Temporary heat stress suppresses PAMP-triggered immunity and resistance to bacteria in Arabidopsis thaliana
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30924595
PubMed Central
PMC6589723
DOI
10.1111/mpp.12799
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, Pseudomonas syringae, PAMP-triggered immunity, flagellin sensing 2 receptor, flg22, heat stress, reactive oxygen species,
- MeSH
- alarminy metabolismus MeSH
- Arabidopsis účinky léků genetika imunologie mikrobiologie MeSH
- flagelin farmakologie MeSH
- genetická transkripce účinky léků MeSH
- imunita rostlin * účinky léků MeSH
- nemoci rostlin imunologie mikrobiologie MeSH
- odolnost vůči nemocem imunologie MeSH
- proteiny huseníčku genetika metabolismus MeSH
- Pseudomonas syringae účinky léků fyziologie MeSH
- reakce na tepelný šok * účinky léků MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- respirační vzplanutí účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alarminy MeSH
- flagelin MeSH
- proteiny huseníčku MeSH
Recognition of pathogen-associated molecular patterns (PAMPs) is crucial for plant defence against pathogen attack. The best characterized PAMP is flg22, a 22 amino acid conserved peptide from flagellin protein. In Arabidopsis thaliana, flg22 is recognized by the flagellin sensing 2 (FLS2) receptor. In this study, we focused on biotic stress responses triggered by flg22 after exposure to temporary heat stress (HS). It is important to study the reactions of plants to multiple stress conditions because plants are often exposed simultaneously to a combination of both abiotic and biotic stresses. Transient early production of reactive oxygen species (ROS) is a well-characterized response to PAMP recognition. We demonstrate the strong reduction of flg22-induced ROS production in A. thaliana after HS treatment. In addition, a decrease in FLS2 transcription and a decrease of the FLS2 presence at the plasma membrane are shown after HS. In summary, our data show the strong inhibitory effect of HS on flg22-triggered events in A. thaliana. Subsequently, temporary HS strongly decreases the resistance of A. thaliana to Pseudomonas syringae. We propose that short exposure to high temperature is a crucial abiotic stress factor that suppresses PAMP-triggered immunity, which subsequently leads to the higher susceptibility of plants to pathogens.
Zobrazit více v PubMed
Beck, M. , Zhou, J. , Faulkner, C. , MacLean, D. and Robatzek, S. (2012) Spatio‐temporal cellular dynamics of the Arabidopsis flagellin receptor reveal activation status‐dependent endosomal sorting. Plant Cell, 24, 4205–4219. PubMed PMC
Bigeard, J. , Colcombet, J. and Hirt, H. (2015) Signaling mechanisms in pattern‐triggered immunity (PTI). Mol. Plant, 8, 521–539. PubMed
Boller, T. and Felix, G. (2009) A renaissance of elicitors: Perception of microbe‐associated molecular patterns and danger signals by pattern‐recognition receptors. Annu. Rev. Plant Biol. 60, 379–406. PubMed
Bowling, S.A. , Guo, A. , Cao, H. , Gordon, A.S. , Klessig, D.F. and Dong, X.I. (1994) A mutation in Arabidopsis that leads to constitutive expression of systemic acquired‐resistance. Plant Cell, 6, 1845–1857. PubMed PMC
Cheng, C. , Gao, X.Q. , Feng, B.M. , Sheen, J. , Shan, L.B. and He, P. (2013) Plant immune response to pathogens differs with changing temperatures. Nat. Commun. 4, 1–9. PubMed PMC
Chisholm, S.T. , Coaker, G. , Day, B. and Staskawicz, B.J. (2006) Host‐microbe interactions: Shaping the evolution of the plant immune response. Cell, 124, 803–814. PubMed
Coll, N.S. , Epple, P. and Dangl, J.L. (2011) Programmed cell death in the plant immune system. Cell Death Differ. 18, 1247–1256. PubMed PMC
Cui, H. , Tsuda, K. and Parker, J.E. (2015) Effector‐triggered immunity: From pathogen perception to robust defense. Annu. Rev. Plant Biol. 66, 487–511. PubMed
Daněk, M. , Valentová, O. and Martinec, J. (2016) Flotillins, Erlins, and HIRs: From Animal Base Camp to Plant New Horizons. Crit. Rev. Plant Sci. 35, 191–214.
Denoux, C. , Galletti, R. , Mammarella, N. , Gopalan, S. , Werck, D. , De Lorenzo, G. , Ferrari, S. , Ausubel, F.M. and Dewdney, J. (2008) Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol. Plant, 1, 423–445. PubMed PMC
Felix, G. , Duran, J.D. , Volko, S. and Boller, T. (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18, 265–276. PubMed
Gomez‐Gomez, L. , Felix, G. and Boller, T. (1999) A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana . Plant J. 18, 277–284. PubMed
Hammoudi, V. , Fokkens, L. , Beerens, B. , Vlachakis, G. , Chatterjee, S. , Arroyo‐Mateos, M. , Wackers, P.F.K. , Jonker, M.J. and van den Burg, H.A. (2018) The Arabidopsis SUMO E3 ligase SIZ1 mediates the temperature dependent trade‐off between plant immunity and growth. PLoS Genet. 14, e1007157. PubMed PMC
He, P. , Shan, L. , Lin, N.‐C. , Martin, G.B. , Kemmerling, B. , Nurnberger, T. and Sheen, J. (2006) Specific bacterial suppressors of MAMP signaling upstream of MAPKKK in Arabidopsis innate immunity. Cell, 125, 563–575. PubMed
Henty‐Ridilla, J.L. , Li, J.J. , Day, B. and Staiger, C.J. (2014) Actin depolymerizing FACTOR4 regulates actin dynamics during innate immune signaling in Arabidopsis . Plant Cell, 26, 340–352. PubMed PMC
Hruz, T. , Laule, O. , Szabo, G. , Wessendorp, F. , Bleuler, S. , Oertle, L. , Widmayer, P. , Gruissem, W. and Zimmermann, P. (2008) Genevestigator V3: A reference expression database for the meta‐analysis of transcriptomes. Adv. Bioinformatics, 2008, Article ID 420747. PubMed PMC
Hua, J. (2013) Modulation of plant immunity by light, circadian rhythm, and temperature. Curr. Opin. Plant Biol. 16, 406–413. PubMed
Hunter, L.J.R. , Westwood, J.H. , Heath, G. , Macaulay, K. , Smith, A.G. , MacFarlane, S.A. , Palukaitis, P. and Carr, J.P. (2013) Regulation of RNA‐dependent RNA polymerase 1 and isochorismate synthase gene expression in Arabidopsis . PLoS ONE, 8, 1–10. PubMed PMC
Huot, B. , Castroverde, C.D.M. , Velasquez, A.C. , Hubbard, E. , Pulman, J.A. , Yao, J. , Childs, K.L. , Tsuda, K. , Montgomery, B.L. and He, S.Y. (2017) Dual impact of elevated temperature on plant defence and bacterial virulence in Arabidopsis . Nat. Commun. 8, 1808. PubMed PMC
Ichimura, K. , Casais, C. , Peck, S.C. , Shinozaki, K. and Shirasu, K. (2006) MEKK1 is required for MPK4 activation and regulates tissue‐specific and temperature‐dependent cell death in Arabidopsis . J. Biol. Chem. 281, 36969–36976. PubMed
Janda, M. and Ruelland, E. (2015) Magical mystery tour: Salicylic acid signalling. Environ. Exp. Bot. 114, 117–128.
Jones, J.D.G. and Dangl, J.L. (2006) The plant immune system. Nature, 444, 323–329. PubMed
Junková, P. , Daněk, M. , Kocourková, D. , Brouzdová, J. , Kroumanová, K. , Zelazny, E. , Janda, M. , Hynek, R. , Martinec, J. and Valentová, O. (2018) Mapping of plasma membrane proteins interacting with Arabidopsis thaliana Flotillin 2. Front. Plant Sci. 9, 991. PubMed PMC
Kunze, G. , Zipfel, C. , Robatzek, S. , Niehaus, K. , Boller, T. and Felix, G. (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell, 16, 3496–3507. PubMed PMC
Makandar, R. , Nalam, V.J. , Chowdhury, Z. , Sarowar, S. , Klossner, G. , Lee, H. , Burdan, D. , Trick, H.N. , Gobbato, E. , Parker, J.E. and Shah, J. (2015) The combined action of enhanced disease susceptibility1, phytoalexin deficient4, and senescence‐associated101 promotes salicylic acid‐mediated defenses to limit Fusarium graminearum infection in Arabidopsis thaliana . Mol. Plant‐Microbe Interact. 28, 943–953. PubMed
Menna, A. , Nguyen, D. , Guttman, D.S. and Desveaux, D. (2015) Elevated temperature differentially influences effector‐triggered immunity outputs in Arabidopsis . Front. Plant Sci. 6, 995. PubMed PMC
Muthamilarasan, M. and Prasad, M. (2013) Plant innate immunity: An updated insight into defense mechanism. J. Biosci. 38, 433–449. PubMed
Pandey, S.P. and Somssich, I.E. (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol. 150, 1648–1655. PubMed PMC
Prerostova, S. , Kramna, B. , Dobrev, P.I. , Gaudinova, A. , Marsik, P. , Fiala, R. , Knirsch, V. , Vanek, T. , Kuresova, G. and Vankova, R. (2018) Organ‐specific hormonal cross‐talk in phosphate deficiency. Environ. Exp. Bot. 153, 198–208.
Robatzek, S. , Chinchilla, D. and Boller, T. (2006) Ligand‐induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis . Genes Dev. 20, 537–542. PubMed PMC
Smith, J.M. and Heese, A. (2014) Rapid bioassay to measure early reactive oxygen species production in Arabidopsis leave tissue in response to living Pseudomonas syringae . Plant Methods, 10, 6. PubMed PMC
Swain, S. , Singh, N. and Nandi, A.K. (2015) Identification of plant defence regulators through transcriptional profiling of Arabidopsis thaliana cdd1 mutant. J. Biosci. 40, 137–146. PubMed
Trda, L. , Boutrot, F. , Claverie, J. , Brule, D. , Dorey, S. and Poinssot, B. (2015) Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline. Front. Plant Sci. 6, 219. PubMed PMC
Tsuda, K. , Sato, M. , Glazebrook, J. , Cohen, J.D. and Katagiri, F. (2008) Interplay between MAMP‐triggered and SA‐mediated defense responses. Plant J. 53, 763–775. PubMed
Velásquez, A.C. , Castroverde, C.D.M. and He, S.Y. (2018) Plant‐Pathogen Warfare under Changing Climate Conditions. Curr. Biol. 28, R619–R634. PubMed PMC
Volkov, R.A. , Panchuk, I.I. , Mullineaux, P.M. and Schoffl, F. (2006) Heat stress‐induced H2O2 is required for effective expression of heat shock genes in Arabidopsis . Plant Mol. Biol. 61, 733–746. PubMed
Wang, Y. , Bao, Z.L. , Zhu, Y. and Hua, J. (2009) Analysis of temperature modulation of plant defense against biotrophic microbes. Mol. Plant‐Microbe Interact. 22, 498–506. PubMed
Wang, L. , Guo, Y. , Jia, L. , Chu, H. , Zhou, S. , Chen, K. , Wu, D. and Zhao, L. (2014) Hydrogen peroxide acts upstream of nitric oxide in the heat shock pathway in Arabidopsis seedlings. Plant Physiol. 164, 2184–2196. PubMed PMC
Wildermuth, M.C. , Dewdney, J. , Wu, G. and Ausubel, F.M. (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414, 562–565. PubMed
Xin, X.‐F. , Kvitko, B. and He, S.Y. (2018) Pseudomonas syringae: what it takes to be a pathogen. Nat. Rev. Microbiol. 16, 316–328. PubMed PMC
Yang, S.H. and Hua, J. (2004) A haplotype‐specific Resistance gene regulated by BONZAI1 mediates temperature‐dependent growth control in Arabidopsis. Plant Cell, 16, 1060–1071. PubMed PMC
Yeh, Y.‐H. , Chang, Y.‐H. , Huang, P.‐Y. , Huang, J.‐B. and Zimmerli, L. (2015) Enhanced Arabidopsis pattern‐triggered immunity by overexpression of cysteine‐rich receptor‐like kinases. Front. Plant Sci. 6, 322. PubMed PMC
Yi, S.Y. , Shirasu, K. , Moon, J.S. , Lee, S.G. and Kwon, S.Y. (2014) The Activated SA and JA signaling pathways have an influence on flg22‐triggered oxidative burst and callose deposition. PLoS ONE, 9, e88951. PubMed PMC
Zhang, Y.L. , Goritschnig, S. , Dong, X.N. and Li, X. (2003) A gain‐of‐function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1‐1, constitutive 1. Plant Cell, 15, 2636–2646. PubMed PMC
Zhang, J. , Shao, F. , Cui, H. , Chen, L.J. , Li, H.T. , Zou, Y. , Long, C.Z. , Lan, L.F. , Chai, J.J. , Chen, S. , Tang, X.Y. and Zhou, J.M. (2007) A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP‐induced immunity in plants. Cell Host & Microbe, 1, 175–185. PubMed
Zhu, Y. , Qian, W.Q. and Hua, J. (2010) Temperature modulates plant defense responses through NB‐LRR proteins. PLoS Pathog. 6, e1000844. PubMed PMC
Zipfel, C. , Robatzek, S. , Navarro, L. , Oakeley, E.J. , Jones, J.D.G. , Felix, G. and Boller, T. (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature, 428, 764–767. PubMed
Heat Stress and Plant-Biotic Interactions: Advances and Perspectives