Physiol. 160, 396–406. 10.1104/pp.112.201699 PubMed DOI PMC
Wan J., Zhang X. C., Neece D., Ramonell K. M., Clough S., Kim S. Y., et al. . (2008). A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20, 471–481. 10.1105/tpc.107.056754 PubMed DOI PMC
Wang G. D., Ellendorff U., Kemp B., Mansfield J. W., Forsyth A., Mitchell K., et al. . (2008). A genome-wide functional investigation into the roles of receptor-like proteins in Arabidopsis. Plant Physiol. 147, 503–517. 10.1104/pp.108.119487 PubMed DOI PMC
Wang S., Sun Z., Wang H., Liu L., Lu F., Yang J., et al. . (2015). Rice OsFLS2-mediated perception of bacterial flagellins is evaded by Xanthomonas oryzae pvs. oryzae and oryzicola. Mol. Plant. [Epub ahead of print]. 10.1016/j.molp.2015.01.012 PubMed DOI
Wang Y., Bouwmeester K., Beseh P., Shan W., Govers F. (2014). Phenotypic analyses of Arabidopsis T-DNA insertion lines and expression profiling reveal that multiple L-type lectin receptor kinases are involved in plant immunity. Mol. Plant Microbe Interact. 27, 1390–1402. 10.1094/MPMI-06-14-0191-R PubMed DOI
Wiesel L., Newton A. C., Elliott I., Booty D., Gilroy E. M., Birch P. R., et al. . (2014). Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Front. Plant Sci. 5:655. 10.3389/fpls.2014.00655 PubMed DOI PMC
Willmann R., Lajunen H., Erbs G., Newman M., Kolb D., Tsuda K., et al. . (2011). Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc. Natl. Acad. Sci. U.S.A. 108, 19824–19829. 10.1073/pnas.1112862108 PubMed DOI PMC
Wu S., Shan L., He P. (2014). Microbial signature-triggered plant defense responses and early signaling mechanisms. Plant Sci. 228, 118–126. 10.1016/j.plantsci.2014.03.001 PubMed DOI PMC
Wyrsch I., Domínguez-Ferreras A., Geldner N., Boller T. (2015). Tissue-specific FLAGELLIN-SENSING 2 (FLS2) expression in roots restores immune responses in Arabidopsis fls2 mutants. New Phytol. 206, 774–784. 10.1111/nph.13280 PubMed DOI
Xiang T., Zong N., Zou Y., Wu Y., Zhang J., Xing W., et al. . (2008). Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr. Biol. 18, 74–80. 10.1016/j.cub.2007.12.020 PubMed DOI
Zamioudis C., Pieterse C. (2012). Modulation of host immunity by beneficial microbes. Mol. Plant Microbe Interact. 25, 139–150. 10.1094/MPMI-06-11-0179 PubMed DOI
Zeng L., Velásquez A. C., Munkvold K. R., Zhang J., Martin G. B. (2012). A tomato LysM receptor-like kinase promotes immunity and its kinase activity is inhibited by AvrPtoB. Plant J. 69, 92–103. 10.1111/j.1365-313X.2011.04773.x PubMed DOI PMC
Zeng W., He S. (2010). A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiol. 153, 1188–1198. 10.1104/pp.110.157016 PubMed DOI PMC
Zhang J., Shao F., Li Y., Cui H., Chen L., Li H., et al. . (2007). A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host Microbe 1, 175–185. 10.1016/j.chom.2007.03.006 PubMed DOI
Zhang L., Kars I., Essenstam B., Liebrand T. W., Wagemakers L., Elberse J., et al. . (2014). Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1. Plant Physiol. 164, 352–364. 10.1104/pp.113.230698 PubMed DOI PMC
Zhang W., Fraiture M., Kolb D., Löffelhardt B., Desaki Y., Boutrot F. F., et al. . (2013). Arabidopsis receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi. Plant Cell 25, 4227–4241. 10.1105/tpc.113.117010 PubMed DOI PMC
Zhao J., Fu J., Li X., Xu C., Wang S. (2009). Dissection of the factors affecting development-controlled and race-specific disease resistance conferred by leucine-rich repeat receptor kinase-type R genes in rice. Theor. Appl. Genet. 119, 231–239. 10.1007/s00122-009-1032-3 PubMed DOI
Zipfel C. (2014). Plant pattern-recognition receptors. Trends Immunol. 35, 345–351. 10.1016/j.it.2014.05.004 PubMed DOI
Zipfel C., Kunze G., Chinchilla D., Caniard A., Jones J. D. G., Boller T., et al. . (2006). Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125, 749–760. 10.1016/j.cell.2006.03.037 PubMed DOI
Zipfel C., Robatzek S., Navarro L., Oakeley E. J., Jones J. D., Felix G., et al. . (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764–767. 10.1038/nature02485 PubMed DOI
Dual Mode of the Saponin Aescin in Plant Protection: Antifungal Agent and Plant Defense Elicitor
Recognition of Elicitors in Grapevine: From MAMP and DAMP Perception to Induced Resistance