Heat Stress and Plant-Biotic Interactions: Advances and Perspectives

. 2024 Jul 23 ; 13 (15) : . [epub] 20240723

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39124140

Climate change presents numerous challenges for agriculture, including frequent events of plant abiotic stresses such as elevated temperatures that lead to heat stress (HS). As the primary driving factor of climate change, HS threatens global food security and biodiversity. In recent years, HS events have negatively impacted plant physiology, reducing plant's ability to maintain disease resistance and resulting in lower crop yields. Plants must adapt their priorities toward defense mechanisms to tolerate stress in challenging environments. Furthermore, selective breeding and long-term domestication for higher yields have made crop varieties vulnerable to multiple stressors, making them more susceptible to frequent HS events. Studies on climate change predict that concurrent HS and biotic stresses will become more frequent and severe in the future, potentially occurring simultaneously or sequentially. While most studies have focused on singular stress effects on plant systems to examine how plants respond to specific stresses, the simultaneous occurrence of HS and biotic stresses pose a growing threat to agricultural productivity. Few studies have explored the interactions between HS and plant-biotic interactions. Here, we aim to shed light on the physiological and molecular effects of HS and biotic factor interactions (bacteria, fungi, oomycetes, nematodes, insect pests, pollinators, weedy species, and parasitic plants), as well as their combined impact on crop growth and yields. We also examine recent advances in designing and developing various strategies to address multi-stress scenarios related to HS and biotic factors.

Zobrazit více v PubMed

Malhi Y., Franklin J., Seddon N., Solan M., Turner M.G., Field C.B., Knowlton N. Climate Change and Ecosystems: Threats, Opportunities and Solutions. Philos. Trans. R. Soc. B Biol. Sci. 2020;375:20190104. doi: 10.1098/rstb.2019.0104. PubMed DOI PMC

Kumar L., Chhogyel N., Gopalakrishnan T., Hasan M.K., Jayasinghe S.L., Kariyawasam C.S., Kogo B.K., Ratnayake S. Future Foods: Global Trends, Opportunities, and Sustainability Challenges. Elsevier; Amsterdam, The Netherlands: 2021. Climate Change and Future of Agri-Food Production; pp. 49–79.

Shelake R.M., Kadam U.S., Kumar R., Pramanik D., Singh A.K., Kim J.Y. Engineering Drought and Salinity Tolerance Traits in Crops through CRISPR-Mediated Genome Editing: Targets, Tools, Challenges, and Perspectives. Plant Commun. 2022;3:100417. doi: 10.1016/j.xplc.2022.100417. PubMed DOI PMC

Sundström J.F., Albihn A., Boqvist S., Ljungvall K., Marstorp H., Martiin C., Nyberg K., Vågsholm I., Yuen J., Magnusson U. Future Threats to Agricultural Food Production Posed by Environmental Degradation, Climate Change, and Animal and Plant Diseases—A Risk Analysis in Three Economic and Climate Settings. Food Secur. 2014;6:201–215. doi: 10.1007/s12571-014-0331-y. DOI

Kan Y., Mu X.R., Gao J., Lin H.X., Lin Y. The Molecular Basis of Heat Stress Responses in Plants. Mol. Plant. 2023;16:1612–1634. doi: 10.1016/j.molp.2023.09.013. PubMed DOI

Ashraf M.Y., Mahmood K., Ashraf M., Akhter J., Hussain F. Crop Production for Agricultural Improvement. Springer; Dordrecht, The Netherlands: 2012. Optimal Supply of Micronutrients Improves Drought Tolerance in Legumes; pp. 637–657.

Desaint H., Aoun N., Deslandes L., Vailleau F., Roux F., Berthomé R. Fight Hard or Die Trying: When Plants Face Pathogens under Heat Stress. New Phytol. 2021;229:712–734. doi: 10.1111/nph.16965. PubMed DOI

IPCC 2021 . Climate Change 2021: The Physical Science Basis. Volume 2391. Cambridge University Press; Cambridge, UK: 2021.

Nejat N., Mantri N. Plant Immune System: Crosstalk between Responses to Biotic and Abiotic Stresses the Missing Link in Understanding Plant Defence. Curr. Issues Mol. Biol. 2017;23:1–16. doi: 10.21775/cimb.023.001. PubMed DOI

Kwon T., Shibata H., Kepfer-Rojas S., Schmidt I.K., Larsen K.S., Beier C., Berg B., Verheyen K., Lamarque J.F., Hagedorn F., et al. Effects of Climate and Atmospheric Nitrogen Deposition on Early to Mid-Term Stage Litter Decomposition Across Biomes. Front. For. Glob. Chang. 2021;4:678480. doi: 10.3389/ffgc.2021.678480. DOI

Zandalinas S.I., Sengupta S., Fritschi F.B., Azad R.K., Nechushtai R., Mittler R. The Impact of Multifactorial Stress Combination on Plant Growth and Survival. New Phytol. 2021;230:1034–1048. doi: 10.1111/nph.17232. PubMed DOI PMC

Nissan H., Goddard L., de Perez E.C., Furlow J., Baethgen W., Thomson M.C., Mason S.J. On the Use and Misuse of Climate Change Projections in International Development. Wiley Interdiscip. Rev. Clim. Chang. 2019;10:e579. doi: 10.1002/wcc.579. DOI

Saharan B.S., Brar B., Duhan J.S., Kumar R., Marwaha S., Rajput V.D., Minkina T. Molecular and Physiological Mechanisms to Mitigate Abiotic Stress Conditions in Plants. Life. 2022;12:1634. doi: 10.3390/life12101634. PubMed DOI PMC

Leisner C.P., Potnis N., Sanz-Saez A. Crosstalk and Trade-Offs: Plant Responses to Climate Change-Associated Abiotic and Biotic Stresses. Plant Cell Environ. 2023;46:2946–2963. doi: 10.1111/pce.14532. PubMed DOI

Kopecká R., Kameniarová M., Černý M., Brzobohatý B., Novák J. Abiotic Stress in Crop Production. Int. J. Mol. Sci. 2023;24:6603. doi: 10.3390/ijms24076603. PubMed DOI PMC

Eckardt N.A., Ainsworth E.A., Bahuguna R.N., Broadley M.R., Busch W., Carpita N.C., Castrillo G., Chory J., Dehaan L.R., Duarte C.M., et al. Climate Change Challenges, Plant Science Solutions. Plant Cell. 2023;35:24–66. doi: 10.1093/plcell/koac303. PubMed DOI PMC

Lancaster L.T., Humphreys A.M. Global Variation in the Thermal Tolerances of Plants. Proc. Natl. Acad. Sci. USA. 2020;117:13580–13587. doi: 10.1073/pnas.1918162117. PubMed DOI PMC

Haider S., Raza A., Iqbal J., Shaukat M., Mahmood T. Analyzing the Regulatory Role of Heat Shock Transcription Factors in Plant Heat Stress Tolerance: A Brief Appraisal. Mol. Biol. Rep. 2022;49:5771–5785. doi: 10.1007/s11033-022-07190-x. PubMed DOI

Cohen S.P., Leach J.E. High Temperature-Induced Plant Disease Susceptibility: More than the Sum of Its Parts. Curr. Opin. Plant Biol. 2020;56:235–241. doi: 10.1016/j.pbi.2020.02.008. PubMed DOI

Teshome D.T., Zharare G.E., Naidoo S. The Threat of the Combined Effect of Biotic and Abiotic Stress Factors in Forestry Under a Changing Climate. Front. Plant Sci. 2020;11:601009. doi: 10.3389/fpls.2020.601009. PubMed DOI PMC

Sewelam N., El-Shetehy M., Mauch F., Maurino V.G. Combined Abiotic Stresses Repress Defense and Cell Wall Metabolic Genes and Render Plants More Susceptible to Pathogen Infection. Plants. 2021;10:1946. doi: 10.3390/plants10091946. PubMed DOI PMC

Harvey J.A., Heinen R., Gols R., Thakur M.P. Climate Change-Mediated Temperature Extremes and Insects: From Outbreaks to Breakdowns. Glob. Chang. Biol. 2020;26:6685–6701. doi: 10.1111/gcb.15377. PubMed DOI PMC

Ramegowda V., Senthil A., Senthil-Kumar M. Stress Combinations and Their Interactions in Crop Plants. Plant Physiol. Rep. 2024;29:1–5. doi: 10.1007/s40502-024-00785-5. DOI

Pandey P., Patil M., Priya P., Senthil-Kumar M. When Two Negatives Make a Positive: The Favorable Impact of the Combination of Abiotic Stress and Pathogen Infection on Plants. J. Exp. Bot. 2024;75:674–688. doi: 10.1093/jxb/erad413. PubMed DOI

Roussin-Léveillée C., Rossi C.A.M., Castroverde C.D.M., Moffett P. The Plant Disease Triangle Facing Climate Change: A Molecular Perspective. Trends Plant Sci. 2024 doi: 10.1016/j.tplants.2024.03.004. online ahead of print . PubMed DOI

Mahalingam R., Pandey P., Senthil-Kumar M. Progress and Prospects of Concurrent or Combined Stress Studies in Plants. Ann. Plant Rev. 2021;4:813–868. doi: 10.1002/9781119312994.apr0783. DOI

Son S., Park S.R. Climate Change Impedes Plant Immunity Mechanisms. Front. Plant Sci. 2022;13:1032820. doi: 10.3389/fpls.2022.1032820. PubMed DOI PMC

Ul Hassan M., Rasool T., Iqbal C., Arshad A., Abrar M., Abrar M.M., Habib-ur-Rahman M., Noor M.A., Sher A., Fahad S. Linking Plants Functioning to Adaptive Responses Under Heat Stress Conditions: A Mechanistic Review. J. Plant Growth Regul. 2022;41:2596–2613. doi: 10.1007/s00344-021-10493-1. DOI

Manghwar H., Zaman W. Plant Biotic and Abiotic Stresses. Life. 2024;14:372. doi: 10.3390/life14030372. PubMed DOI PMC

Hasanuzzaman M., Nahar K., Alam M.M., Roychowdhury R., Fujita M. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. Int. J. Mol. Sci. 2013;14:9643–9684. doi: 10.3390/ijms14059643. PubMed DOI PMC

Casal J.J., Balasubramanian S. Thermomorphogenesis. Annu. Rev. Plant Biol. 2019;70:321–346. doi: 10.1146/annurev-arplant-050718-095919. PubMed DOI

Quint M., Delker C., Franklin K.A., Wigge P.A., Halliday K.J., Van Zanten M. Molecular and Genetic Control of Plant Thermomorphogenesis. Nat. Plants. 2016;2:15190. doi: 10.1038/nplants.2015.190. PubMed DOI

Zahra N., Hafeez M.B., Ghaffar A., Kausar A., Al Zeidi M., Siddique K.H.M., Farooq M. Plant Photosynthesis under Heat Stress: Effects and Management. Environ. Exp. Bot. 2023;206:105178. doi: 10.1016/j.envexpbot.2022.105178. DOI

Nadeem M., Li J., Wang M., Shah L., Lu S., Wang X., Ma C. Unraveling Field Crops Sensitivity to Heat Stress: Mechanisms, Approaches, and Future Prospects. Agronomy. 2018;8:128. doi: 10.3390/agronomy8070128. DOI

Slimen I.B., Najar T., Ghram A., Dabbebi H., Ben Mrad M., Abdrabbah M. Reactive Oxygen Species, Heat Stress and Oxidative-Induced Mitochondrial Damage. A Review. Int. J. Hyperth. 2014;30:513–523. doi: 10.3109/02656736.2014.971446. PubMed DOI

Medina E., Kim S.H., Yun M., Choi W.G. Recapitulation of the Function and Role of Ros Generated in Response to Heat Stress in Plants. Plants. 2021;10:371. doi: 10.3390/plants10020371. PubMed DOI PMC

dos Santos T.B., Ribas A.F., de Souza S.G.H., Budzinski I.G.F., Domingues D.S. Physiological Responses to Drought, Salinity, and Heat Stress in Plants: A Review. Stresses. 2022;2:113–135. doi: 10.3390/stresses2010009. DOI

Sato H., Mizoi J., Shinozaki K., Yamaguchi-Shinozaki K. Complex Plant Responses to Drought and Heat Stress under Climate Change. Plant J. 2024;117:1873–1892. doi: 10.1111/tpj.16612. PubMed DOI

Li N., Euring D., Cha J.Y., Lin Z., Lu M., Huang L.J., Kim W.Y. Plant Hormone-Mediated Regulation of Heat Tolerance in Response to Global Climate Change. Front. Plant Sci. 2021;11:627969. doi: 10.3389/fpls.2020.627969. PubMed DOI PMC

Wani S.H., Kumar V. (Biotechnologist) Heat Stress Tolerance in Plants: Physiological, Molecular and Genetic Perspectives. John Wiley & Sons; Hoboken, NJ, USA: 2020.

Li Z.-G., Fang J.-R., Bai S.-J. Hydrogen Sulfide Signaling in Plant Response to Temperature Stress. Front. Plant Sci. 2024;15:1337250. doi: 10.3389/fpls.2024.1337250. PubMed DOI PMC

Kang Y., Lee K., Hoshikawa K., Kang M., Jang S. Molecular Bases of Heat Stress Responses in Vegetable Crops With Focusing on Heat Shock Factors and Heat Shock Proteins. Front. Plant Sci. 2022;13:837152. doi: 10.3389/fpls.2022.837152. PubMed DOI PMC

Jhu M.-Y., Sinha N.R. Parasitic Plants: An Overview of Mechanisms by Which Plants Perceive and Respond to Parasites. Annu. Rev. Plant Biol. 2022;73:433–455. doi: 10.1146/annurev-arplant-102820-100635. PubMed DOI

Mandadi K.K., Scholthof K.B.G. Plant Immune Responses against Viruses: How Does a Virus Cause Disease? Plant Cell. 2013;25:1489–1505. doi: 10.1105/tpc.113.111658. PubMed DOI PMC

Calil I.P., Fontes E.P.B. Plant Immunity against Viruses: Antiviral Immune Receptors in Focus. Ann. Bot. 2017;119:711–723. doi: 10.1093/aob/mcw200. PubMed DOI PMC

Sato K., Kadota Y., Shirasu K. Plant Immune Responses to Parasitic Nematodes. Front. Plant Sci. 2019;10:1165. doi: 10.3389/fpls.2019.01165. PubMed DOI PMC

Fernández-Aparicio M., Delavault P., Timko M.P. Management of Infection by Parasitic Weeds: A Review. Plants. 2020;9:1184. doi: 10.3390/plants9091184. PubMed DOI PMC

Ngou B.P.M., Ding P., Jones J.D.G. Thirty Years of Resistance: Zig-Zag through the Plant Immune System. Plant Cell. 2022;34:1447–1478. doi: 10.1093/plcell/koac041. PubMed DOI PMC

Jian Y., Gong D., Wang Z., Liu L., He J., Han X., Tsuda K. How Plants Manage Pathogen Infection. EMBO Rep. 2024;25:31–44. doi: 10.1038/s44319-023-00023-3. PubMed DOI PMC

Choi H.W., Klessig D.F. DAMPs, MAMPs, and NAMPs in Plant Innate Immunity. BMC Plant Biol. 2016;16:232. doi: 10.1186/s12870-016-0921-2. PubMed DOI PMC

Ferrusquía-Jiménez N.I., Chandrakasan G., Torres-Pacheco I., Rico-Garcia E., Feregrino-Perez A.A., Guevara-González R.G. Extracellular DNA: A Relevant Plant Damage-Associated Molecular Pattern (DAMP) for Crop Protection Against Pests—A Review. J. Plant Growth Regul. 2021;40:451–463. doi: 10.1007/s00344-020-10129-w. DOI

Islam M.M., El-Sappah A.H., Ali H.M., Zandi P., Huang Q., Soaud S.A., Alazizi E.M.Y., Wafa H.A., Hossain M.A., Liang Y. Pathogenesis-related proteins (PRs) countering environmental stress in plants: A review. S. Afr. J. Bot. 2023;160:414–427. doi: 10.1016/j.sajb.2023.07.003. DOI

dos Santos C., Franco O.L. Pathogenesis-Related Proteins (PRs) with Enzyme Activity Activating Plant Defense Responses. Plants. 2023;12:2226. doi: 10.3390/plants12112226. PubMed DOI PMC

Ge D., Yeo I.-C., Shan L. Knowing Me, Knowing You: Self and Non-Self Recognition in Plant Immunity. Essays Biochem. 2022;66:447–458. doi: 10.1042/EBC20210095. PubMed DOI PMC

Dodds P.N., Rathjen J.P. Plant Immunity: Towards an Integrated View of Plant-Pathogen Interactions. Nat. Rev. Genet. 2010;11:539–548. doi: 10.1038/nrg2812. PubMed DOI

Dangl J.L., Horvath D.M., Staskawicz B.J. Pivoting the Plant Immune System from Dissection to Deployment. Science. 2013;341:746–751. doi: 10.1126/science.1236011. PubMed DOI PMC

Zhu Q., Feng Y., Xue J., Chen P., Zhang A., Yu Y. Advances in Receptor-like Protein Kinases in Balancing Plant Growth and Stress Responses. Plants. 2023;12:427. doi: 10.3390/plants12030427. PubMed DOI PMC

Lin P.-A., Chen Y., Ponce G., Acevedo F.E., Lynch J.P., Anderson C.T., Ali J.G., Felton G.W. Stomata-Mediated Interactions between Plants, Herbivores, and the Environment. Trends Plant Sci. 2022;27:287–300. doi: 10.1016/j.tplants.2021.08.017. PubMed DOI

War A.R., Paulraj M.G., Ahmad T., Buhroo A.A., Hussain B., Ignacimuthu S., Sharma H.C. Mechanisms of Plant Defense against Insect Herbivores. Plant Signal. Behav. 2012;7:1306–1320. doi: 10.4161/psb.21663. PubMed DOI PMC

Gou M., Balint-Kurti P., Xu M., Yang Q. Quantitative Disease Resistance: Multifaceted Players in Plant Defense. J. Integr. Plant Biol. 2023;65:594–610. doi: 10.1111/jipb.13419. PubMed DOI

Silvestri A., Bansal C., Rubio-Somoza I. After Silencing Suppression: MiRNA Targets Strike Back. Trends Plant Sci. 2024 doi: 10.1016/j.tplants.2024.05.001. in press . PubMed DOI

Atkinson N.J., Urwin P.E. The Interaction of Plant Biotic and Abiotic Stresses: From Genes to the Field. J. Exp. Bot. 2012;63:3523–3543. doi: 10.1093/jxb/ers100. PubMed DOI

Singh B.K., Delgado-Baquerizo M., Egidi E., Guirado E., Leach J.E., Liu H., Trivedi P. Climate Change Impacts on Plant Pathogens, Food Security and Paths Forward. Nat. Rev. Microbiol. 2023;21:640–656. doi: 10.1038/s41579-023-00900-7. PubMed DOI PMC

Wang Y., Bao Z., Zhu Y., Hua J. Analysis of Temperature Modulation of Plant Defense against Biotrophic Microbes. Mol. Plant Microbe Interact. 2009;22:498–506. doi: 10.1094/MPMI-22-5-0498. PubMed DOI

Janda M., Lamparová L., Zubíková A., Burketová L., Martinec J., Krčková Z. Temporary Heat Stress Suppresses PAMP-Triggered Immunity and Resistance to Bacteria in Arabidopsis thaliana. Mol. Plant Pathol. 2019;20:1005–1012. doi: 10.1111/mpp.12799. PubMed DOI PMC

Menna A., Nguyen D., Guttman D.S., Desveaux D. Elevated Temperature Differentially Influences Effector-Triggered Immunity Outputs in Arabidopsis. Front. Plant Sci. 2015;6:995. doi: 10.3389/fpls.2015.00995. PubMed DOI PMC

Yuan P., Poovaiah B.W. Interplay between Ca2+/Calmodulin-Mediated Signaling and AtSR1/CAMTA3 during Increased Temperature Resulting in Compromised Immune Response in Plants. Int. J. Mol. Sci. 2022;23:2175. doi: 10.3390/ijms23042175. PubMed DOI PMC

Aoun N., Tauleigne L., Lonjon F., Deslandes L., Vailleau F., Roux F., Berthomé R. Quantitative Disease Resistance under Elevated Temperature: Genetic Basis of New Resistance Mechanisms to Ralstonia solanacearum. Front. Plant Sci. 2017;8:1387. doi: 10.3389/fpls.2017.01387. PubMed DOI PMC

Webb K.M., Oña I., Bai J., Garrett K.A., Mew T., Vera Cruz C.M., Leach J.E. A Benefit of High Temperature: Increased Effectiveness of a Rice Bacterial Blight Disease Resistance Gene. New Phytol. 2010;185:568–576. doi: 10.1111/j.1469-8137.2009.03076.x. PubMed DOI

Cohen S.P., Liu H., Argueso C.T., Pereira A., Cruz C.V., Verdier V., Leach J.E. RNA-Seq Analysis Reveals Insight into Enhanced Rice Xa7-Mediated Bacterial Blight Resistance at High Temperature. PLoS ONE. 2017;12:e0187625. doi: 10.1371/journal.pone.0187625. PubMed DOI PMC

Dossa G.S., Quibod I., Atienza-Grande G., Oliva R., Maiss E., Vera Cruz C., Wydra K. Rice Pyramided Line IRBB67 (Xa4/Xa7) Homeostasis under Combined Stress of High Temperature and Bacterial Blight. Sci. Rep. 2020;10:683. doi: 10.1038/s41598-020-57499-5. PubMed DOI PMC

Gu X., Si F., Feng Z., Li S., Liang D., Yang P., Yang C., Yan B., Tang J., Yang Y., et al. The OsSGS3-TasiRNA-OsARF3 Module Orchestrates Abiotic-Biotic Stress Response Trade-off in Rice. Nat. Commun. 2023;14:4441. doi: 10.1038/s41467-023-40176-2. PubMed DOI PMC

Krausz J.P., Thurston D. Breakdown of Resistance to Pseudomonas solanacearum in Tomato. Phytopathology. 1975;65:1272. doi: 10.1094/Phyto-65-1272. DOI

Yang S., Cai W., Shen L., Wu R., Cao J., Tang W., Lu Q., Huang Y., Guan D., He S. Solanaceous Plants Switch to Cytokinin-Mediated Immunity against Ralstonia solanacearum under High Temperature and High Humidity. Plant Cell Environ. 2022;45:459–478. doi: 10.1111/pce.14222. PubMed DOI

Scalschi L., Fernández-Crespo E., Pitarch-Marin M., Llorens E., González-Hernández A.I., Camañes G., Vicedo B., García-Agustín P. Response of Tomato-Pseudomonas Pathosystem to Mild Heat Stress. Horticulturae. 2022;8:174. doi: 10.3390/horticulturae8020174. DOI

Zhang Y., Cai W., Wang A., Huang X., Zheng X., Liu Q., Cheng X., Wan M., Lv J., Guan D., et al. MADS-Box Protein AGL8 Interacts with Chromatin-Remodelling Component SWC4 to Activate Thermotolerance and Environment-Dependent Immunity in Pepper. J. Exp. Bot. 2023;74:3667–3683. doi: 10.1093/jxb/erad092. PubMed DOI

Yang S., Cai W., Wu R., Huang Y., Lu Q., Wang H., Huang X., Zhang Y., Wu Q., Cheng X., et al. Differential CaKAN3-CaHSF8 Associations Underlie Distinct Immune and Heat Responses under High Temperature and High Humidity Conditions. Nat. Commun. 2023;14:4477. doi: 10.1038/s41467-023-40251-8. PubMed DOI PMC

Huang X., Yang S., Zhang Y., Shi Y., Shen L., Zhang Q., Qiu A., Guan D., He S. Temperature-Dependent Action of Pepper Mildew Resistance Locus O 1 in Inducing Pathogen Immunity and Thermotolerance. J. Exp. Bot. 2024;75:2064–2083. doi: 10.1093/jxb/erad479. PubMed DOI

Onaga G., Wydra K.D., Koopmann B., Séré Y., Von Tiedemann A. Elevated Temperature Increases in Planta Expression Levels of Virulence Related Genes in Magnaporthe oryzae and Compromises Resistance in Oryza Sativa Cv. Nipponbare. Funct. Plant Biol. 2017;44:358–371. doi: 10.1071/FP16151. PubMed DOI

Onaga G., Wydra K., Koopmann B., Chebotarov D., Séré Y., Von Tiedemann A. High Temperature Effects on Pi54 Conferred Resistance to Magnaporthe oryzae in Two Genetic Backgrounds of Oryza sativa. J. Plant Physiol. 2017;212:80–93. doi: 10.1016/j.jplph.2017.02.004. PubMed DOI

Qiu J., Xie J., Chen Y., Shen Z., Shi H., Naqvi N.I., Qian Q., Liang Y., Kou Y. Warm Temperature Compromises JA-Regulated Basal Resistance to Enhance Magnaporthe oryzae Infection in Rice. Mol. Plant. 2022;15:723–739. doi: 10.1016/j.molp.2022.02.014. PubMed DOI

Shen M., Cai C., Song L., Qiu J., Ma C., Wang D., Gu X., Yang X., Wei W., Tao Y., et al. Elevated CO2 and Temperature under Future Climate Change Increase Severity of Rice Sheath Blight. Front. Plant Sci. 2023;14:1115614. doi: 10.3389/fpls.2023.1115614. PubMed DOI PMC

Matić S., Garibaldi A., Gullino M.L. Combined and Single Effects of Elevated CO2 and Temperatures on Rice Bakanae Disease under Controlled Conditions in Phytotrons. Plant Pathol. 2021;70:815–826. doi: 10.1111/ppa.13338. DOI

Chilakala A.R., Mali K.V., Irulappan V., Patil B.S., Pandey P., Rangappa K., Ramegowda V., Kumar M.N., Puli C.O.R., Mohan-Raju B., et al. Combined Drought and Heat Stress Influences the Root Water Relation and Determine the Dry Root Rot Disease Development Under Field Conditions: A Study Using Contrasting Chickpea Genotypes. Front. Plant Sci. 2022;13:890551. doi: 10.3389/fpls.2022.890551. PubMed DOI PMC

Sharath Chandran U.S., Tarafdar A., Mahesha H.S., Sharma M. Temperature and Soil Moisture Stress Modulate the Host Defense Response in Chickpea During Dry Root Rot Incidence. Front. Plant Sci. 2021;12:653265. doi: 10.3389/fpls.2021.653265. PubMed DOI PMC

Toniutti L., Breitler J.C., Etienne H., Campa C., Doulbeau S., Urban L., Lambot C., Pinilla J.C.H., Bertrand B. Influence of Environmental Conditions and Genetic Background of Arabica Coffee (C. arabica L.) on Leaf Rust (Hemileia vastatrix) Pathogenesis. Front. Plant Sci. 2017;8:2025. doi: 10.3389/fpls.2017.02025. PubMed DOI PMC

Gustafson E.J., Miranda B.R., Dreaden T.J., Pinchot C.C., Jacobs D.F. Beyond Blight: Phytophthora Root Rot under Climate Change Limits Populations of Reintroduced American Chestnut. Ecosphere. 2022;13:e3917. doi: 10.1002/ecs2.3917. DOI

Dorado F.J., Alías J.C., Chaves N., Solla A. Warming Scenarios and Phytophthora cinnamomi Infection in Chestnut (Castanea sativa Mill.) Plants. 2023;12:556. doi: 10.3390/plants12030556. PubMed DOI PMC

Mayama S., Daly J.M., Rehfeld D.W., Daly C.R. Hypersensitive Response of Near-Isogenic Wheat Carrying the Temperature-Sensitive Sr6 Allele for Resistance to Stem Rust. Physiol. Plant Pathol. 1975;7:35–47. doi: 10.1016/0048-4059(75)90057-0. DOI

Harder D.E., Samborski D.J., Rohringer R., Rimmer S.R., Kim W.K., Chong J. Electron Microscopy of Susceptible and Resistant Near-Isogenic (Sr6/Sr6) Lines of Wheat Infected by Puccinia graminis tritici. III. Ultrastructure of Incompatible Interact. Can. J. Bot. 1979;57:2626–2634. doi: 10.1139/b79-311. DOI

Ge Y.-F., Johnson J.W., Roberts J.J., Rajaram S. Temperature and Resistance Gene Interactions in the Expression of Resistance to Blumeria graminis f. sp. tritici. Euphytica. 1998;99:103–109. doi: 10.1023/A:1018392725474. DOI

Gousseau H.D.M., Deverall B.J., McIntosh R.A. Temperature-Sensitivity of the Expression of Resistance to Puccinia graminis Conferred by the Sr15, Sr9b and Sr14 Genes in Wheat. Physiol. Plant Pathol. 1985;27:335–343. doi: 10.1016/0048-4059(85)90046-3. DOI

Dyck P.L., Johnson R. Temperature Sensitivity of Genes for Resistance in Wheat to Puccinia recondita. Can. J. Plant Pathol. 1983;5:229–234. doi: 10.1080/07060668309501601. DOI

Wang C., Yin G., Xia X., He Z., Zhang P., Yao Z., Qin J., Li Z., Liu D. Molecular Mapping of a New Temperature-Sensitive Gene LrZH22 for Leaf Rust Resistance in Chinese Wheat Cultivar Zhoumai 22. Mol. Breed. 2016;36:18. doi: 10.1007/s11032-016-0437-3. DOI

Chen X., Coram T., Huang X., Wang M., Dolezal A. Understanding Molecular Mechanisms of Durable and Non-Durable Resistance to Stripe Rust in Wheat Using a Transcriptomics Approach. Curr. Genom. 2013;14:111–126. doi: 10.2174/1389202911314020004. PubMed DOI PMC

Tao F., Wang J., Guo Z., Hu J., Xu X., Yang J., Chen X., Hu X. Transcriptomic Analysis Reveal the Molecular Mechanisms of Wheat Higher-Temperature Seedling-Plant Resistance to Puccinia striiformis f. sp. tritici. Front. Plant Sci. 2018;9:240. doi: 10.3389/fpls.2018.00240. PubMed DOI PMC

Wang J., Wang J., Shang H., Chen X., Xu X., Hu X. TaXa21, a Leucine-Rich Repeat Receptor-like Kinase Gene Associated with TaWRKY76 and TaWRKY62, Plays Positive Roles in Wheat High-Temperature Seedling Plant Resistance to Puccinia striiformis f. sp. tritici. Mol. Plant Microbe Interact. 2019;32:1526–1535. doi: 10.1094/MPMI-05-19-0137-R. PubMed DOI

Feng J., Wang M., See D.R., Chao S., Zheng Y., Chen X. Characterization of Novel Gene Yr79 and Four Additional Quantitative Trait Loci for All-Stage and High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat PI 182103. Phytopathology. 2018;108:737–747. doi: 10.1094/PHYTO-11-17-0375-R. PubMed DOI

Lu Y., Wang M., Chen X., See D., Chao S., Jing J. Mapping of Yr62 and a Small-Effect QTL for High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat PI 192252. Theor. Appl. Genet. 2014;127:1449–1459. doi: 10.1007/s00122-014-2312-0. PubMed DOI

Zhou X.L., Wang M.N., Chen X.M., Lu Y., Kang Z.S., Jing J.X. Identification of Yr59 Conferring High-Temperature Adult-Plant Resistance to Stripe Rust in Wheat Germplasm PI 178759. Theor. Appl. Genet. 2014;127:935–945. doi: 10.1007/s00122-014-2269-z. PubMed DOI

Ren R.S., Wang M.N., Chen X.M., Zhang Z.J. Characterization and Molecular Mapping of Yr52 for High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat Germplasm PI 183527. Theor. Appl. Genet. 2012;125:847–857. doi: 10.1007/s00122-012-1877-8. PubMed DOI

Uauy C., Brevis J.C., Chen X., Khan I., Jackson L., Chicaiza O., Distelfeld A., Fahima T., Dubcovsky J. High-Temperature Adult-Plant (HTAP) Stripe Rust Resistance Gene Yr36 from Triticum turgidum spp. Dicoccoides Is Closely Linked to the Grain Protein Content Locus Gpc-B1. Theor. Appl. Genet. 2005;112:97–105. doi: 10.1007/s00122-005-0109-x. PubMed DOI

Fu D., Uauy C., Distelfeld A., Blechl A., Epstein L., Chen X., Sela H., Fahima T., Dubcovsky J. A Kinase-START Gene Confers Temperature-Dependent Resistance to Wheat Stripe Rust. Science. 2009;323:1357–1360. doi: 10.1126/science.1166289. PubMed DOI PMC

Martens J.W., McKenzie R.I.H., Green G.J. Thermal Stability of Stem Rust Resistance in Oat Seedlings. Can. J. Bot. 1967;45:451–458. doi: 10.1139/b67-046. DOI

Künstler A., Füzék K., Schwarczinger I., Nagy J.K., Bakonyi J., Fodor J., Hafez Y.M., Király L. Heat Shock-Induced Enhanced Susceptibility of Barley to Bipolaris sorokiniana Is Associated with Elevated ROS Production and Plant Defence-Related Gene Expression. Plant Biol. 2023;25:803–812. doi: 10.1111/plb.13540. PubMed DOI

Schwarczinger I., Nagy J.K., Király L., Mészáros K., Bányai J., Kunos V., Fodor J., Künstler A. Heat Stress Pre-Exposure May Differentially Modulate Plant Defense to Powdery Mildew in a Resistant and Susceptible Barley Genotype. Genes. 2021;12:776. doi: 10.3390/genes12050776. PubMed DOI PMC

Barna B., Harrach B.D., Viczián O., Fodor J. Heat Induced Susceptibility of Barley Lines with Various Types of Resistance Genes to Powdery Mildew. Acta Phytopathol. Entomol. Hung. 2014;49:177–188. doi: 10.1556/APhyt.49.2014.2.4. DOI

Kolozsváriné Nagy J., Schwarczinger I., Király L., Bacsó R., Ádám A.L., Künstler A. Near-Isogenic Barley Lines Show Enhanced Susceptibility to Powdery Mildew Infection Following High-Temperature Stress. Plants. 2022;11:903. doi: 10.3390/plants11070903. PubMed DOI PMC

Fodor J., Nagy J.K., Király L., Mészáros K., Bányai J., Cséplő M.K., Schwarczinger I., Künstler A. Heat Treatments at Varying Ambient Temperatures and Durations Differentially Affect Plant Defense to Blumeria Hordei in a Resistant and a Susceptible Hordeum Vulgare Line. Phytopathology. 2024;114:418–426. doi: 10.1094/PHYTO-06-23-0191-R. PubMed DOI

Yang S., Hua J. A Haplotype-Specific Resistance Gene Regulated by BONZAI1 Mediates Temperature-Dependent Growth Control in Arabidopsis. Plant Cell. 2004;16:1060–1071. doi: 10.1105/tpc.020479. PubMed DOI PMC

Gijzen M., MacGregor T., Bhattacharyya M., Buzzell R. Temperature Induced Susceptibility to Phytophthora sojaein Soybean Isolines Carrying Different Rps Genes. Physiol. Mol. Plant Pathol. 1996;48:209–215. doi: 10.1006/pmpp.1996.0018. DOI

Lu J., Guo M., Zhai Y., Gong Z., Lu M. Differential Responses to the Combined Stress of Heat and Phytophthora capsici Infection Between Resistant and Susceptible Germplasms of Pepper (Capsicum annuum L.) J. Plant Growth Regul. 2017;36:161–173. doi: 10.1007/s00344-016-9627-9. DOI

Elad Y., Omer C., Nisan Z., Harari D., Goren H., Adler U., Silverman D., Biton S. Passive Heat Treatment of Sweet Basil Crops Suppresses Peronospora Belbahrii Downy Mildew. Ann. Appl. Biol. 2016;168:373–389. doi: 10.1111/aab.12269. DOI

Whitham S., Dinesh-Kumar S.P., Choi D., Hehl R., Corr C., Baker B. The Product of the Tobacco Mosaic Virus Resistance Gene N: Similarity to Toll and the Interleukin-1 Receptor. Cell. 1994;78:1101–1115. doi: 10.1016/0092-8674(94)90283-6. PubMed DOI

Valkonen J.P.T. Novel Resistances to Four Potyviruses in Tuber-Bearing Potato Species, and Temperature-Sensitive Expression of Hypersensitive Resistance to Potato Virus Y. Ann. Appl. Biol. 1997;130:91–104. doi: 10.1111/j.1744-7348.1997.tb05785.x. DOI

Makarova S., Makhotenko A., Spechenkova N., Love A.J., Kalinina N.O., Taliansky M. Interactive Responses of Potato (Solanum tuberosum L.) Plants to Heat Stress and Infection With Potato Virus Y. Front. Microbiol. 2018;9:2582. doi: 10.3389/fmicb.2018.02582. PubMed DOI PMC

Hayano-Saito Y., Hayashi K. Stvb-i, a Rice Gene Conferring Durable Resistance to Rice Stripe Virus, Protects Plant Growth From Heat Stress. Front. Plant Sci. 2020;11:519. doi: 10.3389/fpls.2020.00519. PubMed DOI PMC

Ghandi A., Adi M., Lilia F., Linoy A., Or R., Mikhail K., Mouhammad Z., Henryk C., Rena G. Tomato Yellow Leaf Curl Virus Infection Mitigates the Heat Stress Response of Plants Grown at High Temperatures. Sci. Rep. 2016;6:19715. doi: 10.1038/srep19715. PubMed DOI PMC

Tsai W.A., Shafiei-Peters J.R., Mitter N., Dietzgen R.G. Effects of Elevated Temperature on the Susceptibility of Capsicum Plants to Capsicum Chlorosis Virus Infection. Pathogens. 2022;11:200. doi: 10.3390/pathogens11020200. PubMed DOI PMC

Liu W., Seifers D.L., Qi L.L., Friebe B., Gill B.S. A Compensating Wheat-Thinopyrum intermedium Robertsonian Translocation Conferring Resistance to Wheat Streak Mosaic Virus and Triticum Mosaic Virus. Crop Sci. 2011;51:2382–2390. doi: 10.2135/cropsci2011.03.0118. DOI

Farahbakhsh F., Massah A., Hamzehzarghani H., Yassaie M., Amjadi Z., El-Zaeddi H., Carbonell-Barrachina A.A. Comparative Profiling of Volatile Organic Compounds Associated to Temperature Sensitive Resistance to Wheat Streak Mosaic Virus (WSMV) in Resistant and Susceptible Wheat Cultivars at Normal and Elevated Temperatures. J. Plant Physiol. 2023;281:153903. doi: 10.1016/j.jplph.2022.153903. PubMed DOI

Farahbakhsh F., Hamzehzarghani H., Massah A., Tortosa M., Yasayee M., Rodriguez V.M. Comparative Metabolomics of Temperature Sensitive Resistance to Wheat Streak Mosaic Virus (WSMV) in Resistant and Susceptible Wheat Cultivars. J. Plant Physiol. 2019;237:30–42. doi: 10.1016/j.jplph.2019.03.011. PubMed DOI

Sawada H., Takeuchi S., Hamada H., Kiba A., Matsumoto M., Hikichi Y. A New Tobamovirus-Resistance Gene, L1a, of Sweet Pepper (Capsicum annuum L.) Engei Gakkai Zasshi. 2004;73:552–557. doi: 10.2503/jjshs.73.552. DOI

Meziadi C., Lintz J., Naderpour M., Gautier C., Blanchet S., Noly A., Gratias-Weill A., Geffroy V., Pflieger S. R-BPMV-Mediated Resistance to Bean Pod Mottle Virus in Phaseolus vulgaris L. Is Heat-Stable but Elevated Temperatures Boost Viral Infection in Susceptible Genotypes. Viruses. 2021;13:1239. doi: 10.3390/v13071239. PubMed DOI PMC

Jablonska B., Ammiraju J.S.S., Bhattarai K.K., Mantelin S., De Ilarduya O.M., Roberts P.A., Kaloshian I. The Mi-9 Gene from Solanum arcanum Conferring Heat-Stable Resistance to Root-Knot Nematodes Is a Homolog of Mi-1. Plant Physiol. 2007;143:1044–1054. doi: 10.1104/pp.106.089615. PubMed DOI PMC

Marques de Carvalho L., Benda N.D., Vaughan M.M., Cabrera A.R., Hung K., Cox T., Abdo Z., Allen L.H., Teal P.E.A. Mi-1-Mediated Nematode Resistance in Tomatoes Is Broken by Short-Term Heat Stress but Recovers Over Time. J. Nematol. 2015;47:133–140. PubMed PMC

Veremis J.C., Roberts P.A. Relationships between Meloidogyne incognita Resistance Genes in Lycopersicon peruvianum Differentiated by Heat Sensitivity and Nematode Virulence. Theor. Appl. Genet. 1996;93:950–959. doi: 10.1007/BF00224098. PubMed DOI

Hwang C.-F., Bhakta A.V., Truesdell G.M., Pudlo W.M., Williamson V.M. Evidence for a Role of the N Terminus and Leucine-Rich Repeat Region of the Mi Gene Product in Regulation of Localized Cell Death. Plant Cell. 2000;12:1319–1329. doi: 10.1105/tpc.12.8.1319. PubMed DOI PMC

Djian-Caporalino C., Pijarowski L., Januel A., Lefebvre V., Daubèze A., Palloix A., Dalmasso A., Abad P. Spectrum of Resistance to Root-Knot Nematodes and Inheritance of Heat-Stable Resistance in in Pepper (Capsicum annuum L.) Theor. Appl. Genet. 1999;99:496–502. doi: 10.1007/s001220051262. PubMed DOI

Paudel S., Lin P.A., Hoover K., Felton G.W., Rajotte E.G. Asymmetric Responses to Climate Change: Temperature Differentially Alters Herbivore Salivary Elicitor and Host Plant Responses to Herbivory. J. Chem. Ecol. 2020;46:891–905. doi: 10.1007/s10886-020-01201-6. PubMed DOI PMC

Havko N.E., Das M.R., McClain A.M., Kapali G., Sharkey T.D., Howe G.A. Insect Herbivory Antagonizes Leaf Cooling Responses to Elevated Temperature in Tomato. Proc. Natl. Acad. Sci. USA. 2020;117:2211–2217. doi: 10.1073/pnas.1913885117. PubMed DOI PMC

Di Lelio I., Coppola M., Comite E., Molisso D., Lorito M., Woo S.L., Pennacchio F., Rao R., Digilio M.C. Temperature Differentially Influences the Capacity of Trichoderma Species to Induce Plant Defense Responses in Tomato Against Insect Pests. Front. Plant Sci. 2021;12:678830. doi: 10.3389/fpls.2021.678830. PubMed DOI PMC

Sulaiman H.Y., Liu B., Kaurilind E., Niinemets Ü. Phloem-Feeding Insect Infestation Antagonizes Volatile Organic Compound Emissions and Enhances Heat Stress Recovery of Photosynthesis in Origanum vulgare. Environ. Exp. Bot. 2021;189:104551. doi: 10.1016/j.envexpbot.2021.104551. DOI

Guyer A., van Doan C., Maurer C., Machado R.A.R., Mateo P., Steinauer K., Kesner L., Hoch G., Kahmen A., Erb M., et al. Climate Change Modulates Multitrophic Interactions Between Maize, A Root Herbivore, and Its Enemies. J. Chem. Ecol. 2021;47:889–906. doi: 10.1007/s10886-021-01303-9. PubMed DOI PMC

Beetge L., Krüger K. Drought and Heat Waves Associated with Climate Change Affect Performance of the Potato Aphid Macrosiphum euphorbiae. Sci. Rep. 2019;9:3645. doi: 10.1038/s41598-018-37493-8. PubMed DOI PMC

Liu D., Wu C., Wang Q., Liu D., Tian Z., Liu J. Effects of Heat Wave on Development, Reproduction, and Morph Differentiation of Aphis glycines (Hemiptera: Aphididae) Environ. Entomol. 2023;52:939–948. doi: 10.1093/ee/nvad071. PubMed DOI

Liu J., Ngoc Ha V., Shen Z., Dang P., Zhu H., Zhao F., Zhao Z. Response of the Rhizosphere Microbial Community to Fine Root and Soil Parameters Following Robinia pseudoacacia L. Afforestation. Appl. Soil. Ecol. 2018;132:11–19. doi: 10.1016/j.apsoil.2018.08.004. DOI

Wang R., Bai B., Li D., Wang J., Huang W., Wu Y., Zhao L. Phytoplasma: A Plant Pathogen That Cannot Be Ignored in Agricultural Production-Research Progress and Outlook. Mol. Plant Pathol. 2024;25:e13437. doi: 10.1111/mpp.13437. PubMed DOI PMC

Kumari S., Nagendran K., Rai A.B., Singh B., Rao G.P., Bertaccini A. Global Status of Phytoplasma Diseases in Vegetable Crops. Front. Microbiol. 2019;10:1349. doi: 10.3389/fmicb.2019.01349. PubMed DOI PMC

Reddy M.G., Baranwal V.K., Sagar D., Rao G.P. Molecular Characterization of Chickpea Chlorotic Dwarf Virus and Peanut Witches’ Broom Phytoplasma Associated with Chickpea Stunt Disease and Identification of New Host Crops and Leafhopper Vectors in India. 3 Biotech. 2021;11:112. doi: 10.1007/s13205-020-02613-7. PubMed DOI PMC

Ahmed E.A., Farrag A.A., Kheder A.A., Shaaban A. Effect of Phytoplasma Associated with Sesame Phyllody on Ultrastructural Modification, Physio-Biochemical Traits, Productivity and Oil Quality. Plants. 2022;11:477. doi: 10.3390/plants11040477. PubMed DOI PMC

Pecher P., Moro G., Canale M.C., Capdevielle S., Singh A., MacLean A., Sugio A., Kuo C.-H., Lopes J.R.S., Hogenhout S.A. Phytoplasma SAP11 Effector Destabilization of TCP Transcription Factors Differentially Impact Development and Defence of Arabidopsis versus Maize. PLoS Pathog. 2019;15:e1008035. doi: 10.1371/journal.ppat.1008035. PubMed DOI PMC

Zarei M.J., Kazemi N., Marzban A. Life Cycle Environmental Impacts of Cucumber and Tomato Production in Open-Field and Greenhouse. J. Saudi Soc. Agric. Sci. 2019;18:249–255. doi: 10.1016/j.jssas.2017.07.001. DOI

Bianco P.A., Romanazzi G., Mori N., Myrie W., Bertaccini A. Phytoplasmas: Plant Pathogenic Bacteria—II. Springer; Singapore: 2019. Integrated Management of Phytoplasma Diseases; pp. 237–258.

Saracco P., Bosco D., Veratti F., Marzachì C. Quantification over Time of Chrysanthemum Yellows Phytoplasma (16Sr-I) in Leaves and Roots of the Host Plant Chrysanthemum carinatum (Schousboe) Following Inoculation with Its Insect Vector. Physiol. Mol. Plant Pathol. 2005;67:212–219. doi: 10.1016/j.pmpp.2006.02.001. DOI

Brochu A.-S., Dionne A., Fall M.L., Pérez-López E. A Decade of Hidden Phytoplasmas Unveiled Through Citizen Science. Plant Dis. 2023;107:3389–3393. doi: 10.1094/PDIS-02-23-0227-SC. PubMed DOI

Sabato E.O., Landau E.C., Barros B.A., Oliveira C.M. Differential Transmission of Phytoplasma and Spiroplasma to Maize Caused by Variation in the Environmental Temperature in Brazil. Eur. J. Plant Pathol. 2020;157:163–171. doi: 10.1007/s10658-020-01997-9. DOI

Bahar M.H., Wist T.J., Bekkaoui D.R., Hegedus D.D., Olivier C.Y. Aster Leafhopper Survival and Reproduction, and Aster Yellows Transmission under Static and Fluctuating Temperatures, Using DdPCR for Phytoplasma Quantification. Sci. Rep. 2018;8:227. doi: 10.1038/s41598-017-18437-0. PubMed DOI PMC

Plante N., Durivage J., Brochu A.-S., Dumonceaux T., Almeida Santos A., Torres D., Bahder B., Kits J., Dionne A., Légaré J.-P., et al. Leafhoppers as Markers of the Impact of Climate Change on Agriculture. Cell Rep. Sustain. 2024;1:100029. doi: 10.1016/j.crsus.2024.100029. DOI

Begum N., Qin C., Ahanger M.A., Raza S., Khan M.I., Ashraf M., Ahmed N., Zhang L. Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Front. Plant Sci. 2019;10:1068. doi: 10.3389/fpls.2019.01068. PubMed DOI PMC

Chofong G.N., Minarovits J., Richert-Pöggeler K.R. Chapter 4—Virus Latency: Heterogeneity of Host-Virus Interaction in Shaping the Virosphere. In: Gaur R.K., Khurana S.M.P., Sharma P., Hohn T., editors. Plant Virus-Host Interaction. 2nd ed. Academic Press; Boston, MA, USA: 2021. pp. 111–137.

Sett S., Prasad A., Prasad M. Resistance Genes on the Verge of Plant–Virus Interaction. Trends Plant Sci. 2022;27:1242–1252. doi: 10.1016/j.tplants.2022.07.003. PubMed DOI

Jeger M., Bragard C. The Epidemiology of Xylella fastidiosa; A Perspective on Current Knowledge and Framework to Investigate Plant Host–Vector–Pathogen Interactions. Phytopathology. 2019;109:200–209. doi: 10.1094/PHYTO-07-18-0239-FI. PubMed DOI

Gamarra H., Carhuapoma P., Cumapa L., González G., Muñoz J., Sporleder M., Kreuze J. A Temperature-Driven Model for Potato Yellow Vein Virus Transmission Efficacy by Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) Virus Res. 2020;289:198109. doi: 10.1016/j.virusres.2020.198109. PubMed DOI PMC

Prasad A., Sett S., Prasad M. Plant-Virus-Abiotic Stress Interactions: A Complex Interplay. Environ. Exp. Bot. 2022;199:104869. doi: 10.1016/j.envexpbot.2022.104869. DOI

Islam W., Naveed H., Zaynab M., Huang Z., Chen H.Y.H. Plant Defense against Virus Diseases; Growth Hormones in Highlights. Plant Signal. Behav. 2019;14:1596719. doi: 10.1080/15592324.2019.1596719. PubMed DOI PMC

Alazem M., Lin N. Roles of Plant Hormones in the Regulation of Host–Virus Interactions. Mol. Plant Pathol. 2015;16:529–540. doi: 10.1111/mpp.12204. PubMed DOI PMC

Jiang S., Wu B., Jiang L., Zhang M., Lu Y., Wang S., Yan F., Xin X. Triticum Aestivum Heat Shock Protein 23.6 Interacts with the Coat Protein of Wheat Yellow Mosaic Virus. Virus Genes. 2019;55:209–217. doi: 10.1007/s11262-018-1626-4. PubMed DOI

Kim M.Y., Oglesbee M. Virus-Heat Shock Protein Interaction and a Novel Axis for Innate Antiviral Immunity. Cells. 2012;1:646–666. doi: 10.3390/cells1030646. PubMed DOI PMC

Wu S., Zhao Y., Wang D., Chen Z. Mode of Action of Heat Shock Protein (HSP) Inhibitors against Viruses through Host HSP and Virus Interactions. Genes. 2023;14:792. doi: 10.3390/genes14040792. PubMed DOI PMC

Du Z., Xiao D., Wu J., Jia D., Yuan Z., Liu Y., Hu L., Han Z., Wei T., Lin Q., et al. P2 of Rice Stripe Virus (RSV) Interacts with OsSGS3 and Is a Silencing Suppressor. Mol. Plant Pathol. 2011;12:808–814. doi: 10.1111/j.1364-3703.2011.00716.x. PubMed DOI PMC

Tian B., Li J., Vodkin L.O., Todd T.C., Finer J.J., Trick H.N. Host-Derived Gene Silencing of Parasite Fitness Genes Improves Resistance to Soybean Cyst Nematodes in Stable Transgenic Soybean. Theor. Appl. Genet. 2019;132:2651–2662. doi: 10.1007/s00122-019-03379-0. PubMed DOI PMC

Mitchum M.G. Soybean Resistance to the Soybean Cyst Nematode Heterodera Glycines: An Update. Phytopathology. 2016;106:1444–1450. doi: 10.1094/PHYTO-06-16-0227-RVW. PubMed DOI

Guang Y., Luo S., Ahammed G.J., Xiao X., Li J., Zhou Y., Yang Y. The OPR Gene Family in Watermelon: Genome-Wide Identification and Expression Profiling under Hormone Treatments and Root-Knot Nematode Infection. Plant Biol. 2021;23:80–88. doi: 10.1111/plb.13225. PubMed DOI

Poveda J., Abril-Urias P., Escobar C. Biological Control of Plant-Parasitic Nematodes by Filamentous Fungi Inducers of Resistance: Trichoderma, Mycorrhizal and Endophytic Fungi. Front. Microbiol. 2020;11:992. doi: 10.3389/fmicb.2020.00992. PubMed DOI PMC

Liu Y., Morelli M., Koskimäki J.J., Qin S., Zhu Y.H., Zhang X.X. Editorial: Role of Endophytic Bacteria in Improving Plant Stress Resistance. Front. Plant Sci. 2022;13:1106701. doi: 10.3389/fpls.2022.1106701. PubMed DOI PMC

Li Z., Howell S.H. Heat Stress Responses and Thermotolerance in Maize. Int. J. Mol. Sci. 2021;22:948. doi: 10.3390/ijms22020948. PubMed DOI PMC

Thurau T., Kifle S., Jung C., Cai D. The Promoter of the Nematode Resistance Gene Hs1 Pro-1 Activates a Nematode-Responsive and Feeding Site-Specific Gene Expression in Sugar Beet (Beta vulgaris L.) and Arabidopsis thaliana. Plant Mol. Biol. 2003;52:643–660. doi: 10.1023/A:1024887516581. PubMed DOI

Kong L.A., Wu D.Q., Huang W.K., Peng H., Wang G.F., Cui J.K., Liu S.M., Li Z.G., Yang J., Peng D.L. Large-Scale Identification of Wheat Genes Resistant to Cereal Cyst Nematode Heterodera avenae Using Comparative Transcriptomic Analysis. BMC Genom. 2015;16:801. doi: 10.1186/s12864-015-2037-8. PubMed DOI PMC

Chen C., Cui L., Chen Y., Zhang H., Liu P., Wu P., Qiu D., Zou J., Yang D., Yang L., et al. Transcriptional Responses of Wheat and the Cereal Cyst Nematode Heterodera avenae during Their Early Contact Stage. Sci. Rep. 2017;7:14471. doi: 10.1038/s41598-017-14047-y. PubMed DOI PMC

Bodlah M.A., Iqbal J., Ashiq A., Bodlah I., Jiang S., Mudassir M.A., Rasheed M.T., Fareen A.G.E. Insect Behavioral Restraint and Adaptation Strategies under Heat Stress: An Inclusive Review. J. Saudi Soc. Agric. Sci. :2023. doi: 10.1016/j.jssas.2023.02.004. DOI

Neven L.G. Physiological Responses of Insects to Heat. Postharvest Biol. Technol. 2000;21:103–111. doi: 10.1016/S0925-5214(00)00169-1. DOI

Skendžić S., Zovko M., Živković I.P., Lešić V., Lemić D. The Impact of Climate Change on Agricultural Insect Pests. Insects. 2021;12:440. doi: 10.3390/insects12050440. PubMed DOI PMC

Hou L., Wu Y., Kou X., Li R., Wang S. Developing High-Temperature-Short-Time Radio Frequency Disinfestation Treatments in Coix Seeds: Insect Mortality, Product Quality and Energy Consumption. Biosyst. Eng. 2022;215:262–270. doi: 10.1016/j.biosystemseng.2022.01.018. DOI

Sakka M.K., Jagadeesan R., Nayak M.K., Athanassiou C.G. Insecticidal Effect of Heat Treatment in Commercial Flour and Rice Mills for the Control of Phosphine-Resistant Insect Pests. J. Stored Prod. Res. 2022;99:102023. doi: 10.1016/j.jspr.2022.102023. DOI

Iltis C., Tougeron K., Hance T., Louâpre P., Foray V. A Perspective on Insect–Microbe Holobionts Facing Thermal Fluctuations in a Climate-Change Context. Environ. Microbiol. 2022;24:18–29. doi: 10.1111/1462-2920.15826. PubMed DOI

Tougeron K., Iltis C. Impact of Heat Stress on the Fitness Outcomes of Symbiotic Infection in Aphids: A Meta-Analysis. Proc. R. Soc. B Biol. Sci. 2022;289:20212660. doi: 10.1098/rspb.2021.2660. PubMed DOI PMC

Munawar A., Zhang Y., Zhong J., Ge Y., Abou El-Ela A.S., Mao Z., Ntiri E.S., Mao L., Zhu Z., Zhou W. Heat Stress Affects Potato’s Volatile Emissions That Mediate Agronomically Important Trophic Interactions. Plant Cell Environ. 2022;45:3036–3051. doi: 10.1111/pce.14416. PubMed DOI

Nguyen T.T.A., Michaud D., Cloutier C. A Proteomic Analysis of the Aphid Macrosiphum euphorbiae under Heat and Radiation Stress. Insect Biochem. Mol. Biol. 2009;39:20–30. doi: 10.1016/j.ibmb.2008.09.014. PubMed DOI

He L., Li C., Liu R. Indirect Interactions between Arbuscular Mycorrhizal Fungi and Spodoptera Exigua Alter Photosynthesis and Plant Endogenous Hormones. Mycorrhiza. 2017;27:525–535. doi: 10.1007/s00572-017-0771-2. PubMed DOI

Walters J., Zavalnitskaya J., Isaacs R., Szendrei Z. Heat of the Moment: Extreme Heat Poses a Risk to Bee–Plant Interactions and Crop Yields. Curr. Opin. Insect Sci. 2022;52:100927. doi: 10.1016/j.cois.2022.100927. PubMed DOI

Kask K., Kännaste A., Talts E., Copolovici L., Niinemets Ü. How Specialized Volatiles Respond to Chronic and Short-Term Physiological and Shock Heat Stress in Brassica nigra. Plant Cell Environ. 2016;39:2027–2042. doi: 10.1111/pce.12775. PubMed DOI PMC

Miao J., Guo P., Zhang Y., Tan X., Chen J., Li Y., Wu Y. Effect of High Temperature and Natural Enemies on the Interspecies Competition Between Two Wheat Aphid Species, Rhopalosiphum Padi and Sitobion miscanthi. J. Econ. Entomol. 2022;115:539–544. doi: 10.1093/jee/toab271. PubMed DOI

Lwalaba D., Hoffmann K.H., Woodring J. Control of the release of digestive enzymes in the larvae of the fall armyworm, Spodoptera frugiperda. Arch. Insect Biochem. Physiol. 2010;73:14–29. doi: 10.1002/arch.20332. PubMed DOI

Prochaska T.J., Donze-Reiner T., Marchi-Werle L., Palmer N.A., Hunt T.E., Sarath G., Heng-Moss T. Transcriptional Responses of Tolerant and Susceptible Soybeans to Soybean Aphid (Aphis glycines Matsumura) Herbivory. Arthropod Plant Interact. 2015;9:347–359. doi: 10.1007/s11829-015-9371-2. DOI

Liu F.H., Kang Z., Tan X., Fan Y., Tian H., Liu T. Physiology and Defense Responses of Wheat to the Infestation of Different Cereal Aphids. J. Integr. Agric. 2020;19:1464–1474. doi: 10.1016/S2095-3119(19)62786-3. DOI

Lee S., Cassone B.J., Wijeratne A., Jun T.H., Michel A.P., Mian M.A.R. Transcriptomic Dynamics in Soybean Near-Isogenic Lines Differing in Alleles for an Aphid Resistance Gene, Following Infestation by Soybean Aphid Biotype 2. BMC Genom. 2017;18:472. doi: 10.1186/s12864-017-3829-9. PubMed DOI PMC

Gyan N.M., Yaakov B., Weinblum N., Singh A., Cna’ani A., Ben-Zeev S., Saranga Y., Tzin V. Variation Between Three Eragrostis Tef Accessions in Defense Responses to Rhopalosiphum padi Aphid Infestation. Front. Plant Sci. 2020;11:598483. doi: 10.3389/fpls.2020.598483. PubMed DOI PMC

Jasrotia P., Sharma S., Nagpal M., Kamboj D., Kashyap P.L., Kumar S., Mishra C.N., Kumar S., Singh G.P. Comparative Transcriptome Analysis of Wheat in Response to Corn Leaf Aphid, Rhopalosiphum maidis F. Infestation. Front. Plant Sci. 2022;13:989365. doi: 10.3389/fpls.2022.989365. PubMed DOI PMC

Zhou G., Qi J., Ren N., Cheng J., Erb M., Mao B., Lou Y. Silencing OsHI-LOX Makes Rice More Susceptible to Chewing Herbivores, but Enhances Resistance to a Phloem Feeder. Plant J. 2009;60:638–648. doi: 10.1111/j.1365-313X.2009.03988.x. PubMed DOI

Xue R., Li Q., Guo R., Yan H., Ju X., Liao L., Zeng R., Song Y., Wang J. Rice Defense Responses Orchestrated by Oral Bacteria of the Rice Striped Stem Borer, Chilo suppressalis. Rice. 2023;16:1. doi: 10.1186/s12284-022-00617-w. PubMed DOI PMC

Peralta G., CaraDonna P.J., Rakosy D., Fründ J., Pascual Tudanca M.P., Dormann C.F., Burkle L.A., Kaiser-Bunbury C.N., Knight T.M., Resasco J., et al. Predicting Plant–Pollinator Interactions: Concepts, Methods, and Challenges. Trends Ecol. Evol. 2024;39:494–505. doi: 10.1016/j.tree.2023.12.005. PubMed DOI

Bishop J., Jones H.E., Lukac M., Potts S.G. Insect Pollination Reduces Yield Loss Following Heat Stress in Faba Bean (Vicia faba L.) Agric. Ecosyst. Environ. 2016;220:89–96. doi: 10.1016/j.agee.2015.12.007. PubMed DOI PMC

Hemberger J.A., Rosenberger N.M., Williams N.M. Experimental Heatwaves Disrupt Bumblebee Foraging through Direct Heat Effects and Reduced Nectar Production. Funct. Ecol. 2023;37:591–601. doi: 10.1111/1365-2435.14241. DOI

McCalla K.A., Keçeci M., Milosavljević I., Ratkowsky D.A., Hoddle M.S. The Influence of Temperature Variation on Life History Parameters and Thermal Performance Curves of Tamarixia radiata (Hymenoptera: Eulophidae), a Parasitoid of the Asian Citrus Psyllid (Hemiptera: Liviidae) J. Econ. Entomol. 2019;112:1560–1574. doi: 10.1093/jee/toz067. PubMed DOI

O’Connell D.P., Baker B.M., Atauri D., Jones J.C. Increasing Temperature and Time in Glasshouses Increases Honey Bee Activity and Affects Internal Brood Conditions. J. Insect Physiol. 2024;155:104635. doi: 10.1016/j.jinsphys.2024.104635. PubMed DOI

Silambarasan S., Logeswari P., Vangnai A.S., Kamaraj B., Cornejo P. Plant Growth-Promoting Actinobacterial Inoculant Assisted Phytoremediation Increases Cadmium Uptake in Sorghum bicolor under Drought and Heat Stresses. Environ. Pollut. 2022;307:119489. doi: 10.1016/j.envpol.2022.119489. PubMed DOI

Tataridas A., Kanatas P., Chatzigeorgiou A., Zannopoulos S., Travlos I. Sustainable Crop and Weed Management in the Era of the EU Green Deal: A Survival Guide. Agronomy. 2022;12:589. doi: 10.3390/agronomy12030589. DOI

Dubey A., Kumar K., Srinivasan T., Kondreddy A., Kumar K.R.R. An Invasive Weed-Associated Bacteria Confers Enhanced Heat Stress Tolerance in Wheat. Heliyon. 2022;8:e09893. doi: 10.1016/j.heliyon.2022.e09893. PubMed DOI PMC

Wang J., Chen X., Chu S., You Y., Chi Y., Wang R., Yang X., Hayat K., Zhang D., Zhou P. Comparative Cytology Combined with Transcriptomic and Metabolomic Analyses of Solanum nigrum L. in Response to Cd Toxicity. J. Hazard. Mater. 2022;423:127168. doi: 10.1016/j.jhazmat.2021.127168. PubMed DOI

Hussain H.A., Men S., Hussain S., Chen Y., Ali S., Zhang S., Zhang K., Li Y., Xu Q., Liao C., et al. Interactive Effects of Drought and Heat Stresses on Morpho-Physiological Attributes, Yield, Nutrient Uptake and Oxidative Status in Maize Hybrids. Sci. Rep. 2019;9:3890. doi: 10.1038/s41598-019-40362-7. PubMed DOI PMC

Ali M., Ayyub C.M., Hussain Z., Hussain R., Rashid S. Optimization of Chitosan Level to Alleviate the Drastic Effects of Heat Stress in Cucumber (Cucumis sativus L.) J. Pure Appl. Agric. 2020;5:30–38.

Matloob A., Khaliq A., Chauhan B.S. Chapter Five—Weeds of Direct-Seeded Rice in Asia: Problems and Opportunities. In: Sparks D.L., editor. Advances in Agronomy. Volume 130. Academic Press; Cambridge, MA, USA: 2015. pp. 291–336.

Touzy G., Lafarge S., Redondo E., Lievin V., Decoopman X., Le Gouis J., Praud S. Identification of QTLs Affecting Post-Anthesis Heat Stress Responses in European Bread Wheat. Theor. Appl. Genet. 2022;135:947–964. doi: 10.1007/s00122-021-04008-5. PubMed DOI PMC

Valenzuela H. Ecological Management of the Nitrogen Cycle in Organic Farms. Nitrogen. 2023;4:58–84. doi: 10.3390/nitrogen4010006. DOI

Wen B. Effects of High Temperature and Water Stress on Seed Germination of the Invasive Species Mexican Sunflower. PLoS ONE. 2015;10:e0141567. doi: 10.1371/journal.pone.0141567. PubMed DOI PMC

Chauhan B.S., Abugho S.B. Effect of Water Stress on the Growth and Development of Amaranthus spinosus, Leptochloa Chinensis, and Rice. Am. J. Plant Sci. 2013;4:989–998. doi: 10.4236/ajps.2013.45122. DOI

Admassie M., Woldehawariat Y., Alemu T., Gonzalez E., Jimenez J.F. The Role of Plant Growth-Promoting Bacteria in Alleviating Drought Stress on Pepper Plants. Agric. Water Manag. 2022;272:107831. doi: 10.1016/j.agwat.2022.107831. DOI

Lata R., Chowdhury S., Gond S.K., White J.F. Induction of Abiotic Stress Tolerance in Plants by Endophytic Microbes. Lett. Appl. Microbiol. 2018;66:268–276. doi: 10.1111/lam.12855. PubMed DOI

Liu H., Brettell L.E., Qiu Z., Singh B.K. Microbiome-Mediated Stress Resistance in Plants. Trends Plant Sci. 2020;25:733–743. doi: 10.1016/j.tplants.2020.03.014. PubMed DOI

Rudgers J.A., Afkhami M.E., Bell-Dereske L., Chung Y.A., Crawford K.M., Kivlin S.N., Mann M.A., Nuñez M.A. Climate Disruption of Plant-Microbe Interactions. Annu. Rev. Ecol. Evol. Syst. 2020;51:561–586. doi: 10.1146/annurev-ecolsys-011720-090819. DOI

Teiba I.I., El-Bilawy E.H., Elsheery N.I., Rastogi A. Microbial Allies in Agriculture: Harnessing Plant Growth-Promoting Microorganisms as Guardians against Biotic and Abiotic Stresses. Horticulturae. 2024;10:12. doi: 10.3390/horticulturae10010012. DOI

Singh B.K., Trivedi P., Egidi E., Macdonald C.A., Delgado-Baquerizo M. Crop Microbiome and Sustainable Agriculture. Nat. Rev. Microbiol. 2020;18:601–602. doi: 10.1038/s41579-020-00446-y. PubMed DOI

Reshi Z.A., Ahmad W., Lukatkin A.S., Javed S. Bin From Nature to Lab: A Review of Secondary Metabolite Biosynthetic Pathways, Environmental Influences, and In Vitro Approaches. Metabolites. 2023;13:895. doi: 10.3390/metabo13080895. PubMed DOI PMC

Waqas M., Khan A.L., Shahzad R., Ullah I., Khan A.R., Lee I.J. Mutualistic Fungal Endophytes Produce Phytohormones and Organic Acids That Promote Japonica Rice Plant Growth under Prolonged Heat Stress. J. Zhejiang Univ. Sci. B. 2015;16:1011–1018. doi: 10.1631/jzus.B1500081. PubMed DOI PMC

Abd El-Daim I.A., Bejai S., Meijer J. Bacillus Velezensis 5113 Induced Metabolic and Molecular Reprogramming during Abiotic Stress Tolerance in Wheat. Sci. Rep. 2019;9:16282. doi: 10.1038/s41598-019-52567-x. PubMed DOI PMC

Singh R.P., Jha P.N. Mitigation of Salt Stress in Wheat Plant (Triticum aestivum) by ACC Deaminase Bacterium Enterobacter sp. SBP-6 Isolated from Sorghum bicolor. Acta Physiol. Plant. 2016;38:110. doi: 10.1007/s11738-016-2123-9. DOI

Zulfikar Ali S., Sandhya V., Grover M., Linga V.R., Bandi V. Effect of Inoculation with a Thermotolerant Plant Growth Promoting Pseudomonas putida Strain AKMP7 on Growth of Wheat (Triticum spp.) under Heat Stress. J. Plant Interact. 2011;6:239–246. doi: 10.1080/17429145.2010.545147. DOI

Ashraf A., Bano A., Ali S.A. Characterisation of Plant Growth-Promoting Rhizobacteria from Rhizosphere Soil of Heat-Stressed and Unstressed Wheat and Their Use as Bio-Inoculant. Plant Biol. 2019;21:762–769. doi: 10.1111/plb.12972. PubMed DOI

Abd El-Daim I.A., Bejai S., Fridborg I., Meijer J. Identifying Potential Molecular Factors Involved in Bacillus amyloliquefaciens 5113 Mediated Abiotic Stress Tolerance in Wheat. Plant Biol. 2018;20:271–279. doi: 10.1111/plb.12680. PubMed DOI

Khan A.N., Hassan M.N., Keyani R., Amir Z., Raish M., Singh R., Yasmin H. Potential of Lactobacillus agilis, Lactobacillus plantarum, and Lactobacillus acidophilus to Enhance Wheat Growth under Drought and Heat Stress. J. King Saud Univ. Sci. 2024:103334. doi: 10.1016/j.jksus.2024.103334. online ahead of print . DOI

Verma P., Yadav A.N., Khannam K.S., Mishra S., Kumar S., Saxena A.K., Suman A. Appraisal of Diversity and Functional Attributes of Thermotolerant Wheat Associated Bacteria from the Peninsular Zone of India. Saudi J. Biol. Sci. 2019;26:1882–1895. doi: 10.1016/j.sjbs.2016.01.042. PubMed DOI PMC

Mukhtar T., ur Rehman S., Smith D., Sultan T., Seleiman M.F., Alsadon A.A., Amna, Ali S., Chaudhary H.J., Solieman T.H.I., et al. Mitigation of Heat Stress in Solanum lycopersicum L. by ACC-Deaminase and Exopolysaccharide Producing Bacillus cereus: Effects on Biochemical Profiling. Sustainability. 2020;12:2159. doi: 10.3390/su12062159. DOI

Issa A., Esmaeel Q., Sanchez L., Courteaux B., Guise J.-F., Gibon Y., Ballias P., Clément C., Jacquard C., Vaillant-Gaveau N., et al. Impacts of Paraburkholderia phytofirmans Strain PsJN on Tomato (Lycopersicon esculentum L.) Under High Temperature. Front. Plant Sci. 2018;9:1397. doi: 10.3389/fpls.2018.01397. PubMed DOI PMC

Mukhtar T., Ali F., Rafique M., Ali J., Afridi M.S., Smith D., Mehmood S., Amna, Souleimanov A., Jellani G., et al. Biochemical Characterization and Potential of Bacillus safensis Strain SCAL1 to Mitigate Heat Stress in Solanum lycopersicum L. J. Plant Growth Regul. 2023;42:523–538. doi: 10.1007/s00344-021-10571-4. DOI

Duarte B., Carreiras J.A., Cruz-Silva A., Mateos-Naranjo E., Rodríguez-Llorente I.D., Pajuelo E., Redondo-Gómez S., Mesa-Marín J., Figueiredo A. Marine Plant Growth Promoting Bacteria (PGPB) Inoculation Technology: Testing the Effectiveness of Different Application Methods to Improve Tomato Plants Tolerance against Acute Heat Wave Stress. Plant Stress. 2024;11:100434. doi: 10.1016/j.stress.2024.100434. DOI

Khan M.A., Asaf S., Khan A.L., Jan R., Kang S.M., Kim K.M., Lee I.J. Extending Thermotolerance to Tomato Seedlings by Inoculation with SA1 Isolate of Bacillus cereus and Comparison with Exogenous Humic Acid Application. PLoS ONE. 2020;15:e0232228. doi: 10.1371/journal.pone.0232228. PubMed DOI PMC

Bensalim S., Nowak J., Asiedu S.I. A Plant Growth Promoting Rhizobacterium and Temperature Effects on Performance of 18 Clones of Potato. Am. J. Potato Res. 1998;75:145–152. doi: 10.1007/BF02895849. DOI

Ali S., Khan N. Delineation of Mechanistic Approaches Employed by Plant Growth Promoting Microorganisms for Improving Drought Stress Tolerance in Plants. Microbiol. Res. 2021;249:126771. doi: 10.1016/j.micres.2021.126771. PubMed DOI

Ali T.M., Hasnain A. Functional and Morphological Characterization of Low-Substituted Acetylated White Sorghum (Sorghum bicolor) Starch. Int. J. Polym. Anal. Charact. 2011;16:187–198. doi: 10.1080/1023666X.2011.562690. DOI

Bruno L.B., Karthik C., Ma Y., Kadirvelu K., Freitas H., Rajkumar M. Amelioration of Chromium and Heat Stresses in Sorghum Bicolor by Cr6+ Reducing-Thermotolerant Plant Growth Promoting Bacteria. Chemosphere. 2020;244:125521. doi: 10.1016/j.chemosphere.2019.125521. PubMed DOI

Ali S.Z., Sandhya V., Grover M., Kishore N., Rao L.V., Venkateswarlu B. Pseudomonas sp. Strain AKM-P6 Enhances Tolerance of Sorghum Seedlings to Elevated Temperatures. Biol. Fertil. Soils. 2009;46:45–55. doi: 10.1007/s00374-009-0404-9. DOI

Shin D.J., Yoo S.J., Hong J.K., Weon H.Y., Song J., Sang M.K. Effect of Bacillus aryabhattai H26-2 and b. Siamensis H30-3 on Growth Promotion and Alleviation of Heat and Drought Stresses in Chinese Cabbage. Plant Pathol J (Faisalabad) 2019;35:178–187. doi: 10.5423/PPJ.NT.08.2018.0159. PubMed DOI PMC

Zhang L., Liu J.-Y., Gu H., Du Y., Zuo J.-F., Zhang Z., Zhang M., Li P., Dunwell J.M., Cao Y., et al. Bradyrhizobium diazoefficiens USDA 110–Glycine max Interactome Provides Candidate Proteins Associated with Symbiosis. J. Proteome Res. 2018;17:3061–3074. doi: 10.1021/acs.jproteome.8b00209. PubMed DOI

Pan B., Vessey J.K., Smith D.L. Response of Field-Grown Soybean to Co-Inoculation with the Plant Growth Promoting Rhizobacteria Serratia proteamaculans or Serratia liquefaciens, and Bradyrhizobium japonicum Pre-Incubated with Genistein. Eur. J. Agron. 2002;17:143–153. doi: 10.1016/S1161-0301(01)00148-4. DOI

Khan M.A., Asaf S., Khan A.L., Jan R., Kang S.M., Kim K.M., Lee I.J. Thermotolerance Effect of Plant Growth-Promoting Bacillus cereus SA1 on Soybean during Heat Stress. BMC Microbiol. 2020;20:175. doi: 10.1186/s12866-020-01822-7. PubMed DOI PMC

Handa N., Arora U., Arora N., Kaur P., Kapoor D., Bhardwaj R. Abiotic Stress and Legumes. Elsevier; Amsterdam, The Netherlands: 2021. Role of Metabolites in Abiotic Stress Tolerance in Legumes; pp. 245–276.

Liu Y.S., Geng J.C., Sha X.Y., Zhao Y.X., Hu T.M., Yang P.Z. Effect of Rhizobium Symbiosis on Low-Temperature Tolerance and Antioxidant Response in Alfalfa (Medicago sativa L.) Front. Plant Sci. 2019;10:538. doi: 10.3389/fpls.2019.00538. PubMed DOI PMC

Carreiras J., Cruz-Silva A., Fonseca B., Carvalho R.C., Cunha J.P., Proença Pereira J., Paiva-Silva C., Santos S.A., Janeiro Sequeira R., Mateos-Naranjo E., et al. Improving Grapevine Heat Stress Resilience with Marine Plant Growth-Promoting Rhizobacteria Consortia. Microorganisms. 2023;11:856. doi: 10.3390/microorganisms11040856. PubMed DOI PMC

Tienda S., Vida C., Villar-Moreno R., de Vicente A., Cazorla F.M. Development of a Pseudomonas-Based Biocontrol Consortium with Effective Root Colonization and Extended Beneficial Side Effects for Plants under High-Temperature Stress. Microbiol. Res. 2024;285:127761. doi: 10.1016/j.micres.2024.127761. PubMed DOI

Chen X.-J., Yin Y.-Q., Zhu X.-M., Xia X., Han J.-J. High Ambient Temperature Regulated the Plant Systemic Response to the Beneficial Endophytic Fungus Serendipita indica. Front. Plant Sci. 2022;13:844572. doi: 10.3389/fpls.2022.844572. PubMed DOI PMC

Macabuhay A., Arsova B., Watt M., Nagel K.A., Lenz H., Putz A., Adels S., Müller-Linow M., Kelm J., Johnson A.A.T., et al. Plant Growth Promotion and Heat Stress Amelioration in Arabidopsis Inoculated with Paraburkholderia phytofirmans PsJN Rhizobacteria Quantified with the GrowScreen-Agar II Phenotyping Platform. Plants. 2022;11:2927. doi: 10.3390/plants11212927. PubMed DOI PMC

Delamare J., Brunel-Muguet S., Boukerb A.M., Bressan M., Dumas L., Firmin S., Leroy F., Morvan-Bertrand A., Prigent-Combaret C., Personeni E. Impact of PGPR Inoculation on Root Morphological Traits and Root Exudation in Rapeseed and Camelina: Interactions with Heat Stress. Physiol. Plant. 2023;175:e14058. doi: 10.1111/ppl.14058. PubMed DOI

Ahmad M., Imtiaz M., Nawaz M.S., Mubeen F., Sarwar Y., Hayat M., Asif M., Naqvi R.Z., Ahmad M., Imran A. Thermotolerant PGPR Consortium B3P Modulates Physio-Biochemical and Molecular Machinery for Enhanced Heat Tolerance in Maize during Early Vegetative Growth. Ann. Microbiol. 2023;73:34. doi: 10.1186/s13213-023-01736-5. DOI

Chauhan P., Sharma N., Tapwal A., Kumar A., Verma G.S., Meena M., Seth C.S., Swapnil P. Soil Microbiome: Diversity, Benefits and Interactions with Plants. Sustainability. 2023;15:14643. doi: 10.3390/su151914643. DOI

Chieb M., Gachomo E.W. The Role of Plant Growth Promoting Rhizobacteria in Plant Drought Stress Responses. BMC Plant Biol. 2023;23:407. doi: 10.1186/s12870-023-04403-8. PubMed DOI PMC

Ma Y., Dias M.C., Freitas H. Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. Front. Plant Sci. 2020;11:591911. doi: 10.3389/fpls.2020.591911. PubMed DOI PMC

Munir N., Hanif M., Abideen Z., Sohail M., El-Keblawy A., Radicetti E., Mancinelli R., Haider G. Mechanisms and Strategies of Plant Microbiome Interactions to Mitigate Abiotic Stresses. Agronomy. 2022;12:2069. doi: 10.3390/agronomy12092069. DOI

Bakker P.A.H.M., Doornbos R.F., Zamioudis C., Berendsen R.L., Pieterse C.M.J. Induced Systemic Resistance and the Rhizosphere Microbiome. Plant Pathol. J. 2013;29:136–143. doi: 10.5423/PPJ.SI.07.2012.0111. PubMed DOI PMC

Zhu L., Huang J., Lu X., Zhou C. Development of Plant Systemic Resistance by Beneficial Rhizobacteria: Recognition, Initiation, Elicitation and Regulation. Front. Plant Sci. 2022;13:952397. doi: 10.3389/fpls.2022.952397. PubMed DOI PMC

Choudhary D.K., Prakash A., Johri B.N. Induced Systemic Resistance (ISR) in Plants: Mechanism of Action. Indian J. Microbiol. 2007;47:289–297. doi: 10.1007/s12088-007-0054-2. PubMed DOI PMC

Ali S., Tyagi A., Bae H. Plant Microbiome: An Ocean of Possibilities for Improving Disease Resistance in Plants. Microorganisms. 2023;11:392. doi: 10.3390/microorganisms11020392. PubMed DOI PMC

Afridi M.S., Javed M.A., Ali S., De Medeiros F.H.V., Ali B., Salam A., Sumaira, Marc R.A., Alkhalifah D.H.M., Selim S., et al. New Opportunities in Plant Microbiome Engineering for Increasing Agricultural Sustainability under Stressful Conditions. Front. Plant Sci. 2022;13:899464. doi: 10.3389/fpls.2022.899464. PubMed DOI PMC

Arif I., Batool M., Schenk P.M. Plant Microbiome Engineering: Expected Benefits for Improved Crop Growth and Resilience. Trends Biotechnol. 2020;38:1385–1396. doi: 10.1016/j.tibtech.2020.04.015. PubMed DOI

Sharma I., Kashyap S., Agarwala N. Biotic Stress-Induced Changes in Root Exudation Confer Plant Stress Tolerance by Altering Rhizospheric Microbial Community. Front. Plant Sci. 2023;14:1132824. doi: 10.3389/fpls.2023.1132824. PubMed DOI PMC

Shinwari Z.K., Tanveer F., Iqrar I. Microbiome in Plant Health and Disease: Challenges and Opportunities. Springer; Singapore: 2019. Role of Microbes in Plant Health, Disease Management; pp. 231–250.

Pascale A., Proietti S., Pantelides I.S., Stringlis I.A. Modulation of the Root Microbiome by Plant Molecules: The Basis for Targeted Disease Suppression and Plant Growth Promotion. Front. Plant Sci. 2020;10:1741. doi: 10.3389/fpls.2019.01741. PubMed DOI PMC

Kabir A.H., Baki M.Z.I., Ahmed B., Mostofa M.G. Current, Faltering, and Future Strategies for Advancing Microbiome-Assisted Sustainable Agriculture and Environmental Resilience. New Crops. 2024;1:100013. doi: 10.1016/j.ncrops.2024.100013. DOI

Nguyen N.H., Trotel-Aziz P., Villaume S., Rabenoelina F., Schwarzenberg A., Nguema-Ona E., Clément C., Baillieul F., Aziz A. Bacillus subtilis and Pseudomonas fluorescens Trigger Common and Distinct Systemic Immune Responses in Arabidopsis thaliana Depending on the Pathogen Lifestyle. Vaccines. 2020;8:503. doi: 10.3390/vaccines8030503. PubMed DOI PMC

Nguyen N.H., Trotel-Aziz P., Villaume S., Rabenoelina F., ClCrossed D Sign©ment C., Baillieul F., Aziz A. Priming of Camalexin Accumulation in Induced Systemic Resistance by Beneficial Bacteria against Botrytis cinerea and Pseudomonas syringae Pv. Tomato DC3000. J. Exp. Bot. 2022;73:3743–3757. doi: 10.1093/jxb/erac070. PubMed DOI

Yang P., Zhao Z., Fan J., Liang Y., Bernier M.C., Gao Y., Zhao L., Opiyo S.O., Xia Y. Bacillus proteolyticus OSUB18 Triggers Induced Systemic Resistance against Bacterial and Fungal Pathogens in Arabidopsis. Front. Plant Sci. 2023;14:1078100. doi: 10.3389/fpls.2023.1078100. PubMed DOI PMC

Mattos R., Galeano S., Souza J.V., Samanta R., Silva M., Lorena A., Simas O., Cavalieri De Alencar N., Douglas G., Masui C., et al. New Strains of Trichoderma with Potential for Biocontrol and Plant Growth Promotion Improve Early Soybean Growth and Development. Res. Sq. 2023 doi: 10.21203/rs.3.rs-3231807/v1. preprint . DOI

de Oliveira C.M., Oshiquiri L.H., Almeida N.O., Steindorf A.S., da Rocha M.R., Georg R.C., Ulhoa C.J. Trichoderma harzianum Transcriptome in Response to the Nematode Pratylenchus Brachyurus. Biol. Control. 2023;183:105245. doi: 10.1016/j.biocontrol.2023.105245. DOI

de Oliveira C.M., Almeida N.O., Côrtes M.V.d.C.B., Júnior M.L., da Rocha M.R., Ulhoa C.J. Biological Control of Pratylenchus brachyurus with Isolates of Trichoderma spp. on Soybean. Biol. Cont. 2021;152:104425. doi: 10.1016/j.biocontrol.2020.104425. DOI

Nguyen T.D., Phan Q.K., Do A.D. Antagonistic Activities of Trichoderma spp. Isolates against Neoscytalidium dimidiatum Causing Brown Spot Disease on Dragon Fruit Hylocereus undatus. J. Appl. Biol. Biotechnol. 2024;12:265–272. doi: 10.7324/JABB.2024.152864. DOI

Nilmat A., Thepbandit W., Chuaboon W., Athinuwat D. Pseudomonas fluorescens SP007S Formulations in Controlling Soft Rot Disease and Promoting Growth in Kale. Agronomy. 2023;13:1856. doi: 10.3390/agronomy13071856. DOI

Ali A.O., Awla H.K., Rashid T.S. Investigating the in Vivo Biocontrol and Growth-Promoting Efficacy of Bacillus sp. and Pseudomonas fluorescens against Olive Knot Disease. Microb. Pathog. 2024;191:106645. doi: 10.1016/j.micpath.2024.106645. PubMed DOI

Hussein M.A.M., Abdel-Aal A.M.K., Rawa M.J., Mousa M.A.A., Moustafa Y.M.M., Abo-Elyousr K.A.M. Enhancing Chili Pepper (Capsicum annuum L.) Resistance and Yield against Powdery Mildew (Leveillula taurica) with Beneficial Bacteria. Egypt. J. Biol. Pest. Control. 2023;33:114. doi: 10.1186/s41938-023-00758-0. DOI

Yadav S.S., Arya A., Singh V., Singh Y. Elicitation of Native Bio Protective Microbial Agents Associated Systemic Defense Responses and Plant Growth Promotion against Bacterial Stalk Rot Pathogen in Sorghum (Sorghum bicolor) Phytopathol. Res. 2023;5:47. doi: 10.1186/s42483-023-00202-z. DOI

Shahni Y.S., Banik S., Pongener N., Neog P., Singh A.P. Effects of Biocontrol Agents on Early Blight Disease of Potato in Field. J. Mycopathol. Res. 2023;61:2583–6315. doi: 10.57023/JMycR.61.3.2023.375. DOI

Lian H., Li R., Ma G., Zhao Z., Zhang T., Li M. The Effect of Trichoderma harzianum Agents on Physiological-Biochemical Characteristics of Cucumber and the Control Effect against Fusarium Wilt. Sci. Rep. 2023;13:17606. doi: 10.1038/s41598-023-44296-z. PubMed DOI PMC

Shanmugaraj C., Kamil D., Kundu A., Singh P.K., Das A., Hussain Z., Gogoi R., Shashank P.R., Gangaraj R., Chaithra M. Exploring the Potential Biocontrol Isolates of Trichoderma asperellum for Management of Collar Rot Disease in Tomato. Horticulturae. 2023;9:1116. doi: 10.3390/horticulturae9101116. DOI

Imran M., Abo-Elyousr K.A.M., Mousa M.A.A., Saad M.M. Use of Trichoderma Culture Filtrates as a Sustainable Approach to Mitigate Early Blight Disease of Tomato and Their Influence on Plant Biomarkers and Antioxidants Production. Front. Plant Sci. 2023;14:1192818. doi: 10.3389/fpls.2023.1192818. PubMed DOI PMC

Dhayal R., Chandrawat B.S., Choudhary K., Gurjar V., Bishnoi S.P., Gurjar H., Singh H. In Vitro Evaluation of Bio-Agents on Hatching and Mortality of Root-Knot Nematode, Meloidogyne javanica. Biol. Forum. 2023;15:357–360.

de Freitas C.C., Taylor C.G. Biological Control of Hairy Root Disease Using Beneficial Pseudomonas Strains. Biol. Control. 2023;177:105098. doi: 10.1016/j.biocontrol.2022.105098. DOI

Saif I., Sufyan M., Baboo I., Jabbar M., Shafiq A., Saif R.N., Liaqat U., Lackner M. Efficacy of Beauveria bassiana and Metarhizium anisopliae against Wheat Aphid. Eurobiotech J. 2024;8:23–31. doi: 10.2478/ebtj-2024-0003. DOI

Sarker S., Choi H.W., Lim U.T. Evaluation of New Strain (AAD16) of Beauveria bassiana Recovered from Japanese Rhinoceros Beetle: Effects on Three Coleopteran Insects. PLoS ONE. 2024;19:e0296094. doi: 10.1371/journal.pone.0296094. PubMed DOI PMC

Rani D.S., Krishnamma K., Rani J.S. Entomopathogenic Fungi, Metarhizium Anisopliae as a Chemical Substitute for Termite Pest Management in Sugarcane. J. Environ. Biol. 2024;45:235–242. doi: 10.22438/jeb/45/2/MRN-5176. DOI

Kammar ICAR-Krishi Vigyan Kendra M.R., Kammar M.R., Sulagitti A.R. Performance of Biopesticides for Management of White Grub Holotrichia serrata in Sugarcane. Pharma Innov. J. 2022;11:2152–2154.

Gull S., Ahmad T., Khanday A.L., Sureshan P.M., Rashid G. Pathogenicity of the Entomopathogenic Fungi against Myllocerus Fotedari Ahmad, 1974 (Coleoptera: Curculionidae) under Laboratory Conditions in India. J. For. Sci. 2023;69:277–286. doi: 10.17221/10/2023-JFS. DOI

Abo-Elwfa M.M., Omar M.M.A., El-Shamy E.A., Ibrahim H.A.M. Biocontrol Potential of Some Bacterial and Fungal Isolates against the Terrestrial Snail, Monacha Obstructa, Evaluating Their Laboratory and Field Efficiency. Egypt. J. Biol. Pest. Control. 2024;34:25. doi: 10.1186/s41938-024-00788-2. DOI

Noman M., Ahmed T., Ijaz U., Shahid M., Azizullah, Li D., Manzoor I., Song F. Plant–Microbiome Crosstalk: Dawning from Composition and Assembly of Microbial Community to Improvement of Disease Resilience in Plants. Int. J. Mol. Sci. 2021;22:6852. doi: 10.3390/ijms22136852. PubMed DOI PMC

Singh D.P., Gupta V.K., Prabha R. Microbial Interventions in Agriculture and Environment: Volume 2: Rhizosphere, Microbiome and Agro-Ecology. Springer; Singapore: 2019.

Saleem M.A., Malik W., Qayyum A., Ul-Allah S., Ahmad M.Q., Afzal H., Amjid M.W., Ateeq M.F., Zia Z.U. Impact of Heat Stress Responsive Factors on Growth and Physiology of Cotton (Gossypium hirsutum L.) Mol. Biol. Rep. 2021;48:1069–1079. doi: 10.1007/s11033-021-06217-z. PubMed DOI

Singh A., Mazahar S., Chapadgaonkar S.S., Giri P., Shourie A. Phyto-Microbiome to Mitigate Abiotic Stress in Crop Plants. Front. Microbiol. 2023;14:1210890. doi: 10.3389/fmicb.2023.1210890. PubMed DOI PMC

Koza N.A., Adedayo A.A., Babalola O.O., Kappo A.P. Microorganisms in Plant Growth and Development: Roles in Abiotic Stress Tolerance and Secondary Metabolites Secretion. Microorganisms. 2022;10:1528. doi: 10.3390/microorganisms10081528. PubMed DOI PMC

Solomon W., Janda T., Molnár Z. Unveiling the Significance of Rhizosphere: Implications for Plant Growth, Stress Response, and Sustainable Agriculture. Plant Physiol Biochem. 2024;206:108290. doi: 10.1016/j.plaphy.2023.108290. PubMed DOI

Pieterse C.M.J., Zamioudis C., Berendsen R.L., Weller D.M., Van Wees S.C.M., Bakker P.A.H.M. Induced Systemic Resistance by Beneficial Microbes. Annu. Rev. Phytopathol. 2014;52:347–375. doi: 10.1146/annurev-phyto-082712-102340. PubMed DOI

Fadiji A.E., Yadav A.N., Santoyo G., Babalola O.O. Understanding the Plant-Microbe Interactions in Environments Exposed to Abiotic Stresses: An Overview. Microbiol. Res. 2023;271:127368. doi: 10.1016/j.micres.2023.127368. PubMed DOI

Chaudhary P., Agri U., Chaudhary A., Kumar A., Kumar G. Endophytes and Their Potential in Biotic Stress Management and Crop Production. Front. Microbiol. 2022;13:933017. doi: 10.3389/fmicb.2022.933017. PubMed DOI PMC

José Pereira Lima Teixeira P., Colaianni N.R., Fitzpatrick C.R. Beyond Pathogens: Microbiota Interactions with the Plant Immune System. Curr. Opin. Microbiol. 2019;49:7–17. doi: 10.1016/j.mib.2019.08.003. PubMed DOI

Bonaterra A., Badosa E., Daranas N., Francés J., Roselló G., Montesinos E. Bacteria as Biological Control Agents of Plant Diseases. Microorganisms. 2022;10:1759. doi: 10.3390/microorganisms10091759. PubMed DOI PMC

Rahman N.S.N.A., Hamid N.W.A., Nadarajah K. Effects of Abiotic Stress on Soil Microbiome. Int. J. Mol. Sci. 2021;22:9036. doi: 10.3390/ijms22169036. PubMed DOI PMC

Ojuederie O.B., Olanrewaju O.S., Babalola O.O. Plant Growth Promoting Rhizobacterial Mitigation of Drought Stress in Crop Plants: Implications for Sustainable Agriculture. Agronomy. 2019;9:712. doi: 10.3390/agronomy9110712. DOI

Di Lelio I., Forni G., Magoga G., Brunetti M., Bruno D., Becchimanzi A., De Luca M.G., Sinno M., Barra E., Bonelli M., et al. A Soil Fungus Confers Plant Resistance against a Phytophagous Insect by Disrupting the Symbiotic Role of Its Gut Microbiota. Proc. Natl. Acad. Sci. USA. 2023;120:e2216922120. doi: 10.1073/pnas.2216922120. PubMed DOI PMC

Waghunde R.R., Shelake R.M., Sabalpara A.N. Trichoderma: A Significant Fungus for Agriculture and Environment. Afr. J. Agric. Res. 2016;11:1952–1965. doi: 10.5897/ajar2015.10584. DOI

Huang Y., Liu C., Huo X., Lai X., Zhu W., Hao Y., Zheng Z., Guo K. Enhanced Resistance to Heat and Fungal Infection in Transgenic Trichoderma via Over-Expressing the HSP70 Gene. AMB Express. 2024;14:34. doi: 10.1186/s13568-024-01693-5. PubMed DOI PMC

Tamosiune I., Baniulis D., Stanys V. Probiotics in Agroecosystem. Springer; Singapore: 2017. Role of Endophytic Bacteria in Stress Tolerance of Agricultural Plants: Diversity of Microorganisms and Molecular Mechanisms; pp. 1–29.

Lephatsi M., Nephali L., Meyer V., Piater L.A., Buthelezi N., Dubery I.A., Opperman H., Brand M., Huyser J., Tugizimana F. Molecular Mechanisms Associated with Microbial Biostimulant-Mediated Growth Enhancement, Priming and Drought Stress Tolerance in Maize Plants. Sci. Rep. 2022;12:10450. doi: 10.1038/s41598-022-14570-7. PubMed DOI PMC

Rivero R.M., Mittler R., Blumwald E., Zandalinas S.I. Developing Climate-Resilient Crops: Improving Plant Tolerance to Stress Combination. Plant J. 2022;109:373–389. doi: 10.1111/tpj.15483. PubMed DOI

Zandalinas S.I., Peláez-Vico M.Á., Sinha R., Pascual L.S., Mittler R. The Impact of Multifactorial Stress Combination on Plants, Crops, and Ecosystems: How Should We Prepare for What Comes Next? Plant J. 2024;117:1800–1814. doi: 10.1111/tpj.16557. PubMed DOI

Joshi S., Patil S., Shaikh A., Jamla M., Kumar V. Modern Omics Toolbox for Producing Combined and Multifactorial Abiotic Stress Tolerant Plants. Plant Stress. 2024;11:100301. doi: 10.1016/j.stress.2023.100301. DOI

Murmu S., Sinha D., Chaurasia H., Sharma S., Das R., Jha G.K., Archak S. A Review of Artificial Intelligence-Assisted Omics Techniques in Plant Defense: Current Trends and Future Directions. Front. Plant Sci. 2024;15:1292054. doi: 10.3389/fpls.2024.1292054. PubMed DOI PMC

Li P., Jiang J., Zhang G., Miao S., Lu J., Qian Y., Zhao X., Wang W., Qiu X., Zhang F., et al. Integrating GWAS and Transcriptomics to Identify Candidate Genes Conferring Heat Tolerance in Rice. Front. Plant Sci. 2023;13:1102938. doi: 10.3389/fpls.2022.1102938. PubMed DOI PMC

Camp E.F., Kahlke T., Signal B., Oakley C.A., Lutz A., Davy S.K., Suggett D.J., Leggat W.P. Proteome Metabolome and Transcriptome Data for Three Symbiodiniaceae under Ambient and Heat Stress Conditions. Sci. Data. 2022;9:153. doi: 10.1038/s41597-022-01258-w. PubMed DOI PMC

Naik B., Kumar V., Rizwanuddin S., Chauhan M., Choudhary M., Gupta A.K., Kumar P., Kumar V., Saris P.E.J., Rather M.A., et al. Genomics, Proteomics, and Metabolomics Approaches to Improve Abiotic Stress Tolerance in Tomato Plant. Int. J. Mol. Sci. 2023;24:3025. doi: 10.3390/ijms24033025. PubMed DOI PMC

Roychowdhury R., Das S.P., Gupta A., Parihar P., Chandrasekhar K., Sarker U., Kumar A., Ramrao D.P., Sudhakar C. Multi-Omics Pipeline and Omics-Integration Approach to Decipher Plant’s Abiotic Stress Tolerance Responses. Genes. 2023;14:1281. doi: 10.3390/genes14061281. PubMed DOI PMC

Raza A., Bashir S., Khare T., Karikari B., Copeland R.G.R., Jamla M., Abbas S., Charagh S., Nayak S.N., Djalovic I., et al. Temperature-smart Plants: A New Horizon with Omics-driven Plant Breeding. Physiol. Plant. 2024;176:e14188. doi: 10.1111/ppl.14188. DOI

Jagadish S.V.K., Way D.A., Sharkey T.D. Plant Heat Stress: Concepts Directing Future Research. Plant Cell Environ. 2021;44:1992–2005. doi: 10.1111/pce.14050. PubMed DOI

Esgario J.G.M., Krohling R.A., Ventura J.A. Deep Learning for Classification and Severity Estimation of Coffee Leaf Biotic Stress. Comput. Electron. Agric. 2020;169:105162. doi: 10.1016/j.compag.2019.105162. DOI

Singh A.K., Ganapathysubramanian B., Sarkar S., Singh A. Deep Learning for Plant Stress Phenotyping: Trends and Future Perspectives. Trends Plant Sci. 2018;23:883–898. doi: 10.1016/j.tplants.2018.07.004. PubMed DOI

Rico-Chávez A.K., Franco J.A., Fernandez-Jaramillo A.A., Contreras-Medina L.M., Guevara-González R.G., Hernandez-Escobedo Q. Machine Learning for Plant Stress Modeling: A Perspective towards Hormesis Management. Plants. 2022;11:970. doi: 10.3390/plants11070970. PubMed DOI PMC

Webber H., Rezaei E.E., Ryo M., Ewert F. Framework to Guide Modeling Single and Multiple Abiotic Stresses in Arable Crops. Agric. Ecosyst. Environ. 2022;340:108179. doi: 10.1016/j.agee.2022.108179. DOI

Dangi A.K., Sharma B., Khangwal I., Shukla P. Combinatorial Interactions of Biotic and Abiotic Stresses in Plants and Their Molecular Mechanisms: Systems Biology Approach. Mol. Biotechnol. 2018;60:636–650. doi: 10.1007/s12033-018-0100-9. PubMed DOI

Mohan N., Jhandai S., Bhadu S., Sharma L., Kaur T., Saharan V., Pal A. Acclimation Response and Management Strategies to Combat Heat Stress in Wheat for Sustainable Agriculture: A State-of-the-Art Review. Plant Sci. 2023;336:111834. doi: 10.1016/j.plantsci.2023.111834. PubMed DOI

Wang X., Liu F., Jiang D. Priming: A Promising Strategy for Crop Production in Response to Future Climate. J. Integr. Agric. 2017;16:2709–2716. doi: 10.1016/S2095-3119(17)61786-6. DOI

Schwachtje J., Whitcomb S.J., Firmino A.A.P., Zuther E., Hincha D.K., Kopka J. Induced, Imprinted, and Primed Responses to Changing Environments: Does Metabolism Store and Process Information? Front. Plant Sci. 2019;10:106. doi: 10.3389/fpls.2019.00106. PubMed DOI PMC

Charng Y., Mitra S., Yu S.-J. Maintenance of Abiotic Stress Memory in Plants: Lessons Learned from Heat Acclimation. Plant Cell. 2023;35:187–200. doi: 10.1093/plcell/koac313. PubMed DOI PMC

Wang X., Xin C., Cai J., Zhou Q., Dai T., Cao W., Jiang D. Heat Priming Induces Trans-Generational Tolerance to High Temperature Stress in Wheat. Front. Plant Sci. 2016;7:501. doi: 10.3389/fpls.2016.00501. PubMed DOI PMC

Pazzaglia J., Badalamenti F., Bernardeau-Esteller J., Ruiz J.M., Giacalone V.M., Procaccini G., Marín-Guirao L. Thermo-Priming Increases Heat-Stress Tolerance in Seedlings of the Mediterranean Seagrass P. Oceanica. Mar. Pollut. Bull. 2022;174:113164. doi: 10.1016/j.marpolbul.2021.113164. PubMed DOI

Khan A., Khan V., Pandey K., Sopory S.K., Sanan-Mishra N. Thermo-Priming Mediated Cellular Networks for Abiotic Stress Management in Plants. Front. Plant Sci. 2022;13:866409. doi: 10.3389/fpls.2022.866409. PubMed DOI PMC

Gupta R., Leibman-Markus M., Marash I., Kovetz N., Rav-David D., Elad Y., Bar M. Root Zone Warming Represses Foliar Diseases in Tomato by Inducing Systemic Immunity. Plant Cell Environ. 2021;44:2277–2289. doi: 10.1111/pce.14006. PubMed DOI

Shelake R.M., Pramanik D., Kim J.-Y. Evolution of Plant Mutagenesis Tools: A Shifting Paradigm from Random to Targeted Genome Editing. Plant Biotechnol. Rep. 2019;13:423–445. doi: 10.1007/s11816-019-00562-z. DOI

Magdy M., Mostofa M.G., Rahimi M., Abd El Moneim D. Editorial: Abiotic Stress Alleviation in Plants: Morpho-Physiological and Molecular Aspects. Front. Plant Sci. 2023;14:1295638. doi: 10.3389/fpls.2023.1295638. PubMed DOI PMC

Rauf S., Al-Khayri J.M., Zaharieva M., Monneveux P., Khalil F. Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits. Volume 2. Springer International Publishing; Berlin/Heidelberg, Germany: 2016. Breeding Strategies to Enhance Drought Tolerance in Crops; pp. 397–445.

Selosse M.-A., Baudoin E., Vandenkoornhuyse P. Symbiotic Microorganisms, a Key for Ecological Success and Protection of Plants. Comptes Rendus Biol. 2004;327:639–648. doi: 10.1016/j.crvi.2003.12.008. PubMed DOI

Carter E.K., Riha S.J., Melkonian J., Steinschneider S. Yield Response to Climate, Management, and Genotype: A Large-Scale Observational Analysis to Identify Climate-Adaptive Crop Management Practices in High-Input Maize Systems. Environ. Res. Lett. 2018;13:114006. doi: 10.1088/1748-9326/aae7a8. DOI

Williams P.A., Crespo O., Abu M. Adapting to Changing Climate through Improving Adaptive Capacity at the Local Level—The Case of Smallholder Horticultural Producers in Ghana. Clim. Risk Manag. 2019;23:124–135. doi: 10.1016/j.crm.2018.12.004. DOI

Landaverde R., Rodriguez M.T., Niewoehner-Green J., Kitchel T., Chuquillanqui J. Climate Change Perceptions and Adaptation Strategies: A Mixed Methods Study with Subsistence Farmers in Rural Peru. Sustainability. 2022;14:16015. doi: 10.3390/su142316015. DOI

Murrell E.G. Can Agricultural Practices That Mitigate or Improve Crop Resilience to Climate Change Also Manage Crop Pests? Curr. Opin. Insect Sci. 2017;23:81–88. doi: 10.1016/j.cois.2017.07.008. PubMed DOI

Zuma M., Arthur G., Coopoosamy R., Naidoo K. Incorporating Cropping Systems with Eco-Friendly Strategies and Solutions to Mitigate the Effects of Climate Change on Crop Production. J. Agric. Food Res. 2023;14:100722. doi: 10.1016/j.jafr.2023.100722. DOI

Lamaoui M., Jemo M., Datla R., Bekkaoui F. Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Front. Chem. 2018;6:26. doi: 10.3389/fchem.2018.00026. PubMed DOI PMC

Bouri M., Arslan K.S., Şahin F. Climate-Smart Pest Management in Sustainable Agriculture: Promises and Challenges. Sustainability. 2023;15:4592. doi: 10.3390/su15054592. DOI

Al-Zahrani W., Bafeel S.O., El-Zohri M. Jasmonates Mediate Plant Defense Responses to Spodoptera Exigua Herbivory in Tomato and Maize Foliage. Plant Signal. Behav. 2020;15:1746898. doi: 10.1080/15592324.2020.1746898. PubMed DOI PMC

Erdoğan İ., Cevher-Keskin B., Bilir Ö., Hong Y., Tör M. Recent Developments in CRISPR/Cas9 Genome-Editing Technology Related to Plant Disease Resistance and Abiotic Stress Tolerance. Biology. 2023;12:1037. doi: 10.3390/biology12071037. PubMed DOI PMC

Debbarma J., Sarki Y.N., Saikia B., Boruah H.P.D., Singha D.L., Chikkaputtaiah C. Ethylene Response Factor (ERF) Family Proteins in Abiotic Stresses and CRISPR–Cas9 Genome Editing of ERFs for Multiple Abiotic Stress Tolerance in Crop Plants: A Review. Mol. Biotechnol. 2019;61:153–172. doi: 10.1007/s12033-018-0144-x. PubMed DOI

Farhat S., Jain N., Singh N., Sreevathsa R., Dash P.K., Rai R., Yadav S., Kumar P., Sarkar A.K., Jain A., et al. CRISPR-Cas9 Directed Genome Engineering for Enhancing Salt Stress Tolerance in Rice. Semin. Cell Dev. Biol. 2019;96:91–99. doi: 10.1016/j.semcdb.2019.05.003. PubMed DOI

Luo T., Ma C., Fan Y., Qiu Z., Li M., Tian Y., Shang Y., Liu C., Cao Q., Peng Y., et al. CRISPR-Cas9-mediated Editing of GmARM Improves Resistance to Multiple Stresses in Soybean. Plant Sci. 2024;346:112147. doi: 10.1016/j.plantsci.2024.112147. PubMed DOI

Shelake R.M., Pramanik D., Kim J.Y. CRISPR Base Editor-Based Targeted Random Mutagenesis (BE-TRM) Toolbox for Directed Evolution. BMB Rep. 2024;57:30–39. doi: 10.5483/BMBRep.2023-0086. PubMed DOI PMC

Hu Y., Patra P., Pisanty O., Shafir A., Belew Z.M., Binenbaum J., Ben Yaakov S., Shi B., Charrier L., Hyams G., et al. Multi-Knock—A Multi-Targeted Genome-scale CRISPR Toolbox to Overcome Functional Redundancy in Plants. Nat. Plants. 2023;9:572–587. doi: 10.1038/s41477-023-01374-4. PubMed DOI PMC

Savary S., Willocquet L., Pethybridge S.J., Esker P., Mcroberts N., Nelson A. The Global Burden of Pathogens and Pests on Major Food Crops. Nat. Ecol. Evol. 2019;3:430–439. doi: 10.1038/s41559-018-0793-y. PubMed DOI

Asseng S., Ewert F., Martre P., Rötter R.P., Lobell D., Cammarano D., Kimball B., Ottman M., Wall G., White J.W. Rising Temperatures Reduce Global Wheat Production. Nat. Clim. Chang. 2015;5:143. doi: 10.1038/nclimate2470. DOI

Peng S., Huang J., Sheehy J.E., Laza R.C., Visperas R.M., Zhong X., Centenso G.S., Khush G.S., Cassman K.G. Rice Yields Decline with Higher Night Temperature from Global Warming. Proc. Natl. Acad. Sci. USA. 2004;101:9971–9975. doi: 10.1073/pnas.0403720101. PubMed DOI PMC

Oerke E.C. Crop Losses to Pests. J. Agric. Sci. 2006;144:31–43. doi: 10.1017/S0021859605005708. DOI

Lobell D.B., Schlenker W., Costa-Roberts J. Climate Trends and Global Crop Production Since 1980. Science. 2011;333:616–620. doi: 10.1126/science.1204531. PubMed DOI

Hartman G.L., West E.D., Herman T.K. Crops that feed the World 2. Soybean—Worldwide Production, Use, and Constraints Caused by Pathogens and Pests. Food Secur. 2011;3:5–17. doi: 10.1007/s12571-010-0108-x. DOI

Battisti D.S., Naylor R.L. Historical Warnings of Future Food Insecurity with Unprecedented Seasonal Heat. Science. 2009;323:240–244. doi: 10.1126/science.1164363. PubMed DOI

Raymundo R., Asseng S., Robertson R., Petsakos A., Hoogenboom G., Quiroz R., Hareau G., Wolf J. Climate Change Impact on Global Potato Production. Eur. J. Agron. 2018;100:87–98. doi: 10.1016/j.eja.2017.11.008. DOI

Reddy K.R., Hodges H.F., McKinion J.M., Wall G.W. Temperature Effects on Pima Cotton Growth and Development. Agron. J. 1992;84:237–243. doi: 10.2134/agronj1992.00021962008400020022x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...