Insect pollination reduces yield loss following heat stress in faba bean (Vicia faba L.)

. 2016 Mar 15 ; 220 () : 89-96.

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid26989276
Odkazy

PubMed 26989276
PubMed Central PMC4767028
DOI 10.1016/j.agee.2015.12.007
PII: S0167-8809(15)30171-7
Knihovny.cz E-zdroje

Global food security, particularly crop fertilization and yield production, is threatened by heat waves that are projected to increase in frequency and magnitude with climate change. Effects of heat stress on the fertilization of insect-pollinated plants are not well understood, but experiments conducted primarily in self-pollinated crops, such as wheat, show that transfer of fertile pollen may recover yield following stress. We hypothesized that in the partially pollinator-dependent crop, faba bean (Vicia faba L.), insect pollination would elicit similar yield recovery following heat stress. We exposed potted faba bean plants to heat stress for 5 days during floral development and anthesis. Temperature treatments were representative of heat waves projected in the UK for the period 2021-2050 and onwards. Following temperature treatments, plants were distributed in flight cages and either pollinated by domesticated Bombus terrestris colonies or received no insect pollination. Yield loss due to heat stress at 30 °C was greater in plants excluded from pollinators (15%) compared to those with bumblebee pollination (2.5%). Thus, the pollinator dependency of faba bean yield was 16% at control temperatures (18-26 °C) and extreme stress (34 °C), but was 53% following intermediate heat stress at 30 °C. These findings provide the first evidence that the pollinator dependency of crops can be modified by heat stress, and suggest that insect pollination may become more important in crop production as the probability of heat waves increases.

Zobrazit více v PubMed

Ainsworth E.A., Long S.P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 2005;165:351–372. PubMed

Aizen M.A., Garibaldi L.A., Cunningham S.A., Klein A.M. How much does agriculture depend on pollinators? Lessons from long-term trends in crop productionmuch does agriculture depend on pollinators? Lessons from long-term trends in crop production. Ann. Bot. 2009;103:1579–1588. PubMed PMC

Alghabari F., Lukac M., Jones H.E., Gooding M.J. Effect of Rht Alleles on the tolerance of wheat grain set to high temperature and drought stress during booting and anthesis. J. Agron. Crop Sci. 2014;200:36–45.

Andersson G.K.S., Ekroos J., Stjernman M., Rundlöf M., Smith H.G. Effects of farming intensity, crop rotation and landscape heterogeneity on field bean pollination. Agric. Ecosyst. Environ. 2014;184:145–148.

Bartomeus I., Potts S.G., Steffan-Dewenter I., Vaissière B.E., Woyciechowski M., Krewenka K.M., Tscheulin T., Roberts S.P.M., Szentgyörgyi H., Westphal C., Bommarco R. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ. 2014;2:e328. PubMed PMC

Bates, D., Maechler, M., Bolker, B., Walker, S., 2014. lme4: Linear mixed-effects models using Eigen and S4. R package version 1. 1-7, URL: http://CRAN.R-project.org/package=lme4.

Benachour K., Louadi K., Terzo M. Rôle des abeilles sauvages et domestiques (Hymenoptera: Apoidea) dans la pollinisation de la fève (Vicia faba L. var. major) (Fabaceae) en région de Constantine (Algérie) Ann. Soc. Ent. Fr. 2007;43:213–219.

Bennell M.R., Cleugh H.A., Leys J.F., Hein D. The effect of hot dry wind on the pod set of faba bean (Vicia faba) cv. Fiord: a preliminary wind tunnel study. Aust. J. Exp. Agric. 2007;47:1468–1475.

Briggs K., Kiplagat O., Johnson-Flanagan A. Floret sterility and outcrossing in two spring wheat cultivars. Can. J. plant. 1999;79:321–328.

Carré G., Roche P., Chifflet R., Morison N., Bommarco R., Harrison-Cripps J., Krewenka K., Potts S.G., Roberts S.P.M., Rodet G. Landscape context and habitat type as drivers of bee diversity in European annual crops. Agric. Ecosyst. Environ. 2009;133:40–47.

Carvalheiro L.G., Kunin W.E., Keil P., Aguirre-Gutiérrez J., Ellis W.N., Fox R., Groom Q., Hennekens S., Van Landuyt W., Maes D., Van de Meutter F., Michez D., Rasmont P., Ode B., Potts S.G., Reemer M., Roberts S.P.M., Schaminée J., WallisDeVries M.F., Biesmeijer J.C. Species richness declines and biotic homogenisation have slowed down for NW-European pollinators and plants. Ecol. Lett. 2013;16:870–878. PubMed PMC

Chen W. Pollination, fertilization and floral traits co-segregating with autofertility in faba bean. J. New Seeds. 2009;10:14–30.

Crawley M.J. 2nd ed. John Wiley & Sons Ltd.; Chicester UK: 2013. The R Book.

Cunningham S.A., Le Feuvre D. Significant yield benefits from honeybee pollination of faba bean (Vicia faba) assessed at field scale. F. Crop. Res. 2013;149:269–275.

Donat M.G., Alexander L.V. The shifting probability distribution of global daytime and night-time temperatures. Geophys. Res. Lett. 2012;39:1–5.

Drayner J.M. Self- and cross-fertility in field beans (Vicia faba Linn.) J. Agric. Sci. Cambridge. 1959;53:387–403.

European Parliament News, 2013. Background note: EU farmpolicy reform plans as voted by Parliament. Accessed (04 Aug 2015). URL: http://www.europarl.europa.eu/pdfs/news/expert/background/20130124BKG59668/20130124BKG59668_en.pdf.

FAO - Food and Agriculture Organization of the United Nations, 2015. FAOSTAT (Database). Accessed (30 Jul 2015). URL: http://data.fao.org/ref/262b79ca-279c-4517-93de-ee3b7c7cb553.html?version=1.0.

Fischer E.M., Schär C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 2010;3:398–403.

Free J.B. Insect Pollination Of Crops. 2nd ed. Academic Press; London: 1993. Limited.

Garibaldi L.A., Carvalheiro L.G., Leonhardt S.D., Aizen M.A., Blaauw B.R., Isaacs R., Kuhlmann M., Kleijn D., Klein A.M., Kremen C., Morandin L., Scheper J., Winfree R. From research to action: practices to enhance crop yield through wild pollinators. Front. Ecol. Environ. 2014;12:439–447.

Garibaldi L.A., Steffan-Dewenter I., Kremen C., Morales J.M., Bommarco R., Cunningham S.A., Carvalheiro L.G., Chacoff N.P., Dudenhöffer J.H., Greenleaf S.S., Holzschuh A., Isaacs R., Krewenka K., Mandelik Y., Mayfield M.M., Morandin L.A., Potts S.G., Ricketts T.H., Szentgyörgyi H., Viana B.F., Westphal C., Winfree R., Klein A.M. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol. Lett. 2011;14:1062–1072. PubMed

Garratt M.P.D., Coston D.J., Truslove C.L., Lappage M.G., Polce C., Dean R., Biesmeijer J.C., Potts S.G. The identity of crop pollinators helps target conservation for improved ecosystem services. Biol. Conserv. 2014;169:128–135. PubMed PMC

Ghamdi Al A., Ghamdi Al S. The Impact Of Insect Pollinators On Yield And Yield Components Of Faba Bean (Vicia faba L.) Saudi J. Biol. Sci. 2003;10:56–63.

Gross Y., Kigel J. Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.) F. Crop. Res. 1994

Hansen J., Sato M., Ruedy R. Perception of climate change. Proc. Natl. Acad. Sci. 2012 PubMed PMC

Hedhly A. Sensitivity of flowering plant gametophytes to temperature fluctuations. Environ. Exp. Bot. 2011;74:9–16.

Kambal A.E., Bond D.A., Toynbee-Clarke G. A study on the pollination mechanism in field beans (Vicia faba L.) J. Agric. Sci. 1976;87(519–526)

Kerr J.T., Pindar A., Galpern P., Packer L., Potts S.G., Roberts S.M., Rasmont P., Schweiger O., Colla S.R., Richardson L.L., Wagner D.L., Gall L.F., Sikes D.S., Pantoja A. Climate change impacts on bumblebees converge across continents. Science (80-.) 2015;349:177–180. PubMed

Kirtman, B., Power, S.B., Adedoyin, A.J., Boer, G.J., Bojariu, R., Camilloni, I., Doblas-Reyes, F., Fiore, A.M., Kimoto, M., Meehl, G., Prather, M., Sarr, A., Schär, C., Sutton, R., van Oldenborgh, G., Vecchi, G., Wang, H.-J., 2013. Near-term Climate Change: Projections and Predictability, in: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University PressCambridge, United Kingdom and New York, NY,USA, Cambridge,United King, pp. 953–1028. 10.1017/CBO9781107415324.023.

Klein A.-M., Vaissière B.E., Cane J.H., Steffan-Dewenter I., Cunningham S.A., Kremen C., Tscharntke T. Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. 2007;274:303–313. PubMed PMC

Köpke U., Nemecek T. Ecological services of faba bean. F. Crop. Res. 2010;115(217-233)

Lautenbach S., Seppelt R., Liebscher J., Dormann C.F. Spatial and temporal trends of global pollination benefit. PLoS One. 2012;7 PubMed PMC

Lobell D.B., Bänziger M., Magorokosho C., Vivek B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change. 2011;1:42–45.

Luo Q. Temperature thresholds and crop production: a review. Clim. Change. 2011;109:583–598.

Monterroso V., Wien H. Flower and pod abscission due to heat stress in beans. J. Am. Soc. Hortic. Sci. 1990;115:631–634.

Nayak G.K., Roberts S.P.M., Garratt M., Breeze T.D., Tscheulin T., Harrison-Cripps J., Vogiatzakis I.N., Stirpe M.T., Potts S.G. Interactive effect of floral abundance and semi-natural habitats on pollinators in field beans (Vicia faba) Agric. Ecosyst. Environ. 2015;199:58–66.

Peet M.M., Sato S., Gardner R.G. Comparing heat stress effects on male-fertile and male-sterile tomatoes. Plant, Cell Environ. 1998;21:225–231.

Polce C., Garratt M.P., Termansen M., Ramirez-Villegas J., Challinor A.J., Lappage M.G., Boatman N.D., Crowe A., Endalew A.M., Potts S.G., Somerwill K.E., Biesmeijer J.C. Climate-driven spatial mismatches between British orchards and their pollinators: Increased risks of pollination deficits. Glob. Change Biol. 2014;20:2815–2828. PubMed PMC

Porter J.R., Xie L., Challinor A.J., Cochrane K., Howden S.M., Iqbal M.M., Lobell D.B., Travasso M.I., 2014 . Food security and food production systems. In: Field C.B., Barros V.R., Dokken D.J., Mach K.J., Mastrandrea M.D., Bilir T.E., Chatterjee M., Ebi K.L., Estrada Y.O., Genova R.C., Girma B., Kissel E.S., Levy A.N., MacCracken S., Mastrandrea P.R., White L.L., editors. Vol. 8201. Cambridge University PressCambridge; United Kingdom and New York, NY,USA: 2014. pp. 485–533. (Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change).

Processors and Growers Research Organisation, 2015. Winter bean recommended list. Accessed (30 Jul 2015). URL:http://www.pgro.org/images/site/jan-2015/2015-Recommended-Lists.pdf/

Core Team R. R Foundation for Statistical Computing; Vienna, Austria: 2015. R: A language and environment for statistical computing. URL: http://www.R-project.org/.

Rasmont P., Franzén M., Thomas Lecocq A.H., Roberts S.P.M., Biesmeijer K., Castro L., Cederberg B., Dvořák L., Fitzpatrick Ú, Gonseth Y., Haubruge E., Mahé G., Manino A., Michez D., Neumayer J., Ødegaard F., Paukkunen J., Tadeusz Pawlikowski S.G.P., Reemer M., Settele J., Straka J., Schweiger O. Pensoft Publishers; Sofia: 2015. Climatic Risk and Distribution Atlas of European Bumblebees.

Ritland K., Jain S. A model for the estimation of outcrossing rate and gene frequencies using n independent loci. Heredity (Edinb) 1981;47:35–52.

Rubiales D. Faba beans in sustainable agriculture. F. Crop. Res. 2010;115:201–202.

Saini H., Aspinall D. Abnormal sporogenesis in wheat (Triticum aestivum L.) induced by short periods of high temperature. Ann. Bot. 1982;49:835–846.

Seneviratne S., Nicholls N., Easterling D., Goodess C., Kanae S., Kossin J., Luo Y., Marengo J., McInnes K., Rahimi M., Reichstein M., Sorteberg A., Vera C., Zhang X. Changes in climate extremes and their impacts on the natural physical environment. Manag. Risk Extrem. Events Disasters to Adv. Clim. Chang. Adapt. A Spec. Rep. Work. Groups I II IPCC, Annex IIanaging Risks Extrem. Events Disasters to Adv. Clim. Chang. Adapt. 2012:109–230.

Shmueli G. To explain or to predict? Stat. Sci. 2010;25:289–310.

Somerville D. Honeybees (Apis mellifera L.) increase yields of faba beans (Vicia faba L.) in New South Wales while maintaining adequate protein requirements from faba bean pollen. Aust. J. Exp. Agric. 1999;39:1001–1006.

Stoddard F.L. Limits to retention of fertilized flowers in Faba Beans (Vicia faba L.) J. Agron. Crop Sci. 1993;171:251–259.

Stoddard F.L. Pollination and fertilization in commercial crops of field beans (Vicia faba L.) J. Agric. Sci. 1986;106(89-97)

Suso M.J., Harder L., Moreno M.T., Maalouf F. New strategies for increasing heterozygosity in crops: Vicia faba mating system as a study case. Euphytica. 2005;143:51–65.

Suso M.J., Moreno M.T., Mondragao-Rodrigues F., Cubero J.I. Reproductive biology of Vicia faba : role of pollination conditions. F. Crop. Res. 1996;46:81–91.

Suso M.J., Pierre J., Moreno M.T., Esnault R., Le Guen J. Variation in outcrossing levels in faba bean cultivars: role of ecological factors. J. Agric. Sci. 2001;136:399–405.

Tilman D., Balzer C., Hill J., Befort B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. 2011;108:20260–20264. PubMed PMC

Young L., Wilen R., Bonham-Smith P. High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J. Exp. Bot. 2004;55:485–495. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Heat Stress and Plant-Biotic Interactions: Advances and Perspectives

. 2024 Jul 23 ; 13 (15) : . [epub] 20240723

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...