Abiotic Stress in Crop Production

. 2023 Apr 01 ; 24 (7) : . [epub] 20230401

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu metaanalýza, časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37047573

Grantová podpora
CZ.02.2.69/0.0/0.0/19_073/0016670 Ministry of Education Youth and Sports
23-07376S Czech Science Foundation

The vast majority of agricultural land undergoes abiotic stress that can significantly reduce agricultural yields. Understanding the mechanisms of plant defenses against stresses and putting this knowledge into practice is, therefore, an integral part of sustainable agriculture. In this review, we focus on current findings in plant resistance to four cardinal abiotic stressors-drought, heat, salinity, and low temperatures. Apart from the description of the newly discovered mechanisms of signaling and resistance to abiotic stress, this review also focuses on the importance of primary and secondary metabolites, including carbohydrates, amino acids, phenolics, and phytohormones. A meta-analysis of transcriptomic studies concerning the model plant Arabidopsis demonstrates the long-observed phenomenon that abiotic stressors induce different signals and effects at the level of gene expression, but genes whose regulation is similar under most stressors can still be traced. The analysis further reveals the transcriptional modulation of Golgi-targeted proteins in response to heat stress. Our analysis also highlights several genes that are similarly regulated under all stress conditions. These genes support the central role of phytohormones in the abiotic stress response, and the importance of some of these in plant resistance has not yet been studied. Finally, this review provides information about the response to abiotic stress in major European crop plants-wheat, sugar beet, maize, potatoes, barley, sunflowers, grapes, rapeseed, tomatoes, and apples.

Zobrazit více v PubMed

Bashir K., Matsui A., Rasheed S., Seki M. Recent Advances in the Characterization of Plant Transcriptomes in Response to Drought, Salinity, Heat, and Cold Stress. F1000Research. 2019;8:658. doi: 10.12688/f1000research.18424.1. PubMed DOI PMC

United Nations 2023. [(accessed on 29 November 2022)]. Available online: https://www.un.org.

Cramer G.R., Urano K., Delrot S., Pezzotti M., Shinozaki K. Effects of Abiotic Stress on Plants: A Systems Biology Perspective. BMC Plant Biol. 2011;11:1–14. doi: 10.1186/1471-2229-11-163. PubMed DOI PMC

Boyer J.S. Plant Productivity and Environment. Science. 1982;218:443–448. doi: 10.1126/science.218.4571.443. PubMed DOI

Zhang Y., Li Q., Ge Y., Du X., Wang H. Growing Prevalence of Heat over Cold Extremes with Overall Milder Extremes and Multiple Successive Events. Commun. Earth Environ. 2022;3:73. doi: 10.1038/s43247-022-00404-x. DOI

Vogel E., Donat M.G., Alexander L.V., Meinshausen M., Ray D.K., Karoly D., Meinshausen N., Frieler K. The Effects of Climate Extremes on Global Agricultural Yields. Environ. Res. Lett. 2019;14:054010. doi: 10.1088/1748-9326/ab154b. DOI

Beck H.E., Zimmermann N.E., McVicar T.R., Vergopolan N., Berg A., Wood E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data. 2018;5:1–12. doi: 10.1038/sdata.2018.214. PubMed DOI PMC

FAO 2023. [(accessed on 13 January 2023)]. Available online: https://www.fao.org/faostat/

Turco M., Rosa-Cánovas J.J., Bedia J., Jerez S., Montávez J.P., Llasat M.C., Provenzale A. Exacerbated Fires in Mediterranean Europe Due to Anthropogenic Warming Projected with Non-Stationary Climate-Fire Models. Nat. Commun. 2018;9:3821. doi: 10.1038/s41467-018-06358-z. PubMed DOI PMC

Ionita M., Nagavciuc V., Kumar R., Rakovec O. On the Curious Case of the Recent Decade, Mid-Spring Precipitation Deficit in Central Europe. Clim. Atmos. Sci. 2020;3:49. doi: 10.1038/s41612-020-00153-8. DOI

Liu H., Bruce D.R., Sissons M., Able A.J., Able J.A. Genotype-dependent Changes in the Phenolic Content of Durum under Water-deficit Stress. Cereal Chem. 2018;95:59–78. doi: 10.1002/cche.10007. DOI

Ceglar A., Zampieri M., Toreti A., Dentener F. Observed Northward Migration of Agro-Climate Zones in Europe Will Further Accelerate Under Climate Change. Earths Future. 2019;7:1088–1101. doi: 10.1029/2019EF001178. DOI

Zhao J., Bindi M., Eitzinger J., Ferrise R., Gaile Z., Gobin A., Holzkämper A., Kersebaum K.-C., Kozyra J., Kriaučiūnienė Z., et al. Priority for Climate Adaptation Measures in European Crop Production Systems. Eur. J. Agron. 2022;138:126516. doi: 10.1016/j.eja.2022.126516. DOI

Brás T.A., Seixas J., Carvalhais N., Jägermeyr J. Severity of Drought and Heatwave Crop Losses Tripled over the Last Five Decades in Europe. Environ. Res. Lett. 2021;16:065012. doi: 10.1088/1748-9326/abf004. DOI

Deutscher Wetterdienst 2022. [(accessed on 13 December 2022)]. Available online: https://www.dwd.de.

Li D., Zaman W., Lu J., Niu Q., Zhang X., Ayaz A., Saqib S., Yang B., Zhang J., Zhao H., et al. Natural Lupeol Level Variation among Castor Accessions and the Upregulation of Lupeol Synthesis in Response to Light. Ind. Crops Prod. 2023;192:116090. doi: 10.1016/j.indcrop.2022.116090. DOI

Wiik L., Ewaldz T. Impact of Temperature and Precipitation on Yield and Plant Diseases of Winter Wheat in Southern Sweden 1983–2007. Crop Prot. 2009;28:952–962. doi: 10.1016/j.cropro.2009.05.002. DOI

Song Y., Linderholm H.W., Wang C., Tian J., Huo Z., Gao P., Song Y., Guo A. The Influence of Excess Precipitation on Winter Wheat under Climate Change in China from 1961 to 2017. Sci. Total Environ. 2019;690:189–196. doi: 10.1016/j.scitotenv.2019.06.367. PubMed DOI

Abbas A., Khan S., Hussain N., Hanjra M.A., Akbar S. Characterizing Soil Salinity in Irrigated Agriculture Using a Remote Sensing Approach. Phys. Chem. Earth Parts A/B/C. 2013;55–57:43–52. doi: 10.1016/j.pce.2010.12.004. DOI

Zhang W., Zhu J., Zhou X., Li F. Effects of Shallow Groundwater Table and Fertilization Level on Soil Physico-Chemical Properties, Enzyme Activities, and Winter Wheat Yield. Agric. Water Manag. 2018;208:307–317. doi: 10.1016/j.agwat.2018.06.039. DOI

Zhang X., Qiao Y., Meng F., Fan C., Zhang M. Identification of Maize Leaf Diseases Using Improved Deep Convolutional Neural Networks. IEEE Access. 2018;6:30370–30377. doi: 10.1109/ACCESS.2018.2844405. DOI

Lv X., Chen S., Wang Y. Advances in Understanding the Physiological and Molecular Responses of Sugar Beet to Salt Stress. Front. Plant Sci. 2019;10:1431. doi: 10.3389/fpls.2019.01431. PubMed DOI PMC

Obidiegwu J.E., Bryan G.J., Jones H.G., Prashar A. Coping with Drought: Stress and Adaptive Responses in Potato and Perspectives for Improvement. Front. Plant Sci. 2015;6:542. doi: 10.3389/fpls.2015.00542. PubMed DOI PMC

Dahal K., Li X.-Q., Tai H., Creelman A., Bizimungu B. Improving Potato Stress Tolerance and Tuber Yield Under a Climate Change Scenario—A Current Overview. Front. Plant Sci. 2019;10:563. doi: 10.3389/fpls.2019.00563. PubMed DOI PMC

Munns R., Tester M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008;59:651–681. doi: 10.1146/annurev.arplant.59.032607.092911. PubMed DOI

di Caterina R., Giuliani M.M., Rotunno T., de Caro A., Flagella Z. Influence of Salt Stress on Seed Yield and Oil Quality of Two Sunflower Hybrids. Ann. Appl. Biol. 2007;151:145–154. doi: 10.1111/j.1744-7348.2007.00165.x. DOI

Keipp K., Hütsch B.W., Ehlers K., Schubert S. Drought Stress in Sunflower Causes Inhibition of Seed Filling Due to Reduced Cell-extension Growth. J. Agron. Crop Sci. 2020;206:517–528. doi: 10.1111/jac.12400. DOI

Zhou R., Yu X., Ottosen C.-O., Rosenqvist E., Zhao L., Wang Y., Yu W., Zhao T., Wu Z. Drought Stress Had a Predominant Effect over Heat Stress on Three Tomato Cultivars Subjected to Combined Stress. BMC Plant Biol. 2017;17:24. doi: 10.1186/s12870-017-0974-x. PubMed DOI PMC

Zhou R., Yu X., Zhao T., Ottosen C.-O., Rosenqvist E., Wu Z. Physiological Analysis and Transcriptome Sequencing Reveal the Effects of Combined Cold and Drought on Tomato Leaf. BMC Plant Biol. 2019;19:377. doi: 10.1186/s12870-019-1982-9. PubMed DOI PMC

Alam M.S., Tester M., Fiene G., Mousa M.A.A. Early Growth Stage Characterization and the Biochemical Responses for Salinity Stress in Tomato. Plants. 2021;10:712. doi: 10.3390/plants10040712. PubMed DOI PMC

Unterberger C., Brunner L., Nabernegg S., Steininger K.W., Steiner A.K., Stabentheiner E., Monschein S., Truhetz H. Spring Frost Risk for Regional Apple Production under a Warmer Climate. PLoS ONE. 2018;13:e0200201. doi: 10.1371/journal.pone.0200201. PubMed DOI PMC

Elferjani R., Soolanayakanahally R. Canola Responses to Drought, Heat, and Combined Stress: Shared and Specific Effects on Carbon Assimilation, Seed Yield, and Oil Composition. Front. Plant Sci. 2018;9:1224. doi: 10.3389/fpls.2018.01224. PubMed DOI PMC

Masson-Delmotte V., Zhai P., Pörtner H.-O., Roberts D., Skea J., Shukla P.R., Pirani A., Moufouma-Okia W., Péan C., Pidcock R., et al., editors. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. IPCC; Geneva, Switzerland: 2019. In Press .

NOAA [(accessed on 11 January 2023)];2023 Available online: https://www.noaa.gov.

COPERNICUS 2023. [(accessed on 30 January 2023)]. Available online: https://www.copernicus.eu.

Fatima Z., Ahmed M., Hussain M., Abbas G., Ul-Allah S., Ahmad S., Ahmed N., Ali M.A., Sarwar G., ul Haque E., et al. The Fingerprints of Climate Warming on Cereal Crops Phenology and Adaptation Options. Sci. Rep. 2020;10:18013. doi: 10.1038/s41598-020-74740-3. PubMed DOI PMC

Tashiro T., Wardlaw I. The Response to High Temperature Shock and Humidity Changes Prior to and During the Early Stages of Grain Development in Wheat. Funct. Plant Biol. 1990;17:551. doi: 10.1071/PP9900551. DOI

Otero E.A., Miralles D.J., Benech-Arnold R.L. Development of a Precise Thermal Time Model for Grain Filling in Barley: A Critical Assessment of Base Temperature Estimation Methods from Field-Collected Data. Field Crops Res. 2021;260:108003. doi: 10.1016/j.fcr.2020.108003. DOI

Arnold C.Y. Predicting Stages of Sweet Corn (Zea mays L.) Development1. J. Am. Soc. Hortic. Sci. 1974;99:501–505. doi: 10.21273/JASHS.99.6.501. DOI

Deligios P.A., Farci R., Sulas L., Hoogenboom G., Ledda L. Predicting Growth and Yield of Winter Rapeseed in a Mediterranean Environment: Model Adaptation at a Field Scale. Field Crops Res. 2013;144:100–112. doi: 10.1016/j.fcr.2013.01.017. DOI

Kenter C., Hoffmann C.M., Märländer B. Effects of Weather Variables on Sugar Beet Yield Development (Beta vulgaris L.) Eur. J. Agron. 2006;24:62–69. doi: 10.1016/j.eja.2005.05.001. DOI

van Dam J., Kooman P.L., Struik P.C. Effects of Temperature and Photoperiod on Early Growth and Final Number of Tubers in Potato (Solanum tuberosum L.) Potato Res. 1996;39:51–62. doi: 10.1007/BF02358206. DOI

Greer D.H. Horticultural Reviews. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2018. Canopy Growth and Development Processes in Apples and Grapevines; pp. 313–369.

Sato S., Peet M.M., Thomas J.F. Physiological Factors Limit Fruit Set of Tomato (Lycopersicon Esculentum Mill.) under Chronic, Mild Heat Stress. Plant Cell Environ. 2000;23:719–726. doi: 10.1046/j.1365-3040.2000.00589.x. DOI

Chimenti C.A., Hall A.J., Sol López M. Embryo-Growth Rate and Duration in Sunflower as Affected by Temperature. Field Crops Res. 2001;69:81–88. doi: 10.1016/S0378-4290(00)00135-0. DOI

Heide O.M., Rivero R., Sønsteby A. Temperature Control of Shoot Growth and Floral Initiation in Apple (Malus × Domestica Borkh.) CABI Agric. Biosci. 2020;1:8. doi: 10.1186/s43170-020-00007-6. DOI

Kotak S., Larkindale J., Lee U., von Koskull-Döring P., Vierling E., Scharf K.-D. Complexity of the Heat Stress Response in Plants. Curr. Opin. Plant Biol. 2007;10:310–316. doi: 10.1016/j.pbi.2007.04.011. PubMed DOI

Khan A.H., Min L., Ma Y., Zeeshan M., Jin S., Zhang X. High-temperature Stress in Crops: Male Sterility, Yield Loss and Potential Remedy Approaches. Plant Biotechnol. J. 2022;21:680–697. doi: 10.1111/pbi.13946. PubMed DOI PMC

Locato V., de Gara L. Programmed Cell Death in Plants: An Overview. Methods Mol. Biol. 2018;1743:1–8. doi: 10.1007/978-1-4939-7668-3_1. PubMed DOI

Liu B., Asseng S., Müller C., Ewert F., Elliott J., Lobell D.B., Martre P., Ruane A.C., Wallach D., Jones J.W., et al. Similar Estimates of Temperature Impacts on Global Wheat Yield by Three Independent Methods. Nat. Clim. Chang. 2016;6:1130–1136. doi: 10.1038/nclimate3115. DOI

Morrison M.J., Stewart D.W. Heat Stress during Flowering in Summer Brassica. Crop Sci. 2002;42:797–803. doi: 10.2135/cropsci2002.7970. DOI

Aiqing S., Somayanda I., Sebastian S.V., Singh K., Gill K., Prasad P.V.V., Jagadish S.V.K. Heat Stress during Flowering Affects Time of Day of Flowering, Seed Set, and Grain Quality in Spring Wheat. Crop Sci. 2018;58:380–392. doi: 10.2135/cropsci2017.04.0221. DOI

Bheemanahalli R., Sunoj V.S.J., Saripalli G., Prasad P.V.V., Balyan H.S., Gupta P.K., Grant N., Gill K.S., Jagadish S.V.K. Quantifying the Impact of Heat Stress on Pollen Germination, Seed Set, and Grain Filling in Spring Wheat. Crop Sci. 2019;59:684–696. doi: 10.2135/cropsci2018.05.0292. DOI

Liu X., Wang X., Wang X., Gao J., Luo N., Meng Q., Wang P. Dissecting the Critical Stage in the Response of Maize Kernel Set to Individual and Combined Drought and Heat Stress around Flowering. Environ. Exp. Bot. 2020;179:104213. doi: 10.1016/j.envexpbot.2020.104213. DOI

Wang X., Yan Y., Xu C., Wang X., Luo N., Wei D., Meng Q., Wang P. Mitigating Heat Impacts in Maize (Zea mays L.) during the Reproductive Stage through Biochar Soil Amendment. Agric. Ecosyst. Environ. 2021;311:107321. doi: 10.1016/j.agee.2021.107321. DOI

Lamers J., van der Meer T., Testerink C. How Plants Sense and Respond to Stressful Environments. Plant Physiol. 2020;182:1624–1635. doi: 10.1104/pp.19.01464. PubMed DOI PMC

Vu L.D., Gevaert K., de Smet I. Feeling the Heat: Searching for Plant Thermosensors. Trends Plant Sci. 2019;24:210–219. doi: 10.1016/j.tplants.2018.11.004. PubMed DOI

Saidi Y., Finka A., Muriset M., Bromberg Z., Weiss Y.G., Maathuis F.J.M., Goloubinoff P. The Heat Shock Response in Moss Plants Is Regulated by Specific Calcium-Permeable Channels in the Plasma Membrane. Plant Cell. 2009;21:2829–2843. doi: 10.1105/tpc.108.065318. PubMed DOI PMC

Peng X., Zhang X., Li B., Zhao L. Cyclic Nucleotide-Gated Ion Channel 6 Mediates Thermotolerance in Arabidopsis Seedlings by Regulating Nitric Oxide Production via Cytosolic Calcium Ions. BMC Plant Biol. 2019;19:368. doi: 10.1186/s12870-019-1974-9. PubMed DOI PMC

Cui Y., Lu S., Li Z., Cheng J., Hu P., Zhu T., Wang X., Jin M., Wang X., Li L., et al. CYCLIC NUCLEOTIDE-GATED ION CHANNELS 14 and 16 Promote Tolerance to Heat and Chilling in Rice. Plant Physiol. 2020;183:1794–1808. doi: 10.1104/pp.20.00591. PubMed DOI PMC

Harbaoui M., ben Saad R., ben Halima N., Choura M., Brini F. Structural and Functional Characterisation of Two Novel Durum Wheat Annexin Genes in Response to Abiotic Stress. Funct. Plant Biol. 2018;45:542. doi: 10.1071/FP17212. PubMed DOI

Berka M., Luklová M., Dufková H., Berková V., Novák J., Saiz-Fernández I., Rashotte A.M., Brzobohatý B., Černý M. Barley Root Proteome and Metabolome in Response to Cytokinin and Abiotic Stimuli. Front. Plant Sci. 2020;11:590337. doi: 10.3389/fpls.2020.590337. PubMed DOI PMC

Hyeon Jeong J., Joo Jung W., Weon Seo Y. Genome-Wide Identification and Expression Analysis of the Annexin Gene Family in Rye (Secale cereale L.) Gene. 2022;838:146704. doi: 10.1016/j.gene.2022.146704. PubMed DOI

Qiao B., Zhang Q., Liu D., Wang H., Yin J., Wang R., He M., Cui M., Shang Z., Wang D., et al. A Calcium-Binding Protein, Rice Annexin OsANN1, Enhances Heat Stress Tolerance by Modulating the Production of H2O2. J. Exp. Bot. 2015;66:5853–5866. doi: 10.1093/jxb/erv294. PubMed DOI

Lu Y., Ouyang B., Zhang J., Wang T., Lu C., Han Q., Zhao S., Ye Z., Li H. Genomic Organization, Phylogenetic Comparison and Expression Profiles of Annexin Gene Family in Tomato (Solanum lycopersicum) Gene. 2012;499:14–24. doi: 10.1016/j.gene.2012.03.026. PubMed DOI

Jung J.-H., Domijan M., Klose C., Biswas S., Ezer D., Gao M., Khattak A.K., Box M.S., Charoensawan V., Cortijo S., et al. Phytochromes Function as Thermosensors in Arabidopsis. Science. 2016;354:886–889. doi: 10.1126/science.aaf6005. PubMed DOI

Pham V.N., Kathare P.K., Huq E. Phytochromes and Phytochrome Interacting Factors. Plant Physiol. 2018;176:1025–1038. doi: 10.1104/pp.17.01384. PubMed DOI PMC

Qiu Y., Li M., Kim R.J.-A., Moore C.M., Chen M. Daytime Temperature Is Sensed by Phytochrome B in Arabidopsis through a Transcriptional Activator HEMERA. Nat. Commun. 2019;10:140. doi: 10.1038/s41467-018-08059-z. PubMed DOI PMC

Yang J., Qu X., Ji L., Li G., Wang C., Wang C., Zhang Y., Zheng L., Li W., Zheng X. PIF4 Promotes Expression of HSFA2 to Enhance Basal Thermotolerance in Arabidopsis. Int. J. Mol. Sci. 2022;23:6017. doi: 10.3390/ijms23116017. PubMed DOI PMC

Hayes S. PIF4 Plays a Conserved Role in Solanum lycopersicum. Plant Physiol. 2019;181:838–839. doi: 10.1104/pp.19.01169. PubMed DOI PMC

Nakamura Y., Kato T., Yamashino T., Murakami M., Mizuno T. Characterization of a Set of Phytochrome-Interacting Factor-Like BHLH Proteins in Oryza sativa. Biosci. Biotechnol. Biochem. 2007;71:1183–1191. doi: 10.1271/bbb.60643. PubMed DOI

Gao Y., Ren X., Qian J., Li Q., Tao H., Chen J. The Phytochrome-Interacting Family of Transcription Factors in Maize (Zea mays L.): Identification, Evolution, and Expression Analysis. Acta Physiol. Plant. 2019;41:8. doi: 10.1007/s11738-018-2802-9. DOI

Jung J.H., Barbosa A.D., Hutin S., Kumita J.R., Gao M., Derwort D., Silva C.S., Lai X., Pierre E., Geng F., et al. A Prion-like Domain in ELF3 Functions as a Thermosensor in Arabidopsis. Nature. 2020;585:256–260. doi: 10.1038/s41586-020-2644-7. PubMed DOI

Ford B., Deng W., Clausen J., Oliver S., Boden S., Hemming M., Trevaskis B. Barley (Hordeum vulgare) Circadian Clock Genes Can Respond Rapidly to Temperature in an EARLY FLOWERING 3 -Dependent Manner. J. Exp. Bot. 2016;67:5517–5528. doi: 10.1093/jxb/erw317. PubMed DOI PMC

Ochagavía H., Prieto P., Zikhali M., Griffiths S., Slafer G.A. Earliness Per Se by Temperature Interaction on Wheat Development. Sci. Rep. 2019;9:2584. doi: 10.1038/s41598-019-39201-6. PubMed DOI PMC

Liu X.L., Covington M.F., Fankhauser C., Chory J., Wagner D.R. ELF3 Encodes a Circadian Clock-Regulated Nuclear Protein That Functions in an Arabidopsis PHYB Signal Transduction Pathway. Plant Cell. 2001;13:1293. doi: 10.2307/3871296. PubMed DOI PMC

Qu A.-L., Ding Y.-F., Jiang Q., Zhu C. Molecular Mechanisms of the Plant Heat Stress Response. Biochem. Biophys. Res. Commun. 2013;432:203–207. doi: 10.1016/j.bbrc.2013.01.104. PubMed DOI

Awasthi R., Bhandari K., Nayyar H. Temperature Stress and Redox Homeostasis in Agricultural Crops. Front. Environ. Sci. 2015;3:11. doi: 10.3389/fenvs.2015.00011. DOI

Driedonks N., Xu J., Peters J.L., Park S., Rieu I. Multi-Level Interactions Between Heat Shock Factors, Heat Shock Proteins, and the Redox System Regulate Acclimation to Heat. Front. Plant Sci. 2015;6:999. doi: 10.3389/fpls.2015.00999. PubMed DOI PMC

Zhu X., Wang Y., Liu Y., Zhou W., Yan B., Yang J., Shen Y. Overexpression of BcHsfA1 Transcription Factor from Brassica Campestris Improved Heat Tolerance of Transgenic Tobacco. PLoS ONE. 2018;13:e0207277. doi: 10.1371/journal.pone.0207277. PubMed DOI PMC

Rao S., Das J.R., Mathur S. Exploring the Master Regulator Heat Stress Transcription Factor HSFA1a-Mediated Transcriptional Cascade of HSFs in the Heat Stress Response of Tomato. J. Plant Biochem. Biotechnol. 2021;30:878–888. doi: 10.1007/s13562-021-00696-8. DOI

Li G., Zhang H., Shao H., Wang G., Zhang Y., Zhang Y., Zhao L., Guo X., Sheteiwy M.S. ZmHsf05, a New Heat Shock Transcription Factor from Zea mays L. Improves Thermotolerance in Arabidopsis Thaliana and Rescues Thermotolerance Defects of the Athsfa2 Mutant. Plant Sci. 2019;283:375–384. doi: 10.1016/j.plantsci.2019.03.002. PubMed DOI

Bi H., Miao J., He J., Chen Q., Qian J., Li H., Xu Y., Ma D., Zhao Y., Tian X., et al. Characterization of the Wheat Heat Shock Factor TaHsfA2e-5D Conferring Heat and Drought Tolerance in Arabidopsis. Int. J. Mol. Sci. 2022;23:2784. doi: 10.3390/ijms23052784. PubMed DOI PMC

Cheng Q., Zhou Y., Liu Z., Zhang L., Song G., Guo Z., Wang W., Qu X., Zhu Y., Yang D. An Alternatively Spliced Heat Shock Transcription Factor, OsHSFA2dI, Functions in the Heat Stress-Induced Unfolded Protein Response in Rice. Plant Biol. 2014;17:419–429. doi: 10.1111/plb.12267. PubMed DOI

Singh G., Sarkar N.K., Grover A. Hsp70, sHsps and Ubiquitin Proteins Modulate HsfA6a-mediated Hsp101 Transcript Expression in Rice (Oryza sativa L.) Physiol. Plant. 2021;173:2055–2067. doi: 10.1111/ppl.13552. PubMed DOI

Liu J., Sun N., Liu M., Liu J., Du B., Wang X., Qi X. An Autoregulatory Loop Controlling Arabidopsis HsfA2 Expression: Role of Heat Shock-Induced Alternative Splicing. Plant Physiol. 2013;162:512–521. doi: 10.1104/pp.112.205864. PubMed DOI PMC

Ma Z., Li M., Zhang H., Zhao B., Liu Z., Duan S., Meng X., Li G., Guo X. Alternative Splicing of TaHsfA2-7 Is Involved in the Improvement of Thermotolerance in Wheat. Int. J. Mol. Sci. 2023;24:1014. doi: 10.3390/ijms24021014. PubMed DOI PMC

Kruszka K., Pacak A., Swida-Barteczka A., Nuc P., Alaba S., Wroblewska Z., Karlowski W., Jarmolowski A., Szweykowska-Kulinska Z. Transcriptionally and Post-Transcriptionally Regulated MicroRNAs in Heat Stress Response in Barley. J. Exp. Bot. 2014;65:6123–6135. doi: 10.1093/jxb/eru353. PubMed DOI PMC

Zhang H., Li G., Fu C., Duan S., Hu D., Guo X. Genome-Wide Identification, Transcriptome Analysis and Alternative Splicing Events of Hsf Family Genes in Maize. Sci. Rep. 2020;10:8073. doi: 10.1038/s41598-020-65068-z. PubMed DOI PMC

Hu Y., Mesihovic A., Jiménez-Gómez J.M., Röth S., Gebhardt P., Bublak D., Bovy A., Scharf K., Schleiff E., Fragkostefanakis S. Natural Variation in HsfA2 Pre-mRNA Splicing Is Associated with Changes in Thermotolerance during Tomato Domestication. New Phytol. 2020;225:1297–1310. doi: 10.1111/nph.16221. PubMed DOI

Boretti A., Rosa L. Reassessing the Projections of the World Water Development Report. NPJ Clean. Water. 2019;2:15. doi: 10.1038/s41545-019-0039-9. DOI

Samarah N.H., Alqudah A.M., Amayreh J.A., McAndrews G.M. The Effect of Late-Terminal Drought Stress on Yield Components of Four Barley Cultivars. J. Agron. Crop Sci. 2009;195:427–441. doi: 10.1111/j.1439-037X.2009.00387.x. DOI

Daryanto S., Wang L., Jacinthe P.A. Global Synthesis of Drought Effects on Maize and Wheat Production. PLoS ONE. 2016;11:e0156362. doi: 10.1371/journal.pone.0156362. PubMed DOI PMC

Webber H., Ewert F., Olesen J.E., Müller C., Fronzek S., Ruane A.C., Bourgault M., Martre P., Ababaei B., Bindi M., et al. Diverging Importance of Drought Stress for Maize and Winter Wheat in Europe. Nat. Commun. 2018;9:4249. doi: 10.1038/s41467-018-06525-2. PubMed DOI PMC

Mickky B., Aldesuquy H., Elnajar M. Effect of Drought on Yield of Ten Wheat Cultivars Linked with Their Flag Leaf Water Status, Fatty Acid Profile and Shoot Vigor at Heading. Physiol. Mol. Biol. Plants. 2020;26:1111–1117. doi: 10.1007/s12298-020-00807-0. PubMed DOI PMC

Hussain M., Farooq S., Hasan W., Ul-Allah S., Tanveer M., Farooq M., Nawaz A. Drought Stress in Sunflower: Physiological Effects and Its Management through Breeding and Agronomic Alternatives. Agric. Water Manag. 2018;201:152–166. doi: 10.1016/j.agwat.2018.01.028. DOI

Wiegmann M., Maurer A., Pham A., March T.J., Al-Abdallat A., Thomas W.T.B., Bull H.J., Shahid M., Eglinton J., Baum M., et al. Barley Yield Formation under Abiotic Stress Depends on the Interplay between Flowering Time Genes and Environmental Cues. Sci. Rep. 2019;9:6397. doi: 10.1038/s41598-019-42673-1. PubMed DOI PMC

Dufková H., Berka M., Psota V., Brzobohatý B., Černý M. Environmental Impacts on Barley Grain Composition and Longevity. J. Exp. Bot. 2022;74:1609–1628. doi: 10.1093/jxb/erac498. PubMed DOI

Farooq M., Gogoi N., Barthakur S., Baroowa B., Bharadwaj N., Alghamdi S.S., Siddique K.H.M. Drought Stress in Grain Legumes during Reproduction and Grain Filling. J. Agron. Crop Sci. 2016;203:81–102. doi: 10.1111/jac.12169. DOI

Wang Z., Li G., Sun H., Ma L., Guo Y., Zhao Z., Gao H., Mei L. Effects of Drought Stress on Photosynthesis and Photosynthetic Electron Transport Chain in Young Apple Tree Leaves. Biol. Open. 2018;7:bio035279. doi: 10.1242/bio.035279. PubMed DOI PMC

Taiz L., Zeiger E., Møller I.M., Murphy A. Plant Physiology and Development. 6th ed. Sinauer Associates, Inc.; Sunderland, MA, USA: 2015.

Raza A., Mubarik M.S., Sharif R., Habib M., Jabeen W., Zhang C., Chen H., Chen Z., Siddique K.H.M., Zhuang W., et al. Developing Drought-smart, Ready-to-grow Future Crops. Plant Genome. 2023;16:e20279. doi: 10.1002/tpg2.20279. PubMed DOI

Farooq M., Wahid A., Lee D.-J. Exogenously Applied Polyamines Increase Drought Tolerance of Rice by Improving Leaf Water Status, Photosynthesis and Membrane Properties. Acta Physiol. Plant. 2009;31:937–945. doi: 10.1007/s11738-009-0307-2. DOI

Li H.-J., Wang Y.-F., Zhao C.-F., Yang M., Wang G.-X., Zhang R.-H. The Quantitative Proteomic Analysis Provides Insight into the Effects of Drought Stress in Maize. Photosynthetica. 2021;59:1–11. doi: 10.32615/ps.2020.078. DOI

Siddiqui M.N., Léon J., Naz A.A., Ballvora A. Genetics and Genomics of Root System Variation in Adaptation to Drought Stress in Cereal Crops. J. Exp. Bot. 2021;72:1007–1019. doi: 10.1093/jxb/eraa487. PubMed DOI PMC

Dietz K.-J., Zörb C., Geilfus C.-M. Drought and Crop Yield. Plant Biol. 2021;23:881–893. doi: 10.1111/plb.13304. PubMed DOI

Uga Y., Sugimoto K., Ogawa S., Rane J., Ishitani M., Hara N., Kitomi Y., Inukai Y., Ono K., Kanno N., et al. Control of Root System Architecture by DEEPER ROOTING 1 Increases Rice Yield under Drought Conditions. Nat. Genet. 2013;45:1097–1102. doi: 10.1038/ng.2725. PubMed DOI

Feng X., Jia L., Cai Y., Guan H., Zheng D., Zhang W., Xiong H., Zhou H., Wen Y., Hu Y., et al. ABA-inducible DEEPER ROOTING Improves Adaptation of Maize to Water Deficiency. Plant Biotechnol. J. 2022;20:2077. doi: 10.1111/pbi.13889. PubMed DOI PMC

Sun C., Liang W., Yan K., Xu D., Qin T., Fiaz S., Kear P., Bi Z., Liu Y., Liu Z., et al. Expression of Potato StDRO1 in Arabidopsis Alters Root Architecture and Drought Tolerance. Front. Plant Sci. 2022;13:836063. doi: 10.3389/fpls.2022.836063. PubMed DOI PMC

Ashraf A., Rehman O.U., Muzammil S., Léon J., Naz A.A., Rasool F., Ali G.M., Zafar Y., Khan M.R. Evolution of Deeper Rooting 1-like Homoeologs in Wheat Entails the C-Terminus Mutations as Well as Gain and Loss of Auxin Response Elements. PLoS ONE. 2019;14:e0214145. doi: 10.1371/journal.pone.0214145. PubMed DOI PMC

Shkolnik D., Nuriel R., Bonza M.C., Costa A., Fromm H. MIZ1 Regulates ECA1 to Generate a Slow, Long-Distance Phloem-Transmitted Ca 2+ Signal Essential for Root Water Tracking in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2018;115:8031–8036. doi: 10.1073/pnas.1804130115. PubMed DOI PMC

Yuan F., Yang H., Xue Y., Kong D., Ye R., Li C., Zhang J., Theprungsirikul L., Shrift T., Krichilsky B., et al. OSCA1 Mediates Osmotic-Stress-Evoked Ca2+ Increases Vital for Osmosensing in Arabidopsis. Nature. 2014;514:367–371. doi: 10.1038/nature13593. PubMed DOI

Pei S., Liu Y., Li W., Krichilsky B., Dai S., Wang Y., Wang X., Johnson D.M., Crawford B.M., Swift G.B., et al. OSCA1 Is an Osmotic Specific Sensor: A Method to Distinguish Ca2+-mediated Osmotic and Ionic Perception. New Phytol. 2022;235:1665–1678. doi: 10.1111/nph.18217. PubMed DOI

Akita K., Miyazawa Y. The Mechanosensitive Ca2+ Channel, OSCA1.1, Modulates Root Hydrotropic Bending in Arabidopsis Thaliana. Environ. Exp. Bot. 2022;197:104825. doi: 10.1016/j.envexpbot.2022.104825. DOI

She K., Pan W., Yan Y., Shi T., Chu Y., Cheng Y., Ma B., Song W. Genome-Wide Identification, Evolution and Expressional Analysis of OSCA Gene Family in Barley (Hordeum vulgare L.) Int. J. Mol. Sci. 2022;23:13027. doi: 10.3390/ijms232113027. PubMed DOI PMC

Liu C., Wang H., Zhang Y., Cheng H., Hu Z., Pei Z.-M., Li Q. Systematic Characterization of the OSCA Family Members in Soybean and Validation of Their Functions in Osmotic Stress. Int. J. Mol. Sci. 2022;23:10570. doi: 10.3390/ijms231810570. PubMed DOI PMC

Cao L., Zhang P., Lu X., Wang G., Wang Z., Zhang Q., Zhang X., Wei X., Mei F., Wei L., et al. Systematic Analysis of the Maize OSCA Genes Revealing ZmOSCA Family Members Involved in Osmotic Stress and ZmOSCA2.4 Confers Enhanced Drought Tolerance in Transgenic Arabidopsis. Int. J. Mol. Sci. 2020;21:351. doi: 10.3390/ijms21010351. PubMed DOI PMC

Li Y., Yuan W., Li L., Miao R., Dai H., Zhang J., Xu W. Light-Dark Modulates Root Hydrotropism Associated with Gravitropism by Involving Amyloplast Response in Arabidopsis. Cell Rep. 2020;32:108198. doi: 10.1016/j.celrep.2020.108198. PubMed DOI

Novák J., Černý M., Pavlů J., Zemánková J., Skalák J., Plačková L., Brzobohatý B. Roles of Proteome Dynamics and Cytokinin Signaling in Root to Hypocotyl Ratio Changes Induced by Shading Roots of Arabidopsis Seedlings. Plant Cell Physiol. 2015;56:1006–1018. doi: 10.1093/pcp/pcv026. PubMed DOI

Wang P., Qi S., Wang X., Dou L., Jia M., Mao T., Guo Y., Wang X. The OPEN STOMATA1–SPIRAL1 Module Regulates Microtubule Stability during Abscisic Acid-Induced Stomatal Closure in Arabidopsis. Plant Cell. 2023;35:260–278. doi: 10.1093/plcell/koac307. PubMed DOI PMC

Takahashi F., Suzuki T., Osakabe Y., Betsuyaku S., Kondo Y., Dohmae N., Fukuda H., Yamaguchi-Shinozaki K., Shinozaki K. A Small Peptide Modulates Stomatal Control via Abscisic Acid in Long-Distance Signalling. Nature. 2018;556:235–238. doi: 10.1038/s41586-018-0009-2. PubMed DOI

Yuan W., Suo J., Shi B., Zhou C., Bai B., Bian H., Zhu M., Han N. The Barley MiR393 Has Multiple Roles in Regulation of Seedling Growth, Stomatal Density, and Drought Stress Tolerance. Plant Physiol. Biochem. 2019;142:303–311. doi: 10.1016/j.plaphy.2019.07.021. PubMed DOI

Li Z., Liu C., Zhang Y., Wang B., Ran Q., Zhang J. The BHLH Family Member ZmPTF1 Regulates Drought Tolerance in Maize by Promoting Root Development and Abscisic Acid Synthesis. J. Exp. Bot. 2019;70:5471–5486. doi: 10.1093/jxb/erz307. PubMed DOI PMC

Wu F., Chi Y., Jiang Z., Xu Y., Xie L., Huang F., Wan D., Ni J., Yuan F., Wu X., et al. Hydrogen Peroxide Sensor HPCA1 Is an LRR Receptor Kinase in Arabidopsis. Nature. 2020;578:577–581. doi: 10.1038/s41586-020-2032-3. PubMed DOI

Yang Y., Shi J., Chen L., Xiao W., Yu J. ZmEREB46, a Maize Ortholog of Arabidopsis WAX INDUCER1/SHINE1, Is Involved in the Biosynthesis of Leaf Epicuticular Very-Long-Chain Waxes and Drought Tolerance. Plant Sci. 2022;321:111256. doi: 10.1016/j.plantsci.2022.111256. PubMed DOI

Petrov P., Petrova A., Dimitrov I., Tashev T., Olsovska K., Brestic M., Misheva S. Relationships between Leaf Morpho-Anatomy, Water Status and Cell Membrane Stability in Leaves of Wheat Seedlings Subjected to Severe Soil Drought. J. Agron. Crop Sci. 2018;204:219–227. doi: 10.1111/jac.12255. DOI

Maiquetía M., Cáceres A., Herrera A. Mycorrhization and Phosphorus Nutrition Affect Water Relations and CAM Induction by Drought in Seedlings of Clusia Minor. Ann. Bot. 2009;103:525–532. doi: 10.1093/aob/mcn238. PubMed DOI PMC

Gong Z., Xiong L., Shi H., Yang S., Herrera-Estrella L.R., Xu G., Chao D.-Y., Li J., Wang P.-Y., Qin F., et al. Plant Abiotic Stress Response and Nutrient Use Efficiency. Sci. China Life Sci. 2020;63:635–674. doi: 10.1007/s11427-020-1683-x. PubMed DOI

Parihar P., Singh S., Singh R., Singh V.P., Prasad S.M. Effect of Salinity Stress on Plants and Its Tolerance Strategies: A Review. Environ. Sci. Pollut. Res. 2015;22:4056–4075. doi: 10.1007/s11356-014-3739-1. PubMed DOI

Kotuby-Amacher J., Koenig R., Kitchen B. Salinity and Plant Tolerance. Utah State University Extension; Logan, UT, USA: 2000. pp. 1–8.

Machado R., Serralheiro R. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae. 2017;3:30. doi: 10.3390/horticulturae3020030. DOI

Regni L., del Pino A.M., Mousavi S., Palmerini C.A., Baldoni L., Mariotti R., Mairech H., Gardi T., D’Amato R., Proietti P. Behavior of Four Olive Cultivars During Salt Stress. Front. Plant Sci. 2019;10:867. doi: 10.3389/fpls.2019.00867. PubMed DOI PMC

Chen F., Fang P., Peng Y., Zeng W., Zhao X., Ding Y., Zhuang Z., Gao Q., Ren B. Comparative Proteomics of Salt-Tolerant and Salt-Sensitive Maize Inbred Lines to Reveal the Molecular Mechanism of Salt Tolerance. Int. J. Mol. Sci. 2019;20:4725. doi: 10.3390/ijms20194725. PubMed DOI PMC

Setter T.L., Waters I., Stefanova K., Munns R., Barrett-Lennard E.G. Salt Tolerance, Date of Flowering and Rain Affect the Productivity of Wheat and Barley on Rainfed Saline Land. Field Crops Res. 2016;194:31–42. doi: 10.1016/j.fcr.2016.04.034. DOI

van Straten G., Bruning B., de Vos A.C., González A.P., Rozema J., van Bodegom P.M. Estimating Cultivar-Specific Salt Tolerance Model Parameters from Multi-Annual Field Tests for Identification of Salt Tolerant Potato Cultivars. Agric. Water Manag. 2021;252:106902. doi: 10.1016/j.agwat.2021.106902. DOI

Chourasia K.N., Lal M.K., Tiwari R.K., Dev D., Kardile H.B., Patil V.U., Kumar A., Vanishree G., Kumar D., Bhardwaj V., et al. Salinity Stress in Potato: Understanding Physiological, Biochemical and Molecular Responses. Life. 2021;11:545. doi: 10.3390/life11060545. PubMed DOI PMC

Guo Q., Meng L., Han J., Mao P., Tian X., Zheng M., Mur L.A.J. SOS1 Is a Key Systemic Regulator of Salt Secretion and K+/Na+ Homeostasis in the Recretohalophyte Karelinia Caspia. Environ. Exp. Bot. 2020;177:104098. doi: 10.1016/j.envexpbot.2020.104098. DOI

Assaha D.V.M., Ueda A., Saneoka H., Al-Yahyai R., Yaish M.W. The Role of Na+ and K+ Transporters in Salt Stress Adaptation in Glycophytes. Front. Physiol. 2017;8:509. doi: 10.3389/fphys.2017.00509. PubMed DOI PMC

Ma L., Liu X., Lv W., Yang Y. Molecular Mechanisms of Plant Responses to Salt Stress. Front. Plant Sci. 2022;13:934877. doi: 10.3389/fpls.2022.934877. PubMed DOI PMC

Shi H., Ishitani M., Kim C., Zhu J.-K. The Arabidopsis Thaliana Salt Tolerance Gene SOS1 Encodes a Putative Na+/H+ Antiporter. Proc. Natl. Acad. Sci. USA. 2000;97:6896–6901. doi: 10.1073/pnas.120170197. PubMed DOI PMC

Yang Y., Guo Y. Elucidating the Molecular Mechanisms Mediating Plant Salt-Stress Responses. New Phytol. 2018;217:523–539. doi: 10.1111/nph.14920. PubMed DOI

Yue Y., Zhang M., Zhang J., Duan L., Li Z. SOS1 Gene Overexpression Increased Salt Tolerance in Transgenic Tobacco by Maintaining a Higher K+/Na+ Ratio. J. Plant Physiol. 2012;169:255–261. doi: 10.1016/j.jplph.2011.10.007. PubMed DOI

el Mahi H., Pérez-Hormaeche J., de Luca A., Villalta I., Espartero J., Gámez-Arjona F., Fernández J.L., Bundó M., Mendoza I., Mieulet D., et al. A Critical Role of Sodium Flux via the Plasma Membrane Na+/H+ Exchanger SOS1 in the Salt Tolerance of Rice. Plant Physiol. 2019;180:1046–1065. doi: 10.1104/pp.19.00324. PubMed DOI PMC

Zhou X., Li J., Wang Y., Liang X., Zhang M., Lu M., Guo Y., Qin F., Jiang C. The Classical SOS Pathway Confers Natural Variation of Salt Tolerance in Maize. New Phytol. 2022;236:479–494. doi: 10.1111/nph.18278. PubMed DOI

Olías R., Eljakaoui Z., Li J.U.N., de Morales P.A.Z.A., Marín-Manzano M.C., Pardo J.M., Belver A. The Plasma Membrane Na+ /H+ Antiporter SOS1 Is Essential for Salt Tolerance in Tomato and Affects the Partitioning of Na+ between Plant Organs. Plant Cell Environ. 2009;32:904–916. doi: 10.1111/j.1365-3040.2009.01971.x. PubMed DOI

Egea I., Pineda B., Ortíz-Atienza A., Plasencia F.A., Drevensek S., García-Sogo B., Yuste-Lisbona F.J., Barrero-Gil J., Atarés A., Flores F.B., et al. The SlCBL10 Calcineurin B-Like Protein Ensures Plant Growth under Salt Stress by Regulating Na+ and Ca2+ Homeostasis. Plant Physiol. 2018;176:1676–1693. doi: 10.1104/pp.17.01605. PubMed DOI PMC

Cho J.H., Sim S.-C., Kim K.-N. Calcium Sensor SlCBL4 Associates with SlCIPK24 Protein Kinase and Mediates Salt Tolerance in Solanum lycopersicum. Plants. 2021;10:2173. doi: 10.3390/plants10102173. PubMed DOI PMC

Jiang Z., Zhou X., Tao M., Yuan F., Liu L., Wu F., Wu X., Xiang Y., Niu Y., Liu F., et al. Plant Cell-Surface GIPC Sphingolipids Sense Salt to Trigger Ca2+ Influx. Nature. 2019;572:341–346. doi: 10.1038/s41586-019-1449-z. PubMed DOI

Liu C., Zhu M., Sun J. Overexpression of an Inositol Phosphorylceramide Glucuronosyltransferase Gene IbIPUT1 Inhibits Na+ Uptake in Sweet Potato Roots. Genes. 2022;13:1140. doi: 10.3390/genes13071140. PubMed DOI PMC

Chung J.-S., Zhu J.-K., Bressan R.A., Hasegawa P.M., Shi H. Reactive Oxygen Species Mediate Na+-Induced SOS1 MRNA Stability in Arabidopsis. Plant J. 2007;53:554–565. doi: 10.1111/j.1365-313X.2007.03364.x. PubMed DOI PMC

Yan H., Li Q., Park S.-C., Wang X., Liu Y., Zhang Y., Tang W., Kou M., Ma D. Overexpression of CuZnSOD and APX Enhance Salt Stress Tolerance in Sweet Potato. Plant Physiol. Biochem. 2016;109:20–27. doi: 10.1016/j.plaphy.2016.09.003. PubMed DOI

Evans M.J., Choi W.-G., Gilroy S., Morris R.J. A ROS-Assisted Calcium Wave Dependent on the AtRBOHD NADPH Oxidase and TPC1 Cation Channel Propagates the Systemic Response to Salt Stress. Plant Physiol. 2016;171:1771–1784. doi: 10.1104/pp.16.00215. PubMed DOI PMC

Choi W.-G., Toyota M., Kim S.-H., Hilleary R., Gilroy S. Salt Stress-Induced Ca2+ Waves Are Associated with Rapid, Long-Distance Root-to-Shoot Signaling in Plants. Proc. Natl. Acad. Sci. USA. 2014;111:6497–6502. doi: 10.1073/pnas.1319955111. PubMed DOI PMC

Wang W., Xing L., Xu K., Ji D., Xu Y., Chen C., Xie C. Salt Stress-Induced H2O2 and Ca2+ Mediate K+/Na+ Homeostasis in Pyropia Haitanensis. J. Appl. Phycol. 2020;32:4199–4210. doi: 10.1007/s10811-020-02284-0. DOI

Faizan M., Bhat J.A., Chen C., Alyemeni M.N., Wijaya L., Ahmad P., Yu F. Zinc Oxide Nanoparticles (ZnO-NPs) Induce Salt Tolerance by Improving the Antioxidant System and Photosynthetic Machinery in Tomato. Plant Physiol. Biochem. 2021;161:122–130. doi: 10.1016/j.plaphy.2021.02.002. PubMed DOI

Ding Y., Shi Y., Yang S. Advances and Challenges in Uncovering Cold Tolerance Regulatory Mechanisms in Plants. New Phytol. 2019;222:1690–1704. doi: 10.1111/nph.15696. PubMed DOI

Mahfoozi S. Developmental Regulation of Low-Temperature Tolerance in Winter Wheat. Ann. Bot. 2001;87:751–757. doi: 10.1006/anbo.2001.1403. DOI

Li X., Pu H., Liu F., Zhou Q., Cai J., Dai T., Cao W., Jiang D. Winter Wheat Photosynthesis and Grain Yield Responses to Spring Freeze. Agron. J. 2015;107:1002–1010. doi: 10.2134/agronj14.0460. DOI

Thakur P., Kumar S., Malik J.A., Berger J.D., Nayyar H. Cold Stress Effects on Reproductive Development in Grain Crops: An Overview. Environ. Exp. Bot. 2010;67:429–443. doi: 10.1016/j.envexpbot.2009.09.004. DOI

Borjas A.H., de Leon T.B., Subudhi P.K. Genetic Analysis of Germinating Ability and Seedling Vigor under Cold Stress in US Weedy Rice. Euphytica. 2016;208:251–264. doi: 10.1007/s10681-015-1584-z. DOI

Moradtalab N., Weinmann M., Walker F., Höglinger B., Ludewig U., Neumann G. Silicon Improves Chilling Tolerance During Early Growth of Maize by Effects on Micronutrient Homeostasis and Hormonal Balances. Front. Plant Sci. 2018;9:420. doi: 10.3389/fpls.2018.00420. PubMed DOI PMC

Rajametov S.N., Lee K., Jeong H.-B., Cho M.-C., Nam C.-W., Yang E.-Y. Physiological Traits of Thirty-Five Tomato Accessions in Response to Low Temperature. Agriculture. 2021;11:792. doi: 10.3390/agriculture11080792. DOI

Nayyar H., Bains T.S., Kumar S., Kaur G. Chilling Effects during Seed Filling on Accumulation of Seed Reserves and Yield of Chickpea. J. Sci. Food Agric. 2005;85:1925–1930. doi: 10.1002/jsfa.2198. DOI

Król A., Amarowicz R., Weidner S. The Effects of Cold Stress on the Phenolic Compounds and Antioxidant Capacity of Grapevine (Vitis vinifera L.) Leaves. J. Plant Physiol. 2015;189:97–104. doi: 10.1016/j.jplph.2015.10.002. PubMed DOI

Zhang C., Gu K., Gu D., Zhang S., Wu J. Quantifying the Effect of Low-Temperature Events on the Grain Quality Formation of Wheat. J. Cereal Sci. 2021;100:103257. doi: 10.1016/j.jcs.2021.103257. DOI

Zhao Y., Li J., Zhao R., Xu K., Xiao Y., Zhang S., Tian J., Yang X. Genome-Wide Association Study Reveals the Genetic Basis of Cold Tolerance in Wheat. Mol. Breed. 2020;40:36. doi: 10.1007/s11032-020-01115-x. DOI

Rodríguez V.M., Butrón A., Rady M.O.A., Soengas P., Revilla P. Identification of Quantitative Trait Loci Involved in the Response to Cold Stress in Maize (Zea mays L.) Mol. Breed. 2014;33:363–371. doi: 10.1007/s11032-013-9955-4. DOI

Fennell A. Freezing Tolerance and Injury in Grapevines. J. Crop. Improv. 2004;10:201–235. doi: 10.1300/J411v10n01_09. DOI

Webster T.M., Grey T.L., Scully B.T., Johnson W.C., Davis R.F., Brenneman T.B. Yield Potential of Spring-Harvested Sugar Beet (Beta Vulgaris) Depends on Autumn Planting Time. Ind. Crops Prod. 2016;83:55–60. doi: 10.1016/j.indcrop.2015.12.037. DOI

Loel J., Hoffmann C.M. Importance of Growth Stage and Weather Conditions for the Winter Hardiness of Autumn Sown Sugar Beet. Field Crops Res. 2014;162:70–76. doi: 10.1016/j.fcr.2014.03.007. DOI

Trnka M., Rötter R.P., Ruiz-Ramos M., Kersebaum K.C., Olesen J.E., Žalud Z., Semenov M.A. Adverse Weather Conditions for European Wheat Production Will Become More Frequent with Climate Change. Nat. Clim. Chang. 2014;4:637–643. doi: 10.1038/nclimate2242. DOI

Yuan P., Yang T., Poovaiah B.W. Calcium Signaling-Mediated Plant Response to Cold Stress. Int. J. Mol. Sci. 2018;19:3896. doi: 10.3390/ijms19123896. PubMed DOI PMC

Guo X., Liu D., Chong K. Cold Signaling in Plants: Insights into Mechanisms and Regulation. J. Integr. Plant Biol. 2018;60:745–756. doi: 10.1111/jipb.12706. PubMed DOI

Ma Y., Dai X., Xu Y., Luo W., Zheng X., Zeng D., Pan Y., Lin X., Liu H., Zhang D., et al. COLD1 Confers Chilling Tolerance in Rice. Cell. 2015;160:1209–1221. doi: 10.1016/j.cell.2015.01.046. PubMed DOI

Nawaz Z., Kakar K.U., Ullah R., Yu S., Zhang J., Shu Q.-Y., Ren X. Genome-Wide Identification, Evolution and Expression Analysis of Cyclic Nucleotide-Gated Channels in Tobacco (Nicotiana tabacum L.) Genomics. 2019;111:142–158. doi: 10.1016/j.ygeno.2018.01.010. PubMed DOI

Zheng Y., Luo L., Wei J., Chen Q., Yang Y., Hu X., Kong X. The Glutamate Receptors AtGLR1.2 and AtGLR1.3 Increase Cold Tolerance by Regulating Jasmonate Signaling in Arabidopsis Thaliana. Biochem. Biophys. Res. Commun. 2018;506:895–900. doi: 10.1016/j.bbrc.2018.10.153. PubMed DOI

Nawaz Z., Kakar K.U., Saand M.A., Shu Q.-Y. Cyclic Nucleotide-Gated Ion Channel Gene Family in Rice, Identification, Characterization and Experimental Analysis of Expression Response to Plant Hormones, Biotic and Abiotic Stresses. BMC Genom. 2014;15:853. doi: 10.1186/1471-2164-15-853. PubMed DOI PMC

Kakar K.U., Nawaz Z., Kakar K., Ali E., Almoneafy A.A., Ullah R., Ren X., Shu Q.-Y. Comprehensive Genomic Analysis of the CNGC Gene Family in Brassica Oleracea: Novel Insights into Synteny, Structures, and Transcript Profiles. BMC Genom. 2017;18:869. doi: 10.1186/s12864-017-4244-y. PubMed DOI PMC

Finka A., Cuendet A.F.H., Maathuis F.J.M., Saidi Y., Goloubinoff P. Plasma Membrane Cyclic Nucleotide Gated Calcium Channels Control Land Plant Thermal Sensing and Acquired Thermotolerance. Plant Cell. 2012;24:3333–3348. doi: 10.1105/tpc.112.095844. PubMed DOI PMC

Tang K., Zhao L., Ren Y., Yang S., Zhu J., Zhao C. The Transcription Factor ICE1 Functions in Cold Stress Response by Binding to the Promoters of CBF and COR Genes. J. Integr. Plant Biol. 2020;62:258–263. doi: 10.1111/jipb.12918. PubMed DOI

Dong C.-H., Agarwal M., Zhang Y., Xie Q., Zhu J.-K. The Negative Regulator of Plant Cold Responses, HOS1, Is a RING E3 Ligase That Mediates the Ubiquitination and Degradation of ICE1. Proc. Natl. Acad. Sci. USA. 2006;103:8281–8286. doi: 10.1073/pnas.0602874103. PubMed DOI PMC

Jiang H., Shi Y., Liu J., Li Z., Fu D., Wu S., Li M., Yang Z., Shi Y., Lai J., et al. Natural Polymorphism of ZmICE1 Contributes to Amino Acid Metabolism That Impacts Cold Tolerance in Maize. Nat. Plants. 2022;8:1176–1190. doi: 10.1038/s41477-022-01254-3. PubMed DOI

Park S., Lee C., Doherty C.J., Gilmour S.J., Kim Y., Thomashow M.F. Regulation of the Arabidopsis CBF Regulon by a Complex Low-temperature Regulatory Network. Plant J. 2015;82:193–207. doi: 10.1111/tpj.12796. PubMed DOI

Park S., Gilmour S.J., Grumet R., Thomashow M.F. CBF-Dependent and CBF-Independent Regulatory Pathways Contribute to the Differences in Freezing Tolerance and Cold-Regulated Gene Expression of Two Arabidopsis Ecotypes Locally Adapted to Sites in Sweden and Italy. PLoS ONE. 2018;13:e0207723. doi: 10.1371/journal.pone.0207723. PubMed DOI PMC

Thomashow M.F., Gilmour S.J., Stockinger E.J., Jaglo-Ottosen K.R., Zarka D.G. Role of the Arabidopsis CBF Transcriptional Activators in Cold Acclimation. Physiol. Plant. 2001;112:171–175. doi: 10.1034/j.1399-3054.2001.1120204.x. DOI

Zhang X., Fowler S.G., Cheng H., Lou Y., Rhee S.Y., Stockinger E.J., Thomashow M.F. Freezing-Sensitive Tomato Has a Functional CBF Cold Response Pathway, but a CBF Regulon That Differs from That of Freezing-Tolerant Arabidopsis. Plant J. 2004;39:905–919. doi: 10.1111/j.1365-313X.2004.02176.x. PubMed DOI

Würschum T., Longin C.F.H., Hahn V., Tucker M.R., Leiser W.L. Copy Number Variations of CBF Genes at the Fr-A2 Locus Are Essential Components of Winter Hardiness in Wheat. Plant J. 2017;89:764–773. doi: 10.1111/tpj.13424. PubMed DOI

Francia E., Barabaschi D., Tondelli A., Laidò G., Rizza F., Stanca A.M., Busconi M., Fogher C., Stockinger E.J., Pecchioni N. Fine Mapping of a HvCBF Gene Cluster at the Frost Resistance Locus Fr-H2 in Barley. Theor. Appl. Genet. 2007;115:1083–1091. doi: 10.1007/s00122-007-0634-x. PubMed DOI

Qin F., Sakuma Y., Li J., Liu Q., Li Y.-Q., Shinozaki K., Yamaguchi-Shinozaki K. Cloning and Functional Analysis of a Novel DREB1/CBF Transcription Factor Involved in Cold-Responsive Gene Expression in Zea mays L. Plant Cell Physiol. 2004;45:1042–1052. doi: 10.1093/pcp/pch118. PubMed DOI

Park S., Shi A., Mou B. Genome-Wide Identification and Expression Analysis of the CBF/DREB1 Gene Family in Lettuce. Sci. Rep. 2020;10:5733. doi: 10.1038/s41598-020-62458-1. PubMed DOI PMC

An J.-P., Yao J.-F., Wang X.-N., You C.-X., Wang X.-F., Hao Y.-J. MdHY5 Positively Regulates Cold Tolerance via CBF-Dependent and CBF-Independent Pathways in Apple. J. Plant Physiol. 2017;218:275–281. doi: 10.1016/j.jplph.2017.09.001. PubMed DOI

Soltész A., Smedley M., Vashegyi I., Galiba G., Harwood W., Vágújfalvi A. Transgenic Barley Lines Prove the Involvement of TaCBF14 and TaCBF15 in the Cold Acclimation Process and in Frost Tolerance. J. Exp. Bot. 2013;64:1849–1862. doi: 10.1093/jxb/ert050. PubMed DOI PMC

Liu W.-C., Song R.-F., Qiu Y.-M., Zheng S.-Q., Li T.-T., Wu Y., Song C.-P., Lu Y.-T., Yuan H.-M. Sulfenylation of ENOLASE2 Facilitates H2O2-Conferred Freezing Tolerance in Arabidopsis. Dev. Cell. 2022;57:1883–1898.e5. doi: 10.1016/j.devcel.2022.06.012. PubMed DOI

Lee E.S., Park J.H., Wi S.D., Kang C.H., Chi Y.H., Chae H.B., Paeng S.K., Ji M.G., Kim W.-Y., Kim M.G., et al. Redox-Dependent Structural Switch and CBF Activation Confer Freezing Tolerance in Plants. Nat. Plants. 2021;7:914–922. doi: 10.1038/s41477-021-00944-8. PubMed DOI

Xu A., Wei N., Hu H., Zhou S., Huang Y., Kong Q., Bie Z., Nie W.-F., Cheng F. Thioredoxin H2 Inhibits the MPKK5-MPK3 Cascade to Regulate the CBF–COR Signaling Pathway in Citrullus Lanatus Suffering Chilling Stress. Hortic. Res. 2023;10:uhac256. doi: 10.1093/hr/uhac256. PubMed DOI PMC

Zhang H., Zhu J., Gong Z., Zhu J.-K. Abiotic Stress Responses in Plants. Nat. Rev. Genet. 2022;23:104–119. doi: 10.1038/s41576-021-00413-0. PubMed DOI

Qaseem M.F., Qureshi R., Shaheen H. Effects of Pre-Anthesis Drought, Heat and Their Combination on the Growth, Yield and Physiology of Diverse Wheat (Triticum aestivum L.) Genotypes Varying in Sensitivity to Heat and Drought Stress. Sci. Rep. 2019;9:6955. doi: 10.1038/s41598-019-43477-z. PubMed DOI PMC

Ayub M., Ashraf M.Y., Kausar A., Saleem S., Anwar S., Altay V., Ozturk M. Growth and Physio-Biochemical Responses of Maize (Zea mays L.) to Drought and Heat Stresses. Plant Biosyst. 2021;155:535–542. doi: 10.1080/11263504.2020.1762785. DOI

Mahalingam R., Bregitzer P. Impact on Physiology and Malting Quality of Barley Exposed to Heat, Drought and Their Combination during Different Growth Stages under Controlled Environment. Physiol. Plant. 2019;165:277–289. doi: 10.1111/ppl.12841. PubMed DOI

Shahriari A.G., Soltani Z., Tahmasebi A., Poczai P. Integrative System Biology Analysis of Transcriptomic Responses to Drought Stress in Soybean (Glycine max L.) Genes. 2022;13:1732. doi: 10.3390/genes13101732. PubMed DOI PMC

Saidi M.N., Mahjoubi H., Yacoubi I. Transcriptome Meta-Analysis of Abiotic Stresses-Responsive Genes and Identification of Candidate Transcription Factors for Broad Stress Tolerance in Wheat. Protoplasma. 2022 doi: 10.1007/s00709-022-01807-5. PubMed DOI

Soltanpour S., Tarinejad A., Hasanpur K., Majidi M. A Meta-Analysis of Microarray Data Revealed Hub Genes and Transcription Factors Involved in Drought Stress Response in Rice (Oryza sativa L.) Funct. Plant Biol. 2022;49:898–916. doi: 10.1071/FP22028. PubMed DOI

Papatheodorou I., Moreno P., Manning J., Fuentes A.M.-P., George N., Fexova S., Fonseca N.A., Füllgrabe A., Green M., Huang N., et al. Expression Atlas Update: From Tissues to Single Cells. Nucleic Acids Res. 2019;48:D77–D83. doi: 10.1093/nar/gkz947. PubMed DOI PMC

Suzuki N., Bassil E., Hamilton J.S., Inupakutika M.A., Zandalinas S.I., Tripathy D., Luo Y., Dion E., Fukui G., Kumazaki A., et al. ABA Is Required for Plant Acclimation to a Combination of Salt and Heat Stress. PLoS ONE. 2016;11:e0147625. doi: 10.1371/journal.pone.0147625. PubMed DOI PMC

Sugio A., Dreos R., Aparicio F., Maule A.J. The Cytosolic Protein Response as a Subcomponent of the Wider Heat Shock Response in Arabidopsis. Plant Cell. 2009;21:642–654. doi: 10.1105/tpc.108.062596. PubMed DOI PMC

Bieniawska Z., Espinoza C., Schlereth A., Sulpice R., Hincha D.K., Hannah M.A. Disruption of the Arabidopsis Circadian Clock Is Responsible for Extensive Variation in the Cold-Responsive Transcriptome. Plant Physiol. 2008;147:263–279. doi: 10.1104/pp.108.118059. PubMed DOI PMC

Hannah M.A., Wiese D., Freund S., Fiehn O., Heyer A.G., Hincha D.K. Natural Genetic Variation of Freezing Tolerance in Arabidopsis. Plant Physiol. 2006;142:98–112. doi: 10.1104/pp.106.081141. PubMed DOI PMC

Schlaen R.G., Mancini E., Sanchez S.E., Perez-Santángelo S., Rugnone M.L., Simpson C.G., Brown J.W.S., Zhang X., Chernomoretz A., Yanovsky M.J. The Spliceosome Assembly Factor GEMIN2 Attenuates the Effects of Temperature on Alternative Splicing and Circadian Rhythms. Proc. Natl. Acad. Sci. USA. 2015;112:9382–9387. doi: 10.1073/pnas.1504541112. PubMed DOI PMC

Wong M.M., Bhaskara G.B., Wen T.-N., Lin W.-D., Nguyen T.T., Chong G.L., Verslues P.E. Phosphoproteomics of Arabidopsis Highly ABA-Induced1 Identifies AT-Hook–Like10 Phosphorylation Required for Stress Growth Regulation. Proc. Natl. Acad. Sci. USA. 2019;116:2354–2363. doi: 10.1073/pnas.1819971116. PubMed DOI PMC

Pandey N., Ranjan A., Pant P., Tripathi R.K., Ateek F., Pandey H.P., Patre U.V., Sawant S.V. CAMTA 1 Regulates Drought Responses in Arabidopsis Thaliana. BMC Genom. 2013;14:216. doi: 10.1186/1471-2164-14-216. PubMed DOI PMC

Bhaskara G.B., Nguyen T.T., Verslues P.E. Unique Drought Resistance Functions of the Highly ABA-Induced Clade A Protein Phosphatase 2Cs. Plant Physiol. 2012;160:379–395. doi: 10.1104/pp.112.202408. PubMed DOI PMC

Allu A.D., Soja A.M., Wu A., Szymanski J., Balazadeh S. Salt Stress and Senescence: Identification of Cross-Talk Regulatory Components. J. Exp. Bot. 2014;65:3993–4008. doi: 10.1093/jxb/eru173. PubMed DOI PMC

Guan Q., Wu J., Yue X., Zhang Y., Zhu J. A Nuclear Calcium-Sensing Pathway Is Critical for Gene Regulation and Salt Stress Tolerance in Arabidopsis. PLoS Genet. 2013;9:e1003755. doi: 10.1371/journal.pgen.1003755. PubMed DOI PMC

Sun L., Dong S., Ge Y., Fonseca J.P., Robinson Z.T., Mysore K.S., Mehta P. DiVenn: An Interactive and Integrated Web-Based Visualization Tool for Comparing Gene Lists. Front. Genet. 2019;10:421. doi: 10.3389/fgene.2019.00421. PubMed DOI PMC

Osakabe Y., Yamaguchi-Shinozaki K., Shinozaki K., Tran L.-S.P. Sensing the Environment: Key Roles of Membrane-Localized Kinases in Plant Perception and Response to Abiotic Stress. J. Exp. Bot. 2013;64:445–458. doi: 10.1093/jxb/ers354. PubMed DOI

Khan M., Ali S., Al Azzawi T.N.I., Saqib S., Ullah F., Ayaz A., Zaman W. The Key Roles of ROS and RNS as a Signaling Molecule in Plant–Microbe Interactions. Antioxidants. 2023;12:268. doi: 10.3390/antiox12020268. PubMed DOI PMC

Mittler R., Zandalinas S.I., Fichman Y., van Breusegem F. Reactive Oxygen Species Signalling in Plant Stress Responses. Nat. Rev. Mol. Cell Biol. 2022;23:663–679. doi: 10.1038/s41580-022-00499-2. PubMed DOI

Heazlewood J.L., Verboom R.E., Tonti-Filippini J., Small I., Millar A.H. SUBA: The Arabidopsis Subcellular Database. Nucleic Acids Res. 2007;35:D213–D218. doi: 10.1093/nar/gkl863. PubMed DOI PMC

Huang Y.-C., Wu H.-C., Wang Y.-D., Liu C.-H., Lin C.-C., Luo D.-L., Jinn T.-L. PECTIN METHYLESTERASE34 Contributes to Heat Tolerance through Its Role in Promoting Stomatal Movement. Plant Physiol. 2017;174:748–763. doi: 10.1104/pp.17.00335. PubMed DOI PMC

Wang M., Zhu X., Peng G., Liu M., Zhang S., Chen M., Liao S., Wei X., Xu P., Tan X., et al. Methylesterification of Cell-Wall Pectin Controls the Diurnal Flower-Opening Times in Rice. Mol. Plant. 2022;15:956–972. doi: 10.1016/j.molp.2022.04.004. PubMed DOI

Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., et al. STRING V11: Protein–Protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Res. 2019;47:D607–D613. doi: 10.1093/nar/gky1131. PubMed DOI PMC

Liebermeister W., Noor E., Flamholz A., Davidi D., Bernhardt J., Milo R. Visual Account of Protein Investment in Cellular Functions. Proc. Natl. Acad. Sci. USA. 2014;111:8488–8493. doi: 10.1073/pnas.1314810111. PubMed DOI PMC

Woodrow P., Ciarmiello L.F., Annunziata M.G., Pacifico S., Iannuzzi F., Mirto A., D’Amelia L., Dell’Aversana E., Piccolella S., Fuggi A., et al. Durum Wheat Seedling Responses to Simultaneous High Light and Salinity Involve a Fine Reconfiguration of Amino Acids and Carbohydrate Metabolism. Physiol. Plant. 2017;159:290–312. doi: 10.1111/ppl.12513. PubMed DOI

Derakhshani Z., Bhave M., Shah R.M. Metabolic Contribution to Salinity Stress Response in Grains of Two Barley Cultivars with Contrasting Salt Tolerance. Environ. Exp. Bot. 2020;179:104229. doi: 10.1016/j.envexpbot.2020.104229. DOI

Zhang H., Xiong Y., Huang G., Xu X., Huang Q. Effects of Water Stress on Processing Tomatoes Yield, Quality and Water Use Efficiency with Plastic Mulched Drip Irrigation in Sandy Soil of the Hetao Irrigation District. Agric. Water Manag. 2017;179:205–214. doi: 10.1016/j.agwat.2016.07.022. DOI

Afrin T., Seok M., Terry B.C., Pajerowska-Mukhtar K.M. Probing Natural Variation of IRE1 Expression and Endoplasmic Reticulum Stress Responses in Arabidopsis Accessions. Sci. Rep. 2020;10:19154. doi: 10.1038/s41598-020-76114-1. PubMed DOI PMC

Zhang J., Liu D., Zhu D., Liu N., Yan Y. Endoplasmic Reticulum Subproteome Analysis Reveals Underlying Defense Mechanisms of Wheat Seedling Leaves under Salt Stress. Int. J. Mol. Sci. 2021;22:4840. doi: 10.3390/ijms22094840. PubMed DOI PMC

Kaur N., Kaitheri Kandoth P. Tomato BZIP60 MRNA Undergoes Splicing in Endoplasmic Reticulum Stress and in Response to Environmental Stresses. Plant Physiol. Biochem. 2021;160:397–403. doi: 10.1016/j.plaphy.2021.01.033. PubMed DOI

Xiang Y., Sun X., Gao S., Qin F., Dai M. Deletion of an Endoplasmic Reticulum Stress Response Element in a ZmPP2C-A Gene Facilitates Drought Tolerance of Maize Seedlings. Mol. Plant. 2017;10:456–469. doi: 10.1016/j.molp.2016.10.003. PubMed DOI

Michaletti A., Naghavi M.R., Toorchi M., Zolla L., Rinalducci S. Metabolomics and Proteomics Reveal Drought-Stress Responses of Leaf Tissues from Spring-Wheat. Sci. Rep. 2018;8:5710. doi: 10.1038/s41598-018-24012-y. PubMed DOI PMC

Casartelli A., Melino V.J., Baumann U., Riboni M., Suchecki R., Jayasinghe N.S., Mendis H., Watanabe M., Erban A., Zuther E., et al. Opposite Fates of the Purine Metabolite Allantoin under Water and Nitrogen Limitations in Bread Wheat. Plant Mol. Biol. 2019;99:477–497. doi: 10.1007/s11103-019-00831-z. PubMed DOI

Dong A., Yang Y., Liu S., Zenda T., Liu X., Wang Y., Li J., Duan H. Comparative Proteomics Analysis of Two Maize Hybrids Revealed Drought-Stress Tolerance Mechanisms. Biotechnol. Biotechnol. Equip. 2020;34:763–780. doi: 10.1080/13102818.2020.1805015. DOI

Benhassaine-Kesri G., Aid F., Demandre C., Kader J.-C., Mazliak P. Drought Stress Affects Chloroplast Lipid Metabolism in Rape (Brassica napus) Leaves. Physiol. Plant. 2002;115:221–227. doi: 10.1034/j.1399-3054.2002.1150207.x. PubMed DOI

Gu Y., He L., Zhao C., Wang F., Yan B., Gao Y., Li Z., Yang K., Xu J. Biochemical and Transcriptional Regulation of Membrane Lipid Metabolism in Maize Leaves under Low Temperature. Front. Plant Sci. 2017;8:2053. doi: 10.3389/fpls.2017.02053. PubMed DOI PMC

Narayanan S., Tamura P.J., Roth M.R., Prasad P.V.V., Welti R. Wheat Leaf Lipids during Heat Stress: I. High Day and Night Temperatures Result in Major Lipid Alterations. Plant Cell Environ. 2016;39:787–803. doi: 10.1111/pce.12649. PubMed DOI PMC

Spicher L., Glauser G., Kessler F. Lipid Antioxidant and Galactolipid Remodeling under Temperature Stress in Tomato Plants. Front. Plant Sci. 2016;7:167. doi: 10.3389/fpls.2016.00167. PubMed DOI PMC

Cheng X., Zhang S., Tao W., Zhang X., Liu J., Sun J., Zhang H., Pu L., Huang R., Chen T. INDETERMINATE SPIKELET1 Recruits Histone Deacetylase and a Transcriptional Repression Complex to Regulate Rice Salt Tolerance. Plant Physiol. 2018;178:824–837. doi: 10.1104/pp.18.00324. PubMed DOI PMC

Ma S., Tang N., Li X., Xie Y., Xiang D., Fu J., Shen J., Yang J., Tu H., Li X., et al. Reversible Histone H2B Monoubiquitination Fine-Tunes Abscisic Acid Signaling and Drought Response in Rice. Mol. Plant. 2019;12:263–277. doi: 10.1016/j.molp.2018.12.005. PubMed DOI

Bharti K., von Koskull-Doring P., Bharti S., Kumar P., Tintschl-Korbitzer A., Treuter E., Nover L. Tomato Heat Stress Transcription Factor HsfB1 Represents a Novel Type of General Transcription Coactivator with a Histone-Like Motif Interacting with the Plant CREB Binding Protein Ortholog HAC1[W] Plant Cell. 2004;16:1521–1535. doi: 10.1105/tpc.019927. PubMed DOI PMC

Mi H., Muruganujan A., Huang X., Ebert D., Mills C., Guo X., Thomas P.D. Protocol Update for Large-Scale Genome and Gene Function Analysis with the PANTHER Classification System (v.14.0) Nat. Protoc. 2019;14:703–721. doi: 10.1038/s41596-019-0128-8. PubMed DOI PMC

Mallikarjuna G., Mallikarjuna K., Reddy M.K., Kaul T. Expression of OsDREB2A Transcription Factor Confers Enhanced Dehydration and Salt Stress Tolerance in Rice (Oryza sativa L.) Biotechnol. Lett. 2011;33:1689–1697. doi: 10.1007/s10529-011-0620-x. PubMed DOI

Filyushin M.A., Kochieva E.Z., Shchennikova A.V. ZmDREB2.9 Gene in Maize (Zea mays L.): Genome-Wide Identification, Characterization, Expression, and Stress Response. Plants. 2022;11:3060. doi: 10.3390/plants11223060. PubMed DOI PMC

Pagliarini R.F., Marinho J.P., Molinari M.D.C., Marcolino-Gomes J., Caranhoto A.L.H., Marin S.R.R., Oliveira M.C.N., Foloni J.S.S., Melo C.L.P., Kidokoro S., et al. Overexpression of Full-Length and Partial DREB2A Enhances Soybean Drought Tolerance. Agron. Sci. Biotechnol. 2021;8:1–21. doi: 10.33158/ASB.r141.v8.2022. DOI

Maki H., Sakaoka S., Itaya T., Suzuki T., Mabuchi K., Amabe T., Suzuki N., Higashiyama T., Tada Y., Nakagawa T., et al. ANAC032 Regulates Root Growth through the MYB30 Gene Regulatory Network. Sci. Rep. 2019;9:11358. doi: 10.1038/s41598-019-47822-0. PubMed DOI PMC

Mahmood K., El-Kereamy A., Kim S.-H., Nambara E., Rothstein S.J. ANAC032 Positively Regulates Age-Dependent and Stress-Induced Senescence in Arabidopsis thaliana. Plant Cell Physiol. 2016;57:2029–2046. doi: 10.1093/pcp/pcw120. PubMed DOI

Soni N., Altartouri B., Hegde N., Duggavathi R., Nazarian-Firouzabadi F., Kushalappa A.C. TaNAC032 Transcription Factor Regulates Lignin-Biosynthetic Genes to Combat Fusarium Head Blight in Wheat. Plant Sci. 2021;304:110820. doi: 10.1016/j.plantsci.2021.110820. PubMed DOI

Zhao Y., Miao J., He J., Tian X., Gao K., Ma C., Tian X., Men W., Li H., Bi H., et al. Wheat Heat Shock Factor TaHsfA2d Contributes to Plant Responses to Phosphate Deficiency. Plant Physiol. Biochem. 2022;185:178–187. doi: 10.1016/j.plaphy.2022.05.035. PubMed DOI

Mei F., Chen B., Li F., Zhang Y., Kang Z., Wang X., Mao H. Overexpression of the Wheat NAC Transcription Factor TaSNAC4-3A Gene Confers Drought Tolerance in Transgenic Arabidopsis. Plant Physiol. Biochem. 2021;160:37–50. doi: 10.1016/j.plaphy.2021.01.004. PubMed DOI

Huang Y., Guo Y., Liu Y., Zhang F., Wang Z., Wang H., Wang F., Li D., Mao D., Luan S., et al. 9-Cis-Epoxycarotenoid Dioxygenase 3 Regulates Plant Growth and Enhances Multi-Abiotic Stress Tolerance in Rice. Front. Plant Sci. 2018;9:162. doi: 10.3389/fpls.2018.00162. PubMed DOI PMC

Capelle V., Remoué C., Moreau L., Reyss A., Mahé A., Massonneau A., Falque M., Charcosset A., Thévenot C., Rogowsky P., et al. QTLs and Candidate Genes for Desiccation and Abscisic Acid Content in Maize Kernels. BMC Plant Biol. 2010;10:2. doi: 10.1186/1471-2229-10-2. PubMed DOI PMC

Asghar M.A., Du J., Jiang H., Li Y., Sun X., Shang J., Liu J., Liu W., Imran S., Iqbal N., et al. Shade Pretreatment Enhanced Drought Resistance of Soybean. Environ. Exp. Bot. 2020;171:103952. doi: 10.1016/j.envexpbot.2019.103952. DOI

Ayaz M., Ahmad R., Shahzad M., Khan N., Shah M.M., Khan S.A. Drought Stress Stunt Tomato Plant Growth and Up-Regulate Expression of SlAREB, SlNCED3, and SlERF024 Genes. Sci. Hortic. 2015;195:48–55. doi: 10.1016/j.scienta.2015.08.025. DOI

Truong H.A., Lee S., Trịnh C.S., Lee W.J., Chung E.-H., Hong S.-W., Lee H. Overexpression of the HDA15 Gene Confers Resistance to Salt Stress by the Induction of NCED3, an ABA Biosynthesis Enzyme. Front. Plant Sci. 2021;12:640443. doi: 10.3389/fpls.2021.640443. PubMed DOI PMC

Sah S.K., Reddy K.R., Li J. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. Front. Plant Sci. 2016;7:571. doi: 10.3389/fpls.2016.00571. PubMed DOI PMC

Dong B., Zheng X., Liu H., Able J.A., Yang H., Zhao H., Zhang M., Qiao Y., Wang Y., Liu M. Effects of Drought Stress on Pollen Sterility, Grain Yield, Abscisic Acid and Protective Enzymes in Two Winter Wheat Cultivars. Front. Plant Sci. 2017;8:1008. doi: 10.3389/fpls.2017.01008. PubMed DOI PMC

Holsteens K., de Jaegere I., Wynants A., Prinsen E.L.J., van de Poel B. Mild and Severe Salt Stress Responses Are Age-Dependently Regulated by Abscisic Acid in Tomato. Front. Plant Sci. 2022;13:269. doi: 10.3389/fpls.2022.982622. PubMed DOI PMC

Maruyama K., Urano K., Yoshiwara K., Morishita Y., Sakurai N., Suzuki H., Kojima M., Sakakibara H., Shibata D., Saito K., et al. Integrated Analysis of the Effects of Cold and Dehydration on Rice Metabolites, Phytohormones, and Gene Transcripts. Plant Physiol. 2014;164:1759–1771. doi: 10.1104/pp.113.231720. PubMed DOI PMC

Wang N., Chen J., Gao Y., Zhou Y., Chen M., Xu Z., Fang Z., Ma Y. Genomic Analysis of Isopentenyltransferase Genes and Functional Characterization of TaIPT8 Indicates Positive Effects of Cytokinins on Drought Tolerance in Wheat. Crop J. 2023;11:46–56. doi: 10.1016/j.cj.2022.04.010. DOI

Pommerrenig B., Ludewig F., Cvetkovic J., Trentmann O., Klemens P.A.W., Neuhaus H.E. In Concert: Orchestrated Changes in Carbohydrate Homeostasis Are Critical for Plant Abiotic Stress Tolerance. Plant Cell Physiol. 2018;59:1290–1299. doi: 10.1093/pcp/pcy037. PubMed DOI

Brocard L., Immel F., Coulon D., Esnay N., Tuphile K., Pascal S., Claverol S., Fouillen L., Bessoule J.-J., Bréhélin C. Proteomic Analysis of Lipid Droplets from Arabidopsis Aging Leaves Brings New Insight into Their Biogenesis and Functions. Front. Plant Sci. 2017;8:894. doi: 10.3389/fpls.2017.00894. PubMed DOI PMC

Castelló M.J., Carrasco J.L., Navarrete-Gómez M., Daniel J., Granot D., Vera P. A Plant Small Polypeptide Is a Novel Component of DNA-Binding Protein Phosphatase 1-Mediated Resistance to Plum Pox Virus in Arabidopsis. Plant Physiol. 2011;157:2206–2215. doi: 10.1104/pp.111.188953. PubMed DOI PMC

Xu Y., Yu Z., Zhang D., Huang J., Wu C., Yang G., Yan K., Zhang S., Zheng C. CYSTM, a Novel Non-Secreted Cysteine-Rich Peptide Family, Involved in Environmental Stresses in Arabidopsis Thaliana. Plant Cell Physiol. 2017;59:423–438. doi: 10.1093/pcp/pcx202. PubMed DOI

Koike M., Okamoto T., Tsuda S., Imai R. A Novel Plant Defensin-like Gene of Winter Wheat Is Specifically Induced during Cold Acclimation. Biochem. Biophys. Res. Commun. 2002;298:46–53. doi: 10.1016/S0006-291X(02)02391-4. PubMed DOI

Saijo Y., Loo E.P. Plant Immunity in Signal Integration between Biotic and Abiotic Stress Responses. New Phytol. 2019;225:87–104. doi: 10.1111/nph.15989. PubMed DOI

Menna A., Nguyen D., Guttman D.S., Desveaux D. Elevated Temperature Differentially Influences Effector-Triggered Immunity Outputs in Arabidopsis. Front. Plant Sci. 2015;6:995. doi: 10.3389/fpls.2015.00995. PubMed DOI PMC

Webb K.M., Oña I., Bai J., Garrett K.A., Mew T., Vera Cruz C.M., Leach J.E. A Benefit of High Temperature: Increased Effectiveness of a Rice Bacterial Blight Disease Resistance Gene. New Phytol. 2009;185:568–576. doi: 10.1111/j.1469-8137.2009.03076.x. PubMed DOI

Negeri A., Wang G.-F., Benavente L., Kibiti C.M., Chaikam V., Johal G., Balint-Kurti P. Characterization of Temperature and Light Effects on the Defense Response Phenotypes Associated with the Maize Rp1-D21autoactive Resistance Gene. BMC Plant Biol. 2013;13:106. doi: 10.1186/1471-2229-13-106. PubMed DOI PMC

Byamukama E., Seifers D.L., Hein G.L., de Wolf E., Tisserat N.A., Langham M.A.C., Osborne L.E., Timmerman A., Wegulo S.N. Occurrence and Distribution of Triticum Mosaic Virus in the Central Great Plains. Plant Dis. 2013;97:21–29. doi: 10.1094/PDIS-06-12-0535-RE. PubMed DOI

Liu B., Ouyang Z., Zhang Y., Li X., Hong Y., Huang L., Liu S., Zhang H., Li D., Song F. Tomato NAC Transcription Factor SlSRN1 Positively Regulates Defense Response against Biotic Stress but Negatively Regulates Abiotic Stress Response. PLoS ONE. 2014;9:e102067. doi: 10.1371/journal.pone.0102067. PubMed DOI PMC

Rivero R.M., Mittler R., Blumwald E., Zandalinas S.I. Developing Climate-resilient Crops: Improving Plant Tolerance to Stress Combination. Plant J. 2022;109:373–389. doi: 10.1111/tpj.15483. PubMed DOI

Erb M., Kliebenstein D.J. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. Plant Physiol. 2020;184:39–52. doi: 10.1104/pp.20.00433. PubMed DOI PMC

Santner A., Calderon-Villalobos L.I.A., Estelle M. Plant Hormones Are Versatile Chemical Regulators of Plant Growth. Nat. Chem. Biol. 2009;5:301–307. doi: 10.1038/nchembio.165. PubMed DOI

Liu B., Kong L., Zhang Y., Liao Y. Gene and Metabolite Integration Analysis through Transcriptome and Metabolome Brings New Insight into Heat Stress Tolerance in Potato (Solanum tuberosum L.) Plants. 2021;10:103. doi: 10.3390/plants10010103. PubMed DOI PMC

Joshi J., Hasnain G., Logue T., Lynch M., Wu S., Guan J.-C., Alseekh S., Fernie A.R., Hanson A.D., McCarty D.R. A Core Metabolome Response of Maize Leaves Subjected to Long-Duration Abiotic Stresses. Metabolites. 2021;11:797. doi: 10.3390/metabo11110797. PubMed DOI PMC

Bheemanahalli R., Impa S.M., Krassovskaya I., Vennapusa A.R., Gill K.S., Obata T., Jagadish S.V.K. Enhanced N-metabolites, ABA and IAA -conjugate in Anthers Instigate Heat Sensitivity in Spring Wheat. Physiol. Plant. 2020;169:501–514. doi: 10.1111/ppl.13109. PubMed DOI

Lecourieux D., Kappel C., Claverol S., Pieri P., Feil R., Lunn J.E., Bonneu M., Wang L., Gomès E., Delrot S., et al. Proteomic and Metabolomic Profiling Underlines the Stage- and Time-dependent Effects of High Temperature on Grape Berry Metabolism. J. Integr. Plant Biol. 2020;62:1132–1158. doi: 10.1111/jipb.12894. PubMed DOI

Qu M., Chen G., Bunce J.A., Zhu X., Sicher R.C. Systematic Biology Analysis on Photosynthetic Carbon Metabolism of Maize Leaf Following Sudden Heat Shock under Elevated CO2. Sci. Rep. 2018;8:7849. doi: 10.1038/s41598-018-26283-x. PubMed DOI PMC

Paupière M.J., Müller F., Li H., Rieu I., Tikunov Y.M., Visser R.G.F., Bovy A.G. Untargeted Metabolomic Analysis of Tomato Pollen Development and Heat Stress Response. Plant Reprod. 2017;30:81–94. doi: 10.1007/s00497-017-0301-6. PubMed DOI PMC

Andrade A., Boero A., Escalante M., Llanes A., Arbona V., Gómez-Cádenas A., Alemano S. Comparative Hormonal and Metabolic Profile Analysis Based on Mass Spectrometry Provides Information on the Regulation of Water-Deficit Stress Response of Sunflower (Helianthus annuus L.) Inbred Lines with Different Water-Deficit Stress Sensitivity. Plant Physiol. Biochem. 2021;168:432–446. doi: 10.1016/j.plaphy.2021.10.015. PubMed DOI

Itam M., Mega R., Tadano S., Abdelrahman M., Matsunaga S., Yamasaki Y., Akashi K., Tsujimoto H. Metabolic and Physiological Responses to Progressive Drought Stress in Bread Wheat. Sci. Rep. 2020;10:17189. doi: 10.1038/s41598-020-74303-6. PubMed DOI PMC

Hong Y., Ni S.-J., Zhang G.-P. Transcriptome and Metabolome Analysis Reveals Regulatory Networks and Key Genes Controlling Barley Malting Quality in Responses to Drought Stress. Plant Physiol. Biochem. 2020;152:1–11. doi: 10.1016/j.plaphy.2020.04.029. PubMed DOI

Marček T., Hamow K.Á., Végh B., Janda T., Darko E. Metabolic Response to Drought in Six Winter Wheat Genotypes. PLoS ONE. 2019;14:e0212411. doi: 10.1371/journal.pone.0212411. PubMed DOI PMC

Wu X., Cai K., Zhang G., Zeng F. Metabolite Profiling of Barley Grains Subjected to Water Stress: To Explain the Genotypic Difference in Drought-Induced Impacts on Malting Quality. Front. Plant Sci. 2017;8:1547. doi: 10.3389/fpls.2017.01547. PubMed DOI PMC

Sprenger H., Erban A., Seddig S., Rudack K., Thalhammer A., Le M.Q., Walther D., Zuther E., Köhl K.I., Kopka J., et al. Metabolite and Transcript Markers for the Prediction of Potato Drought Tolerance. Plant Biotechnol. J. 2018;16:939–950. doi: 10.1111/pbi.12840. PubMed DOI PMC

Moschen S., di Rienzo J.A., Higgins J., Tohge T., Watanabe M., González S., Rivarola M., García-García F., Dopazo J., Hopp H.E., et al. Integration of Transcriptomic and Metabolic Data Reveals Hub Transcription Factors Involved in Drought Stress Response in Sunflower (Helianthus annuus L.) Plant Mol. Biol. 2017;94:549–564. doi: 10.1007/s11103-017-0625-5. PubMed DOI

Chen Y., Wang J., Yao L., Li B., Ma X., Si E., Yang K., Li C., Shang X., Meng Y., et al. Combined Proteomic and Metabolomic Analysis of the Molecular Mechanism Underlying the Response to Salt Stress during Seed Germination in Barley. Int. J. Mol. Sci. 2022;23:10515. doi: 10.3390/ijms231810515. PubMed DOI PMC

Wan H., Qian J., Zhang H., Lu H., Li O., Li R., Yu Y., Wen J., Zhao L., Yi B., et al. Combined Transcriptomics and Metabolomics Analysis Reveals the Molecular Mechanism of Salt Tolerance of Huayouza 62, an Elite Cultivar in Rapeseed (Brassica napus L.) Int. J. Mol. Sci. 2022;23:1279. doi: 10.3390/ijms23031279. PubMed DOI PMC

El-Badri A.M., Batool M., Mohamed I.A.A., Wang Z., Khatab A., Sherif A., Ahmad H., Khan M.N., Hassan H.M., Elrewainy I.M., et al. Antioxidative and Metabolic Contribution to Salinity Stress Responses in Two Rapeseed Cultivars during the Early Seedling Stage. Antioxidants. 2021;10:1227. doi: 10.3390/antiox10081227. PubMed DOI PMC

Liu L., Wang B., Liu D., Zou C., Wu P., Wang Z., Wang Y., Li C. Transcriptomic and Metabolomic Analyses Reveal Mechanisms of Adaptation to Salinity in Which Carbon and Nitrogen Metabolism Is Altered in Sugar Beet Roots. BMC Plant Biol. 2020;20:138. doi: 10.1186/s12870-020-02349-9. PubMed DOI PMC

Shen Q., Yu J., Fu L., Wu L., Dai F., Jiang L., Wu D., Zhang G. Ionomic, Metabolomic and Proteomic Analyses Reveal Molecular Mechanisms of Root Adaption to Salt Stress in Tibetan Wild Barley. Plant Physiol. Biochem. 2018;123:319–330. doi: 10.1016/j.plaphy.2017.12.032. PubMed DOI

Borrelli G.M., Fragasso M., Nigro F., Platani C., Papa R., Beleggia R., Trono D. Analysis of Metabolic and Mineral Changes in Response to Salt Stress in Durum Wheat (Triticum Turgidum Ssp. Durum) Genotypes, Which Differ in Salinity Tolerance. Plant Physiol. Biochem. 2018;133:57–70. doi: 10.1016/j.plaphy.2018.10.025. PubMed DOI

Hossain M.S., Persicke M., ElSayed A.I., Kalinowski J., Dietz K.-J. Metabolite Profiling at the Cellular and Subcellular Level Reveals Metabolites Associated with Salinity Tolerance in Sugar Beet. J. Exp. Bot. 2017;68:5961–5976. doi: 10.1093/jxb/erx388. PubMed DOI PMC

Cao D., Lutz A., Hill C.B., Callahan D.L., Roessner U. A Quantitative Profiling Method of Phytohormones and Other Metabolites Applied to Barley Roots Subjected to Salinity Stress. Front. Plant Sci. 2017;7:2070. doi: 10.3389/fpls.2016.02070. PubMed DOI PMC

Yu T., Zhang J., Cao J., Li X., Li S., Liu C., Wang L. Metabolic Insight into Cold Stress Response in Two Contrasting Maize Lines. Life. 2022;12:282. doi: 10.3390/life12020282. PubMed DOI PMC

Xu G., Li L., Zhou J., Lv D., Zhao D., Qin S. Comparison of Transcriptome and Metabolome Analysis Revealed Differences in Cold Resistant Metabolic Pathways in Different Apple Cultivars under Low Temperature Stress. Hortic. Plant J. 2022 doi: 10.1016/j.hpj.2022.09.002. DOI

Liu X., Wei R., Tian M., Liu J., Ruan Y., Sun C., Liu C. Combined Transcriptome and Metabolome Profiling Provide Insights into Cold Responses in Rapeseed (Brassica napus L.) Genotypes with Contrasting Cold-Stress Sensitivity. Int. J. Mol. Sci. 2022;23:13546. doi: 10.3390/ijms232113546. PubMed DOI PMC

Urrutia M., Blein-Nicolas M., Prigent S., Bernillon S., Deborde C., Balliau T., Maucourt M., Jacob D., Ballias P., Bénard C., et al. Maize Metabolome and Proteome Responses to Controlled Cold Stress Partly Mimic Early-sowing Effects in the Field and Differ from Those of Arabidopsis. Plant Cell Environ. 2021;44:1504–1521. doi: 10.1111/pce.13993. PubMed DOI PMC

Raza A., Su W., Hussain M.A., Mehmood S.S., Zhang X., Cheng Y., Zou X., Lv Y. Integrated Analysis of Metabolome and Transcriptome Reveals Insights for Cold Tolerance in Rapeseed (Brassica napus L.) Front. Plant Sci. 2021;12:1796. doi: 10.3389/fpls.2021.721681. PubMed DOI PMC

Garzon C.D., Lequart M., Rautengarten C., Bassard S., Sellier-Richard H., Baldet P., Heazlewood J.L., Gibon Y., Domon J.-M., Giauffret C., et al. Regulation of Carbon Metabolism in Two Maize Sister Lines Contrasted for Chilling Tolerance. J. Exp. Bot. 2020;71:356–369. doi: 10.1093/jxb/erz421. PubMed DOI

Zhao Y., Zhou M., Xu K., Li J., Li S., Zhang S., Yang X. Integrated Transcriptomics and Metabolomics Analyses Provide Insights into Cold Stress Response in Wheat. Crop J. 2019;7:857–866. doi: 10.1016/j.cj.2019.09.002. DOI

Kou S., Chen L., Tu W., Scossa F., Wang Y., Liu J., Fernie A.R., Song B., Xie C. The Arginine Decarboxylase Gene ADC1, Associated to the Putrescine Pathway, Plays an Important Role in Potato Cold-Acclimated Freezing Tolerance as Revealed by Transcriptome and Metabolome Analyses. Plant J. 2018;96:1283–1298. doi: 10.1111/tpj.14126. PubMed DOI

Kavi Kishor P.B., Suravajhala P., Rathnagiri P., Sreenivasulu N. Intriguing Role of Proline in Redox Potential Conferring High Temperature Stress Tolerance. Front. Plant Sci. 2022;13:867531. doi: 10.3389/fpls.2022.867531. PubMed DOI PMC

Guo M., Zhang X., Liu J., Hou L., Liu H., Zhao X. OsProDH Negatively Regulates Thermotolerance in Rice by Modulating Proline Metabolism and Reactive Oxygen Species Scavenging. Rice. 2020;13:61. doi: 10.1186/s12284-020-00422-3. PubMed DOI PMC

Vendruscolo E.C.G., Schuster I., Pileggi M., Scapim C.A., Molinari H.B.C., Marur C.J., Vieira L.G.E. Stress-Induced Synthesis of Proline Confers Tolerance to Water Deficit in Transgenic Wheat. J. Plant Physiol. 2007;164:1367–1376. doi: 10.1016/j.jplph.2007.05.001. PubMed DOI

Mattioli R., Costantino P., Trovato M. Proline Accumulation in Plants. Plant Signal. Behav. 2009;4:1016–1018. doi: 10.4161/psb.4.11.9797. PubMed DOI PMC

Guan C., Cui X., Liu H., Li X., Li M., Zhang Y. Proline Biosynthesis Enzyme Genes Confer Salt Tolerance to Switchgrass (Panicum virgatum L.) in Cooperation with Polyamines Metabolism. Front. Plant Sci. 2020;11:46. doi: 10.3389/fpls.2020.00046. PubMed DOI PMC

Raza A., Charagh S., Abbas S., Hassan M.U., Saeed F., Haider S., Sharif R., Anand A., Corpas F.J., Jin W., et al. Assessment of Proline Function in Higher Plants under Extreme Temperatures. Plant Biol. 2023;25:379–395. doi: 10.1111/plb.13510. PubMed DOI

Guerzoni J.T.S., Belintani N.G., Moreira R.M.P., Hoshino A.A., Domingues D.S., Filho J.C.B., Vieira L.G.E. Stress-Induced Δ1-Pyrroline-5-Carboxylate Synthetase (P5CS) Gene Confers Tolerance to Salt Stress in Transgenic Sugarcane. Acta Physiol. Plant. 2014;36:2309–2319. doi: 10.1007/s11738-014-1579-8. DOI

Karabudak T., Bor M., Özdemir F., Türkan İ. Glycine Betaine Protects Tomato (Solanum lycopersicum) Plants at Low Temperature by Inducing Fatty Acid Desaturase7 and Lipoxygenase Gene Expression. Mol. Biol. Rep. 2014;41:1401–1410. doi: 10.1007/s11033-013-2984-6. PubMed DOI

Gupta P., Rai R., Vasudev S., Yadava D.K., Dash P.K. Ex-Foliar Application of Glycine Betaine and Its Impact on Protein, Carbohydrates and Induction of ROS Scavenging System during Drought Stress in Flax (Linum Usitatissimum) J. Biotechnol. 2021;337:80–89. doi: 10.1016/j.jbiotec.2021.06.012. PubMed DOI

Zhao H., Zhang Q., Zhang M., Jin Y.-K., Jiang Z.-Z., Jiang N., Wang Q., Qu J., Guan S.-Y., Wang P.-W. Drought Tolerance in High-Generation Transgenic Maize Inbred Lines Overexpressing the Betaine Aldehyde Dehydrogenase Gene. Cereal Res. Commun. 2021;49:183–192. doi: 10.1007/s42976-020-00093-2. DOI

Goel D., Singh A.K., Yadav V., Babbar S.B., Murata N., Bansal K.C. Transformation of Tomato with a Bacterial CodA Gene Enhances Tolerance to Salt and Water Stresses. J. Plant Physiol. 2011;168:1286–1294. doi: 10.1016/j.jplph.2011.01.010. PubMed DOI

Wang G.P., Zhang X.Y., Li F., Luo Y., Wang W. Overaccumulation of Glycine Betaine Enhances Tolerance to Drought and Heat Stress in Wheat Leaves in the Protection of Photosynthesis. Photosynthetica. 2010;48:117–126. doi: 10.1007/s11099-010-0016-5. DOI

Zhang X.-Y., Liang C., Wang G.-P., Luo Y., Wang W. The Protection of Wheat Plasma Membrane under Cold Stress by Glycine Betaine Overproduction. Biol. Plant. 2010;54:83–88. doi: 10.1007/s10535-010-0012-4. DOI

Zhao J., Missihoun T.D., Bartels D. The Role of Arabidopsis Aldehyde Dehydrogenase Genes in Response to High Temperature and Stress Combinations. J. Exp. Bot. 2017;68:4295–4308. doi: 10.1093/jxb/erx194. PubMed DOI PMC

Zarei A., Trobacher C.P., Shelp B.J. Arabidopsis Aldehyde Dehydrogenase 10 Family Members Confer Salt Tolerance through Putrescine-Derived 4-Aminobutyrate (GABA) Production. Sci. Rep. 2016;6:35115. doi: 10.1038/srep35115. PubMed DOI PMC

Sita K., Kumar V. Role of Gamma Amino Butyric Acid (GABA) against Abiotic Stress Tolerance in Legumes: A Review. Plant Physiol. Rep. 2020;25:654–663. doi: 10.1007/s40502-020-00553-1. DOI

Panchal P., Miller A.J., Giri J. Organic Acids: Versatile Stress-Response Roles in Plants. J. Exp. Bot. 2021;72:4038–4052. doi: 10.1093/jxb/erab019. PubMed DOI

Chevilly S., Dolz-Edo L., Morcillo L., Vilagrosa A., López-Nicolás J.M., Yenush L., Mulet J.M. Identification of Distinctive Physiological and Molecular Responses to Salt Stress among Tolerant and Sensitive Cultivars of Broccoli (Brassica Oleracea Var. Italica) BMC Plant Biol. 2021;21:488. doi: 10.1186/s12870-021-03263-4. PubMed DOI PMC

Kim J.-M., To T.K., Matsui A., Tanoi K., Kobayashi N.I., Matsuda F., Habu Y., Ogawa D., Sakamoto T., Matsunaga S., et al. Acetate-Mediated Novel Survival Strategy against Drought in Plants. Nat. Plants. 2017;3:17097. doi: 10.1038/nplants.2017.97. PubMed DOI

Shi D., Sheng Y. Effect of Various Salt–Alkaline Mixed Stress Conditions on Sunflower Seedlings and Analysis of Their Stress Factors. Environ. Exp. Bot. 2005;54:8–21. doi: 10.1016/j.envexpbot.2004.05.003. DOI

Yu J., Du H., Xu M., Huang B. Metabolic Responses to Heat Stress under Elevated Atmospheric CO2 Concentration in a Cool-Season Grass Species. J. Am. Soc. Hortic. Sci. 2012;137:221–228. doi: 10.21273/JASHS.137.4.221. DOI

Hu L., Zhang Z., Xiang Z., Yang Z. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum) Front. Plant Sci. 2016;7:179. doi: 10.3389/fpls.2016.00179. PubMed DOI PMC

El-Hawary M., Nashed M. Effect of Foliar Application by Some Antioxidants on Growth and Productivity of Maize under Saline Soil Conditions. J. Plant Prod. 2019;10:93–99. doi: 10.21608/jpp.2019.36238. DOI

Sami F., Yusuf M., Faizan M., Faraz A., Hayat S. Role of Sugars under Abiotic Stress. Plant Physiol. Biochem. 2016;109:54–61. doi: 10.1016/j.plaphy.2016.09.005. PubMed DOI

Zepeda A.C., Heuvelink E., Marcelis L.F.M. Carbon Storage in Plants: A Buffer for Temporal Light and Temperature Fluctuations. In Silico Plants. 2023;5:diac020. doi: 10.1093/insilicoplants/diac020. DOI

Zandalinas S.I., Balfagón D., Gómez-Cadenas A., Mittler R. Plant Responses to Climate Change: Metabolic Changes under Combined Abiotic Stresses. J. Exp. Bot. 2022;73:3339–3354. doi: 10.1093/jxb/erac073. PubMed DOI

Jia W., Zhang L., Wu D., Liu S., Gong X., Cui Z., Cui N., Cao H., Rao L., Wang C. Sucrose Transporter AtSUC9 Mediated by a Low Sucrose Level Is Involved in Arabidopsis Abiotic Stress Resistance by Regulating Sucrose Distribution and ABA Accumulation. Plant Cell Physiol. 2015;56:1574–1587. doi: 10.1093/pcp/pcv082. PubMed DOI

Wang D., Liu H., Wang H., Zhang P., Shi C. A Novel Sucrose Transporter Gene IbSUT4 Involves in Plant Growth and Response to Abiotic Stress through the ABF-Dependent ABA Signaling Pathway in Sweetpotato. BMC Plant Biol. 2020;20:157. doi: 10.1186/s12870-020-02382-8. PubMed DOI PMC

Jiang D., Chen W., Gao J., Yang F., Zhuang C. Overexpression of the Trehalose-6-Phosphate Phosphatase OsTPP3 Increases Drought Tolerance in Rice. Plant Biotechnol. Rep. 2019;13:285–292. doi: 10.1007/s11816-019-00541-4. DOI

Lyu J.I., Park J.H., Kim J.-K., Bae C.-H., Jeong W.-J., Min S.R., Liu J.R. Enhanced Tolerance to Heat Stress in Transgenic Tomato Seeds and Seedlings Overexpressing a Trehalose-6-Phosphate Synthase/Phosphatase Fusion Gene. Plant Biotechnol. Rep. 2018;12:399–408. doi: 10.1007/s11816-018-0505-8. DOI

Suárez R., Wong A., Ramírez M., Barraza A., del Orozco M.C., Cevallos M.A., Lara M., Hernández G., Iturriaga G. Improvement of Drought Tolerance and Grain Yield in Common Bean by Overexpressing Trehalose-6-Phosphate Synthase in Rhizobia. Mol. Plant-Microbe Interact. 2008;21:958–966. doi: 10.1094/MPMI-21-7-0958. PubMed DOI

Nuccio M.L., Wu J., Mowers R., Zhou H.-P., Meghji M., Primavesi L.F., Paul M.J., Chen X., Gao Y., Haque E., et al. Expression of Trehalose-6-Phosphate Phosphatase in Maize Ears Improves Yield in Well-Watered and Drought Conditions. Nat. Biotechnol. 2015;33:862–869. doi: 10.1038/nbt.3277. PubMed DOI

Asaf S., Khan A.L., Khan M.A., Imran Q.M., Yun B.-W., Lee I.-J. Osmoprotective Functions Conferred to Soybean Plants via Inoculation with Sphingomonas Sp. LK11 and Exogenous Trehalose. Microbiol. Res. 2017;205:135–145. doi: 10.1016/j.micres.2017.08.009. PubMed DOI

Griffiths C.A., Sagar R., Geng Y., Primavesi L.F., Patel M.K., Passarelli M.K., Gilmore I.S., Steven R.T., Bunch J., Paul M.J., et al. Chemical Intervention in Plant Sugar Signalling Increases Yield and Resilience. Nature. 2016;540:574–578. doi: 10.1038/nature20591. PubMed DOI

Hisano H., Kanazawa A., Kawakami A., Yoshida M., Shimamoto Y., Yamada T. Transgenic Perennial Ryegrass Plants Expressing Wheat Fructosyltransferase Genes Accumulate Increased Amounts of Fructan and Acquire Increased Tolerance on a Cellular Level to Freezing. Plant Sci. 2004;167:861–868. doi: 10.1016/j.plantsci.2004.05.037. DOI

Tamura K., Sanada Y., Tase K., Kawakami A., Yoshida M., Yamada T. Comparative Study of Transgenic Brachypodium Distachyon Expressing Sucrose:Fructan 6-Fructosyltransferases from Wheat and Timothy Grass with Different Enzymatic Properties. Planta. 2014;239:783–792. doi: 10.1007/s00425-013-2016-8. PubMed DOI

Thalmann M., Santelia D. Starch as a Determinant of Plant Fitness under Abiotic Stress. New Phytol. 2017;214:943–951. doi: 10.1111/nph.14491. PubMed DOI

Kesten C., Wallmann A., Schneider R., McFarlane H.E., Diehl A., Khan G.A., van Rossum B.-J., Lampugnani E.R., Szymanski W.G., Cremer N., et al. The Companion of Cellulose Synthase 1 Confers Salt Tolerance through a Tau-like Mechanism in Plants. Nat. Commun. 2019;10:857. doi: 10.1038/s41467-019-08780-3. PubMed DOI PMC

Takahashi D., Johnson K.L., Hao P., Tuong T., Erban A., Sampathkumar A., Bacic A., Livingston D.P., Kopka J., Kuroha T., et al. Cell Wall Modification by the Xyloglucan Endotransglucosylase/Hydrolase XTH19 Influences Freezing Tolerance after Cold and Sub-zero Acclimation. Plant Cell Environ. 2021;44:915–930. doi: 10.1111/pce.13953. PubMed DOI

Choi J.Y., Seo Y.S., Kim S.J., Kim W.T., Shin J.S. Constitutive Expression of CaXTH3, a Hot Pepper Xyloglucan Endotransglucosylase/Hydrolase, Enhanced Tolerance to Salt and Drought Stresses without Phenotypic Defects in Tomato Plants (Solanum lycopersicum Cv. Dotaerang) Plant Cell Rep. 2011;30:867–877. doi: 10.1007/s00299-010-0989-3. PubMed DOI

An P., Li X., Zheng Y., Matsuura A., Abe J., Eneji A.E., Tanimoto E., Inanaga S. Effects of NaCl on Root Growth and Cell Wall Composition of Two Soya Bean Cultivars with Contrasting Salt Tolerance. J. Agron. Crop Sci. 2014;200:212–218. doi: 10.1111/jac.12060. DOI

Adrees M., Ali S., Iqbal M., Aslam Bharwana S., Siddiqi Z., Farid M., Ali Q., Saeed R., Rizwan M. Mannitol Alleviates Chromium Toxicity in Wheat Plants in Relation to Growth, Yield, Stimulation of Anti-Oxidative Enzymes, Oxidative Stress and Cr Uptake in Sand and Soil Media. Ecotoxicol. Environ. Saf. 2015;122:1–8. doi: 10.1016/j.ecoenv.2015.07.003. PubMed DOI

Seckin B., Sekmen A.H., Türkan İ. An Enhancing Effect of Exogenous Mannitol on the Antioxidant Enzyme Activities in Roots of Wheat Under Salt Stress. J. Plant Growth Regul. 2009;28:12–20. doi: 10.1007/s00344-008-9068-1. DOI

Abebe T., Guenzi A.C., Martin B., Cushman J.C. Tolerance of Mannitol-Accumulating Transgenic Wheat to Water Stress and Salinity. Plant Physiol. 2003;131:1748–1755. doi: 10.1104/pp.102.003616. PubMed DOI PMC

Patel K.G., Mandaliya V.B., Mishra G.P., Dobaria J.R., Thankappan R. Transgenic Peanut Overexpressing MtlD Gene Confers Enhanced Salinity Stress Tolerance via Mannitol Accumulation and Differential Antioxidative Responses. Acta Physiol. Plant. 2016;38:181. doi: 10.1007/s11738-016-2200-0. DOI

Yan L., Zeng L., Raza A., Lv Y., Ding X., Cheng Y., Zou X. Inositol Improves Cold Tolerance Through Inhibiting CBL1 and Increasing Ca2+ Influx in Rapeseed (Brassica napus L.) Front. Plant Sci. 2022;13:775692. doi: 10.3389/fpls.2022.775692. PubMed DOI PMC

Nisa Z., Chen C., Yu Y., Chen C., Mallano A.I., Xiang-bo D., Xiao-li S., Yan-ming Z. Constitutive Overexpression of Myo-Inositol-1-Phosphate Synthase Gene (GsMIPS2) from Glycine Soja Confers Enhanced Salt Tolerance at Various Growth Stages in Arabidopsis. J. Northeast Agric. Univ. (Engl. Ed.) 2016;23:28–44. doi: 10.1016/S1006-8104(16)30045-9. DOI

Jain M., Tiwary S., Gadre R. Sorbitol-Induced Changes in Various Growth and Biochemici Parameters in Maize. Plant Soil Environ. 2010;56:263–267. doi: 10.17221/233/2009-PSE. DOI

Theerakulp P., Gunnula W. Exogenous Sorbitol and Trehalose Mitigated Salt Stress Damage in Salt-Sensitive but Not Salt-Tolerant Rice Seedlings. Asian J. Crop Sci. 2012;4:165–170. doi: 10.3923/ajcs.2012.165.170. DOI

Ashraf M.A., Iqbal M., Rasheed R., Hussain I., Riaz M., Arif M.S. Plant Metabolites and Regulation under Environmental Stress. Academic Press; Cambridge, MA, USA: 2018. Environmental Stress and Secondary Metabolites in Plants.

Zaynab M., Fatima M., Abbas S., Sharif Y., Umair M., Zafar M.H., Bahadar K. Role of Secondary Metabolites in Plant Defense against Pathogens. Microb. Pathog. 2018;124:198–202. doi: 10.1016/j.micpath.2018.08.034. PubMed DOI

Kumar S., Abedin M.M., Singh A.K., Das S. Plant Phenolics in Sustainable Agriculture. Springer; Singapore: 2020. Role of Phenolic Compounds in Plant-Defensive Mechanisms; pp. 517–532.

Shamloo M., Babawale E.A., Furtado A., Henry R.J., Eck P.K., Jones P.J.H. Effects of Genotype and Temperature on Accumulation of Plant Secondary Metabolites in Canadian and Australian Wheat Grown under Controlled Environments. Sci. Rep. 2017;7:9133. doi: 10.1038/s41598-017-09681-5. PubMed DOI PMC

Kiani R., Arzani A., Mirmohammady Maibody S.A.M. Polyphenols, Flavonoids, and Antioxidant Activity Involved in Salt Tolerance in Wheat, Aegilops Cylindrica and Their Amphidiploids. Front. Plant Sci. 2021;12:646221. doi: 10.3389/fpls.2021.646221. PubMed DOI PMC

Hichem H., Mounir D., Naceur E.A. Differential Responses of Two Maize (Zea mays L.) Varieties to Salt Stress: Changes on Polyphenols Composition of Foliage and Oxidative Damages. Ind. Crops Prod. 2009;30:144–151. doi: 10.1016/j.indcrop.2009.03.003. DOI

Rivero R.M., Ruiz J.M., García P.C., López-Lefebre L.R., Sánchez E., Romero L. Resistance to Cold and Heat Stress: Accumulation of Phenolic Compounds in Tomato and Watermelon Plants. Plant Sci. 2001;160:315–321. doi: 10.1016/S0168-9452(00)00395-2. PubMed DOI

Schulz E., Tohge T., Zuther E., Fernie A.R., Hincha D.K. Flavonoids Are Determinants of Freezing Tolerance and Cold Acclimation in Arabidopsis Thaliana. Sci. Rep. 2016;6:34027. doi: 10.1038/srep34027. PubMed DOI PMC

Toffolatti S.L., Maddalena G., Passera A., Casati P., Bianco P.A., Quaglino F. Biocontrol Agents and Secondary Metabolites. Elsevier; Amsterdam, The Netherlands: 2021. Role of Terpenes in Plant Defense to Biotic Stress; pp. 401–417. DOI

Vaughan M.M., Christensen S., Schmelz E.A., Huffaker A., Mcauslane H.J., Alborn H.T., Romero M., Allen L.H., Teal P.E.A. Accumulation of Terpenoid Phytoalexins in Maize Roots Is Associated with Drought Tolerance. Plant Cell Environ. 2015;38:2195–2207. doi: 10.1111/pce.12482. PubMed DOI

Bertamini M., Grando M.S., Zocca P., Pedrotti M., Lorenzi S., Cappellin L. Linking Monoterpenes and Abiotic Stress Resistance in Grapevines. BIO Web Conf. 2019;13:1003. doi: 10.1051/bioconf/20191301003. DOI

Tomescu D., Şumălan R., Copolovici L., Copolovici D. The Influence of Soil Salinity on Volatile Organic Compounds Emission and Photosynthetic Parameters of Solanum lycopersicum L. Varieties. Open Life Sci. 2017;12:135–142. doi: 10.1515/biol-2017-0016. DOI

Copolovici L., Kännaste A., Pazouki L., Niinemets Ü. Emissions of Green Leaf Volatiles and Terpenoids from Solanum lycopersicum Are Quantitatively Related to the Severity of Cold and Heat Shock Treatments. J. Plant Physiol. 2012;169:664–672. doi: 10.1016/j.jplph.2011.12.019. PubMed DOI

Fini A., Brunetti C., Loreto F., Centritto M., Ferrini F., Tattini M. Isoprene Responses and Functions in Plants Challenged by Environmental Pressures Associated to Climate Change. Front. Plant Sci. 2017;8:1281. doi: 10.3389/fpls.2017.01281. PubMed DOI PMC

Yogendra K.N., Sarkar K., Kage U., Kushalappa A.C. Potato NAC43 and MYB8 Mediated Transcriptional Regulation of Secondary Cell Wall Biosynthesis to Contain Phytophthora Infestans Infection. Plant Mol. Biol. Rep. 2017;35:519–533. doi: 10.1007/s11105-017-1043-1. DOI

Eom S., Baek S.-A., Kim J., Hyun T. Transcriptome Analysis in Chinese Cabbage (Brassica Rapa Ssp. Pekinensis) Provides the Role of Glucosinolate Metabolism in Response to Drought Stress. Molecules. 2018;23:1186. doi: 10.3390/molecules23051186. PubMed DOI PMC

Shunkao S., Theerakulpisut P., Wanichthanarak K., Pongdontri P., Thitisaksakul M. Integrative Physiological and Metabolomics Study Reveals Adaptive Strategies of Wheat Seedlings to Salt and Heat Stress Combination. Plant Growth Regul. 2022 doi: 10.1007/s10725-022-00949-z. DOI

Matsuura H.N., Rau M.R., Fett-Neto A.G. Oxidative Stress and Production of Bioactive Monoterpene Indole Alkaloids: Biotechnological Implications. Biotechnol. Lett. 2014;36:191–200. doi: 10.1007/s10529-013-1348-6. PubMed DOI

Jansen G., Jürgens H.-U., Ordon F. Effects of Temperature on the Alkaloid Content of Seeds of Lupinus angustifolius Cultivars. J. Agron. Crop Sci. 2009;195:172–177. doi: 10.1111/j.1439-037X.2008.00356.x. DOI

el Sabagh A., Islam M.S., Hossain A., Iqbal M.A., Mubeen M., Waleed M., Reginato M., Battaglia M., Ahmed S., Rehman A., et al. Phytohormones as Growth Regulators During Abiotic Stress Tolerance in Plants. Front. Agron. 2022;4:4. doi: 10.3389/fagro.2022.765068. DOI

Ding F., Wang X., Li Z., Wang M. Jasmonate Positively Regulates Cold Tolerance by Promoting ABA Biosynthesis in Tomato. Plants. 2022;12:60. doi: 10.3390/plants12010060. PubMed DOI PMC

Chi C., Xu X., Wang M., Zhang H., Fang P., Zhou J., Xia X., Shi K., Zhou Y., Yu J. Strigolactones Positively Regulate Abscisic Acid-Dependent Heat and Cold Tolerance in Tomato. Hortic. Res. 2021;8:237. doi: 10.1038/s41438-021-00668-y. PubMed DOI PMC

Yuan G.-F., Jia C.-G., Li Z., Sun B., Zhang L.-P., Liu N., Wang Q.-M. Effect of Brassinosteroids on Drought Resistance and Abscisic Acid Concentration in Tomato under Water Stress. Sci. Hortic. 2010;126:103–108. doi: 10.1016/j.scienta.2010.06.014. DOI

Altamura M.M., Piacentini D., della Rovere F., Fattorini L., Falasca G., Betti C. New Paradigms in Brassinosteroids, Strigolactones, Sphingolipids, and Nitric Oxide Interaction in the Control of Lateral and Adventitious Root Formation. Plants. 2023;12:413. doi: 10.3390/plants12020413. PubMed DOI PMC

Li Z., Su X., Chen Y., Fan X., He L., Guo J., Wang Y., Yang Q. Melatonin Improves Drought Resistance in Maize Seedlings by Enhancing the Antioxidant System and Regulating Abscisic Acid Metabolism to Maintain Stomatal Opening Under PEG-Induced Drought. J. Plant Biol. 2021;64:299–312. doi: 10.1007/s12374-021-09297-3. DOI

Stavang J.A., Gallego-Bartolomé J., Gómez M.D., Yoshida S., Asami T., Olsen J.E., García-Martínez J.L., Alabadí D., Blázquez M.A. Hormonal Regulation of Temperature-Induced Growth in Arabidopsis. Plant J. 2009;60:589–601. doi: 10.1111/j.1365-313X.2009.03983.x. PubMed DOI

Shi Y., Tian S., Hou L., Huang X., Zhang X., Guo H., Yang S. Ethylene Signaling Negatively Regulates Freezing Tolerance by Repressing Expression of CBF and Type-A ARR Genes in Arabidopsis. Plant Cell. 2012;24:2578–2595. doi: 10.1105/tpc.112.098640. PubMed DOI PMC

Sun X., Zhao T., Gan S., Ren X., Fang L., Karungo S.K., Wang Y., Chen L., Li S., Xin H. Ethylene Positively Regulates Cold Tolerance in Grapevine by Modulating the Expression of Ethylene Response Factor 057. Sci. Rep. 2016;6:24066. doi: 10.1038/srep24066. PubMed DOI PMC

Huang X., Hou L., Meng J., You H., Li Z., Gong Z., Yang S., Shi Y. The Antagonistic Action of Abscisic Acid and Cytokinin Signaling Mediates Drought Stress Response in Arabidopsis. Mol. Plant. 2018;11:970–982. doi: 10.1016/j.molp.2018.05.001. PubMed DOI

Nguyen K.H., van Ha C., Nishiyama R., Watanabe Y., Leyva-González M.A., Fujita Y., Tran U.T., Li W., Tanaka M., Seki M., et al. Arabidopsis Type B Cytokinin Response Regulators ARR1, ARR10, and ARR12 Negatively Regulate Plant Responses to Drought. Proc. Natl. Acad. Sci. USA. 2016;113:3090–3095. doi: 10.1073/pnas.1600399113. PubMed DOI PMC

Nishiyama R., Watanabe Y., Leyva-Gonzalez M.A., Van Ha C., Fujita Y., Tanaka M., Seki M., Yamaguchi-Shinozaki K., Shinozaki K., Herrera-Estrella L., et al. Arabidopsis AHP2, AHP3, and AHP5 Histidine Phosphotransfer Proteins Function as Redundant Negative Regulators of Drought Stress Response. Proc. Natl. Acad. Sci. USA. 2013;110:4840–4845. doi: 10.1073/pnas.1302265110. PubMed DOI PMC

Rivero R.M., Kojima M., Gepstein A., Sakakibara H., Mittler R., Gepstein S., Blumwald E. Delayed Leaf Senescence Induces Extreme Drought Tolerance in a Flowering Plant. Proc. Natl. Acad. Sci. USA. 2007;104:19631–19636. doi: 10.1073/pnas.0709453104. PubMed DOI PMC

Peleg Z., Reguera M., Tumimbang E., Walia H., Blumwald E. Cytokinin-Mediated Source/Sink Modifications Improve Drought Tolerance and Increase Grain Yield in Rice under Water-Stress. Plant Biotechnol. J. 2011;9:747–758. doi: 10.1111/j.1467-7652.2010.00584.x. PubMed DOI

Hönig M., Plíhalová L., Husičková A., Nisler J., Doležal K. Role of Cytokinins in Senescence, Antioxidant Defence and Photosynthesis. Int. J. Mol. Sci. 2018;19:4045. doi: 10.3390/ijms19124045. PubMed DOI PMC

Novák J., Pavlů J., Novák O., Nožková-Hlaváčková V., Špundová M., Hlavinka J., Koukalová Š., Skalák J., Černý M., Brzobohatý B. High Cytokinin Levels Induce a Hypersensitive-like Response in Tobacco. Ann. Bot. 2013;112:41–55. doi: 10.1093/aob/mct092. PubMed DOI PMC

Pavlů J., Kerchev P., Černý M., Novák J., Berka M., Jobe T.O., López Ramos J.M., Saiz-Fernández I., Rashotte A.M., Kopriva S., et al. Cytokinin Modulates the Metabolic Network of Sulfur and Glutathione. J. Exp. Bot. 2022;73:7417–7433. doi: 10.1093/jxb/erac391. PubMed DOI

Asthir B., Kaur S., Mann S.K. Effect of Salicylic and Abscisic Acid Administered through Detached Tillers on Antioxidant System in Developing Wheat Grains under Heat Stress. Acta Physiol. Plant. 2009;31:1091–1096. doi: 10.1007/s11738-009-0335-y. DOI

Rezaul I.M., Baohua F., Tingting C., Weimeng F., Caixia Z., Longxing T., Guanfu F. Abscisic Acid Prevents Pollen Abortion under High-Temperature Stress by Mediating Sugar Metabolism in Rice Spikelets. Physiol. Plant. 2019;165:644–663. doi: 10.1111/ppl.12759. PubMed DOI

Martínez-Andújar C., Martínez-Pérez A., Albacete A., Martínez-Melgarejo P.A., Dodd I.C., Thompson A.J., Mohareb F., Estelles-Lopez L., Kevei Z., Ferrández-Ayela A., et al. Overproduction of ABA in Rootstocks Alleviates Salinity Stress in Tomato Shoots. Plant Cell Environ. 2021;44:2966–2986. doi: 10.1111/pce.14121. PubMed DOI

Rubio S., Noriega X., Pérez F.J. Abscisic Acid (ABA) and Low Temperatures Synergistically Increase the Expression of CBF/DREB1 Transcription Factors and Cold-Hardiness in Grapevine Dormant Buds. Ann. Bot. 2019;123:681–689. doi: 10.1093/aob/mcy201. PubMed DOI PMC

Nai G., Liang G., Ma W., Lu S., Li Y., Gou H., Guo L., Chen B., Mao J. Overexpression VaPYL9 Improves Cold Tolerance in Tomato by Regulating Key Genes in Hormone Signaling and Antioxidant Enzyme. BMC Plant Biol. 2022;22:344. doi: 10.1186/s12870-022-03704-8. PubMed DOI PMC

Abeysingha D.N., Ozga J.A., Strydhorst S., Doyle P., Iqbal M., Yang R., Reinecke D.M. The Effect of Auxins on Amelioration of Heat Stress-induced Wheat (Triticum aestivum L.) Grain Loss. J. Agron. Crop Sci. 2021;207:970–983. doi: 10.1111/jac.12555. DOI

Dubas E., Moravčíková J., Libantová J., Matušíková I., Benková E., Żur I., Krzewska M. The Influence of Heat Stress on Auxin Distribution in Transgenic B. Napus Microspores and Microspore-Derived Embryos. Protoplasma. 2014;251:1077–1087. doi: 10.1007/s00709-014-0616-1. PubMed DOI PMC

Park J.S., Kim H.J., Cho H.S., Jung H.W., Cha J.-Y., Yun D.-J., Oh S.-W., Chung Y.-S. Overexpression of AtYUCCA6 in Soybean Crop Results in Reduced ROS Production and Increased Drought Tolerance. Plant Biotechnol. Rep. 2019;13:161–168. doi: 10.1007/s11816-019-00527-2. DOI

Huang D., Wang Q., Duan D., Dong Q., Zhao S., Zhang M., Jing G., Liu C., van Nocker S., Ma F., et al. Overexpression of MdIAA9 Confers High Tolerance to Osmotic Stress in Transgenic Tobacco. PeerJ. 2019;7:e7935. doi: 10.7717/peerj.7935. PubMed DOI PMC

van den Berg T., Korver R.A., Testerink C.S., ten Tusscher K.H.W.J. Modeling Halotropism: A Key Role for Root Tip Architecture and Reflux Loop Remodeling in Redistributing Auxin. Development. 2016;143:3350–3362. doi: 10.1242/dev.135111. PubMed DOI PMC

Lu C., Chen M.-X., Liu R., Zhang L., Hou X., Liu S., Ding X., Jiang Y., Xu J., Zhang J., et al. Abscisic Acid Regulates Auxin Distribution to Mediate Maize Lateral Root Development Under Salt Stress. Front. Plant Sci. 2019;10:716. doi: 10.3389/fpls.2019.00716. PubMed DOI PMC

Gavelienė V., Novickienė L., Pakalniškytė L. Effect of Auxin Physiological Analogues on Rapeseed (Brassica Napus) Cold Hardening, Seed Yield and Quality. J. Plant Res. 2013;126:283–292. doi: 10.1007/s10265-012-0525-3. PubMed DOI

Hussain M., Khan T.A., Yusuf M., Fariduddin Q. Silicon-Mediated Role of 24-Epibrassinolide in Wheat under High-Temperature Stress. Environ. Sci. Pollut. Res. 2019;26:17163–17172. doi: 10.1007/s11356-019-04938-0. PubMed DOI

Mazorra L.M., Holton N., Bishop G.J., Núñez M. Heat Shock Response in Tomato Brassinosteroid Mutants Indicates That Thermotolerance Is Independent of Brassinosteroid Homeostasis. Plant Physiol. Biochem. 2011;49:1420–1428. doi: 10.1016/j.plaphy.2011.09.005. PubMed DOI

Wang Y.-T., Chen Z.-Y., Jiang Y., Duan B.-B., Xi Z.-M. Involvement of ABA and Antioxidant System in Brassinosteroid-Induced Water Stress Tolerance of Grapevine (Vitis vinifera L.) Sci. Hortic. 2019;256:108596. doi: 10.1016/j.scienta.2019.108596. DOI

Chen E., Zhang X., Yang Z., Zhang C., Wang X., Ge X., Li F. BR Deficiency Causes Increased Sensitivity to Drought and Yield Penalty in Cotton. BMC Plant Biol. 2019;19:220. doi: 10.1186/s12870-019-1832-9. PubMed DOI PMC

Rady M.M. Effect of 24-Epibrassinolide on Growth, Yield, Antioxidant System and Cadmium Content of Bean (Phaseolus vulgaris L.) Plants under Salinity and Cadmium Stress. Sci. Hortic. 2011;129:232–237. doi: 10.1016/j.scienta.2011.03.035. DOI

Fang P., Yan M., Chi C., Wang M., Zhou Y., Zhou J., Shi K., Xia X., Foyer C.H., Yu J. Brassinosteroids Act as a Positive Regulator of Photoprotection in Response to Chilling Stress. Plant Physiol. 2019;180:2061–2076. doi: 10.1104/pp.19.00088. PubMed DOI PMC

Wang D., Yang Z., Wu M., Wang W., Wang Y., Nie S. Enhanced Brassinosteroid Signaling via the Overexpression of SlBRI1 Positively Regulates the Chilling Stress Tolerance of Tomato. Plant. Sci. 2022;320:111281. doi: 10.1016/j.plantsci.2022.111281. PubMed DOI

Yang D., Li Y., Shi Y., Cui Z., Luo Y., Zheng M., Chen J., Li Y., Yin Y., Wang Z. Exogenous Cytokinins Increase Grain Yield of Winter Wheat Cultivars by Improving Stay-Green Characteristics under Heat Stress. PLoS ONE. 2016;11:e0155437. doi: 10.1371/journal.pone.0155437. PubMed DOI PMC

Skalák J., Černý M., Jedelský P., Dobrá J., Ge E., Novák J., Hronková M., Dobrev P., Vanková R., Brzobohatý B. Stimulation of Ipt Overexpression as a Tool to Elucidate the Role of Cytokinins in High Temperature Responses of Arabidopsis Thaliana. J. Exp. Bot. 2016;67:2861–2873. doi: 10.1093/jxb/erw129. PubMed DOI PMC

Pantoja-Benavides A.D., Garces-Varon G., Restrepo-Díaz H. Foliar Cytokinins or Brassinosteroids Applications Influence the Rice Plant Acclimatization to Combined Heat Stress. Front. Plant Sci. 2022;13:983276. doi: 10.3389/fpls.2022.983276. PubMed DOI PMC

Mushtaq N., Wang Y., Fan J., Li Y., Ding J. Down-Regulation of Cytokinin Receptor Gene SlHK2 Improves Plant Tolerance to Drought, Heat, and Combined Stresses in Tomato. Plants. 2022;11:154. doi: 10.3390/plants11020154. PubMed DOI PMC

Tran L.-S.P., Urao T., Qin F., Maruyama K., Kakimoto T., Shinozaki K., Yamaguchi-Shinozaki K. Functional Analysis of AHK1/ATHK1 and Cytokinin Receptor Histidine Kinases in Response to Abscisic Acid, Drought, and Salt Stress in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2007;104:20623–20628. doi: 10.1073/pnas.0706547105. PubMed DOI PMC

Aremu A.O., Masondo N.A., Sunmonu T.O., Kulkarni M.G., Zatloukal M., Spichal L., Doležal K., Van Staden J. A Novel Inhibitor of Cytokinin Degradation (INCYDE) Influences the Biochemical Parameters and Photosynthetic Apparatus in NaCl-Stressed Tomato Plants. Planta. 2014;240:877–889. doi: 10.1007/s00425-014-2126-y. PubMed DOI

Joshi R., Sahoo K.K., Tripathi A.K., Kumar R., Gupta B.K., Pareek A., Singla-Pareek S.L. Knockdown of an Inflorescence Meristem-Specific Cytokinin Oxidase—OsCKX2 in Rice Reduces Yield Penalty under Salinity Stress Condition. Plant Cell Environ. 2018;41:936–946. doi: 10.1111/pce.12947. PubMed DOI

Zeng R., Li Z., Shi Y., Fu D., Yin P., Cheng J., Jiang C., Yang S. Natural Variation in a Type-A Response Regulator Confers Maize Chilling Tolerance. Nat. Commun. 2021;12:4713. doi: 10.1038/s41467-021-25001-y. PubMed DOI PMC

Jeon J., Kim N.Y., Kim S., Kang N.Y., Novák O., Ku S.-J., Cho C., Lee D.J., Lee E.-J., Strnad M., et al. A Subset of Cytokinin Two-Component Signaling System Plays a Role in Cold Temperature Stress Response in Arabidopsis. J. Biol. Chem. 2010;285:23371–23386. doi: 10.1074/jbc.M109.096644. PubMed DOI PMC

Wu Y.-S., Yang C.-Y. Ethylene-Mediated Signaling Confers Thermotolerance and Regulates Transcript Levels of Heat Shock Factors in Rice Seedlings under Heat Stress. Bot. Stud. 2019;60:23. doi: 10.1186/s40529-019-0272-z. PubMed DOI PMC

Jegadeesan S., Chaturvedi P., Ghatak A., Pressman E., Meir S., Faigenboim A., Rutley N., Beery A., Harel A., Weckwerth W., et al. Proteomics of Heat-Stress and Ethylene-Mediated Thermotolerance Mechanisms in Tomato Pollen Grains. Front. Plant Sci. 2018;9:1558. doi: 10.3389/fpls.2018.01558. PubMed DOI PMC

Li C.-H., Wang G., Zhao J.-L., Zhang L.-Q., Ai L.-F., Han Y.-F., Sun D.-Y., Zhang S.-W., Sun Y. The Receptor-Like Kinase SIT1 Mediates Salt Sensitivity by Activating MAPK3/6 and Regulating Ethylene Homeostasis in Rice. Plant Cell. 2014;26:2538–2553. doi: 10.1105/tpc.114.125187. PubMed DOI PMC

Wi S.J., Jang S.J., Park K.Y. Inhibition of Biphasic Ethylene Production Enhances Tolerance to Abiotic Stress by Reducing the Accumulation of Reactive Oxygen Species in Nicotiana tabacum. Mol. Cells. 2010;30:37–49. doi: 10.1007/s10059-010-0086-z. PubMed DOI

Cebrián G., Iglesias-Moya J., García A., Martínez J., Romero J., Regalado J.J., Martínez C., Valenzuela J.L., Jamilena M. Involvement of Ethylene Receptors in the Salt Tolerance Response of Cucurbita Pepo. Hortic. Res. 2021;8:73. doi: 10.1038/s41438-021-00508-z. PubMed DOI PMC

Jiang C., Belfield E.J., Cao Y., Smith J.A.C., Harberd N.P. An Arabidopsis Soil-Salinity–Tolerance Mutation Confers Ethylene-Mediated Enhancement of Sodium/Potassium Homeostasis. Plant Cell. 2013;25:3535–3552. doi: 10.1105/tpc.113.115659. PubMed DOI PMC

Young T.E., Meeley R.B., Gallie D.R. ACC Synthase Expression Regulates Leaf Performance and Drought Tolerance in Maize. Plant J. 2004;40:813–825. doi: 10.1111/j.1365-313X.2004.02255.x. PubMed DOI

Wan L., Zhang J., Zhang H., Zhang Z., Quan R., Zhou S., Huang R. Transcriptional Activation of OsDERF1 in OsERF3 and OsAP2-39 Negatively Modulates Ethylene Synthesis and Drought Tolerance in Rice. PLoS ONE. 2011;6:e25216. doi: 10.1371/journal.pone.0025216. PubMed DOI PMC

Bergner C., Teichmann C. A Role for Ethylene in Barley Plants Responding to Soil Water Shortage. J. Plant Growth Regul. 1993;12:67–72. doi: 10.1007/BF00193235. DOI

Habben J.E., Bao X., Bate N.J., DeBruin J.L., Dolan D., Hasegawa D., Helentjaris T.G., Lafitte R.H., Lovan N., Mo H., et al. Transgenic Alteration of Ethylene Biosynthesis Increases Grain Yield in Maize under Field Drought-Stress Conditions. Plant Biotechnol. J. 2014;12:685–693. doi: 10.1111/pbi.12172. PubMed DOI

Sarkar S., Perras M.R., Falk D.E., Zhang R., Pharis R.P., Austin Fletcher R. Relationship between Gibberellins, Height, and Stress Tolerance in Barley (Hordeum vulgare L.) Seedlings. Plant Growth Regul. 2004;42:125–135. doi: 10.1023/B:GROW.0000017492.56792.64. DOI

Nir I.D.O., Moshelion M., Weiss D. The Arabidopsis GIBBERELLIN METHYL TRANSFERASE 1 Suppresses Gibberellin Activity, Reduces Whole-Plant Transpiration and Promotes Drought Tolerance in Transgenic Tomato. Plant Cell Environ. 2014;37:113–123. doi: 10.1111/pce.12135. PubMed DOI

Plaza-Wüthrich S., Blösch R., Rindisbacher A., Cannarozzi G., Tadele Z. Gibberellin Deficiency Confers Both Lodging and Drought Tolerance in Small Cereals. Front. Plant Sci. 2016;7:643. doi: 10.3389/fpls.2016.00643. PubMed DOI PMC

Augstein F., Carlsbecker A. Salinity Induces Discontinuous Protoxylem via a DELLA-dependent Mechanism Promoting Salt Tolerance in Arabidopsis Seedlings. New Phytol. 2022;236:195–209. doi: 10.1111/nph.18339. PubMed DOI PMC

Pinhero R.G., Rao M.V., Paliyath G., Murr D.P., Fletcher R.A. Changes in Activities of Antioxidant Enzymes and Their Relationship to Genetic and Paclobutrazol-Induced Chilling Tolerance of Maize Seedlings. Plant Physiol. 1997;114:695–704. doi: 10.1104/pp.114.2.695. PubMed DOI PMC

Zhou M., Chen H., Wei D., Ma H., Lin J. Arabidopsis CBF3 and DELLAs Positively Regulate Each Other in Response to Low Temperature. Sci. Rep. 2017;7:39819. doi: 10.1038/srep39819. PubMed DOI PMC

Ding Y., Sheng J., Li S., Nie Y., Zhao J., Zhu Z., Wang Z., Tang X. The Role of Gibberellins in the Mitigation of Chilling Injury in Cherry Tomato (Solanum lycopersicum L.) Fruit. Postharvest Biol. Technol. 2015;101:88–95. doi: 10.1016/j.postharvbio.2014.12.001. DOI

Fatma M., Iqbal N., Sehar Z., Alyemeni M.N., Kaushik P., Khan N.A., Ahmad P. Methyl Jasmonate Protects the PS II System by Maintaining the Stability of Chloroplast D1 Protein and Accelerating Enzymatic Antioxidants in Heat-Stressed Wheat Plants. Antioxidants. 2021;10:1216. doi: 10.3390/antiox10081216. PubMed DOI PMC

Balfagón D., Sengupta S., Gómez-Cadenas A., Fritschi F.B., Azad R.K., Mittler R., Zandalinas S.I. Jasmonic Acid Is Required for Plant Acclimation to a Combination of High Light and Heat Stress. Plant Physiol. 2019;181:1668–1682. doi: 10.1104/pp.19.00956. PubMed DOI PMC

Yan J., Li H., Li Y., Zhang N., Zhang S. Abscisic Acid Synthesis and Root Water Uptake Contribute to Exogenous Methyl Jasmonate-Induced Improved Tomato Drought Resistance. Plant Biotechnol. Rep. 2022;16:183–193. doi: 10.1007/s11816-022-00753-1. DOI

Yoshida C.H.P., Pacheco A.C., de Lapaz A.M., Gorni P.H., Vítolo H.F., Bertoli S.C. Methyl Jasmonate Modulation Reduces Photosynthesis and Induces Synthesis of Phenolic Compounds in Sweet Potatoes Subjected to Drought. Bragantia. 2020;79:319–334. doi: 10.1590/1678-4499.20200203. DOI

Walia H., Wilson C., Condamine P., Liu X., Ismail A.M., Close T.J. Large-Scale Expression Profiling and Physiological Characterization of Jasmonic Acid-Mediated Adaptation of Barley to Salinity Stress. Plant Cell Environ. 2007;30:410–421. doi: 10.1111/j.1365-3040.2006.01628.x. PubMed DOI

Ali A.Y.A., Ibrahim M.E.H., Zhou G., Nimir N.E.A., Jiao X., Zhu G., Elsiddig A.M.I., Suliman M.S.E., Elradi S.B.M., Yue W. Exogenous Jasmonic Acid and Humic Acid Increased Salinity Tolerance of Sorghum. Agron. J. 2020;112:871–884. doi: 10.1002/agj2.20072. DOI

Zhao Y., Song C., Brummell D.A., Qi S., Lin Q., Duan Y. Jasmonic Acid Treatment Alleviates Chilling Injury in Peach Fruit by Promoting Sugar and Ethylene Metabolism. Food Chem. 2021;338:128005. doi: 10.1016/j.foodchem.2020.128005. PubMed DOI

Feng B., Zhang C., Chen T., Zhang X., Tao L., Fu G. Salicylic Acid Reverses Pollen Abortion of Rice Caused by Heat Stress. BMC Plant Biol. 2018;18:245. doi: 10.1186/s12870-018-1472-5. PubMed DOI PMC

Abdelaal K.A.A., Attia K.A., Alamery S.F., El-Afry M.M., Ghazy A.I., Tantawy D.S., Al-Doss A.A., El-Shawy E.-S.E., Abu-Elsaoud M.A., Hafez Y.M. Exogenous Application of Proline and Salicylic Acid Can Mitigate the Injurious Impacts of Drought Stress on Barley Plants Associated with Physiological and Histological Characters. Sustainability. 2020;12:1736. doi: 10.3390/su12051736. DOI

Chakma R., Biswas A., Saekong P., Ullah H., Datta A. Foliar Application and Seed Priming of Salicylic Acid Affect Growth, Fruit Yield, and Quality of Grape Tomato under Drought Stress. Sci. Hortic. 2021;280:109904. doi: 10.1016/j.scienta.2021.109904. DOI

Faried H.N., Ayyub C.M., Wattoo F.M., Bashir M., Razzaq K., Akhtar G., Hussain A., Ullah S., Wattoo J.I., Amin M., et al. Assessing Salt Tolerance Induction in Potato by Salicylic Acid Using Morpho-Physio-Biochemical, Ionic, and Yield Indices. Potato Res. 2022;65:677–691. doi: 10.1007/s11540-021-09539-4. DOI

Naeem M., Basit A., Ahmad I., Mohamed H.I., Wasila H. Effect of Salicylic Acid and Salinity Stress on the Performance of Tomato Plants. Gesunde Pflanz. 2020;72:393–402. doi: 10.1007/s10343-020-00521-7. DOI

Wang W., Wang X., Huang M., Cai J., Zhou Q., Dai T., Cao W., Jiang D. Hydrogen Peroxide and Abscisic Acid Mediate Salicylic Acid-Induced Freezing Tolerance in Wheat. Front. Plant Sci. 2018;9:1137. doi: 10.3389/fpls.2018.01137. PubMed DOI PMC

Wang L.-J., Li S.-H. Salicylic Acid-Induced Heat or Cold Tolerance in Relation to Ca2+ Homeostasis and Antioxidant Systems in Young Grape Plants. Plant Sci. 2006;170:685–694. doi: 10.1016/j.plantsci.2005.09.005. DOI

Omoarelojie L.O., Kulkarni M.G., Finnie J.F., Pospíšil T., Strnad M., Van Staden J. Synthetic Strigolactone (Rac-GR24) Alleviates the Adverse Effects of Heat Stress on Seed Germination and Photosystem II Function in Lupine Seedlings. Plant Physiol. Biochem. 2020;155:965–979. doi: 10.1016/j.plaphy.2020.07.043. PubMed DOI

Marzec M., Daszkowska-Golec A., Collin A., Melzer M., Eggert K., Szarejko I. Barley Strigolactone Signalling Mutant Hvd14.d Reveals the Role of Strigolactones in Abscisic Acid-dependent Response to Drought. Plant Cell Environ. 2020;43:2239–2253. doi: 10.1111/pce.13815. PubMed DOI

Sedaghat M., Emam Y., Mokhtassi-Bidgoli A., Hazrati S., Lovisolo C., Visentin I., Cardinale F., Tahmasebi-Sarvestani Z. The Potential of the Synthetic Strigolactone Analogue GR24 for the Maintenance of Photosynthesis and Yield in Winter Wheat under Drought: Investigations on the Mechanisms of Action and Delivery Modes. Plants. 2021;10:1223. doi: 10.3390/plants10061223. PubMed DOI PMC

Liu H., Li C., Yan M., Zhao Z., Huang P., Wei L., Wu X., Wang C., Liao W. Strigolactone Is Involved in Nitric Oxide-Enhanced the Salt Resistance in Tomato Seedlings. J. Plant Res. 2022;135:337–350. doi: 10.1007/s10265-022-01371-2. PubMed DOI

Zhang X., Zhang L., Ma C., Su M., Wang J., Zheng S., Zhang T. Exogenous Strigolactones Alleviate the Photosynthetic Inhibition and Oxidative Damage of Cucumber Seedlings under Salt Stress. Sci. Hortic. 2022;297:110962. doi: 10.1016/j.scienta.2022.110962. DOI

Omoarelojie L.O., Kulkarni M.G., Finnie J.F., Van Staden J. Strigolactone Analog (Rac-GR24) Enhances Chilling Tolerance in Mung Bean Seedlings. S. Afr. J. Bot. 2021;140:173–181. doi: 10.1016/j.sajb.2021.03.044. DOI

Zhang X., Zhang L., Sun Y., Zheng S., Wang J., Zhang T. Hydrogen Peroxide Is Involved in Strigolactone Induced Low Temperature Stress Tolerance in Rape Seedlings (Brassica rapa L.) Plant Physiol. Biochem. 2020;157:402–415. doi: 10.1016/j.plaphy.2020.11.006. PubMed DOI

Arnao M.B., Hernández-Ruiz J. Melatonin: A New Plant Hormone and/or a Plant Master Regulator? Trends Plant Sci. 2019;24:38–48. doi: 10.1016/j.tplants.2018.10.010. PubMed DOI

Han Q.-H., Huang B., Ding C.-B., Zhang Z.-W., Chen Y.-E., Hu C., Zhou L.-J., Huang Y., Liao J.-Q., Yuan S., et al. Effects of Melatonin on Anti-Oxidative Systems and Photosystem II in Cold-Stressed Rice Seedlings. Front. Plant Sci. 2017;8:785. doi: 10.3389/fpls.2017.00785. PubMed DOI PMC

Huang B., Chen Y.-E., Zhao Y.-Q., Ding C.-B., Liao J.-Q., Hu C., Zhou L.-J., Zhang Z.-W., Yuan S., Yuan M. Exogenous Melatonin Alleviates Oxidative Damages and Protects Photosystem II in Maize Seedlings Under Drought Stress. Front. Plant Sci. 2019;10:677. doi: 10.3389/fpls.2019.00677. PubMed DOI PMC

Ye F., Jiang M., Zhang P., Liu L., Liu S., Zhao C., Li X. Exogenous Melatonin Reprograms the Rhizosphere Microbial Community to Modulate the Responses of Barley to Drought Stress. Int. J. Mol. Sci. 2022;23:9665. doi: 10.3390/ijms23179665. PubMed DOI PMC

El-Yazied A.A., Ibrahim M.F.M., Ibrahim M.A.R., Nasef I.N., Al-Qahtani S.M., Al-Harbi N.A., Alzuaibr F.M., Alaklabi A., Dessoky E.S., Alabdallah N.M., et al. Melatonin Mitigates Drought Induced Oxidative Stress in Potato Plants through Modulation of Osmolytes, Sugar Metabolism, ABA Homeostasis and Antioxidant Enzymes. Plants. 2022;11:1151. doi: 10.3390/plants11091151. PubMed DOI PMC

Minocha R., Majumdar R., Minocha S.C. Polyamines and Abiotic Stress in Plants: A Complex Relationship1. Front. Plant Sci. 2014;5:175. doi: 10.3389/fpls.2014.00175. PubMed DOI PMC

Zapata P.J., Serrano M., Pretel M.T., Amorós A., Botella M.Á. Polyamines and Ethylene Changes during Germination of Different Plant Species under Salinity. Plant Sci. 2004;167:781–788. doi: 10.1016/j.plantsci.2004.05.014. DOI

Liu H.P., Dong B.H., Zhang Y.Y., Liu Z.P., Liu Y.L. Relationship between Osmotic Stress and the Levels of Free, Conjugated and Bound Polyamines in Leaves of Wheat Seedlings. Plant Sci. 2004;166:1261–1267. doi: 10.1016/j.plantsci.2003.12.039. DOI

Lefèvre I., Gratia E., Lutts S. Discrimination between the Ionic and Osmotic Components of Salt Stress in Relation to Free Polyamine Level in Rice (Oryza sativa) Plant Sci. 2001;161:943–952. doi: 10.1016/S0168-9452(01)00485-X. DOI

Jankovska-Bortkevič E., Gavelienė V., Šveikauskas V., Mockevičiūtė R., Jankauskienė J., Todorova D., Sergiev I., Jurkonienė S. Foliar Application of Polyamines Modulates Winter Oilseed Rape Responses to Increasing Cold. Plants. 2020;9:179. doi: 10.3390/plants9020179. PubMed DOI PMC

Wang H., Qin F. Genome-Wide Association Study Reveals Natural Variations Contributing to Drought Resistance in Crops. Front. Plant Sci. 2017;8:1110. doi: 10.3389/fpls.2017.01110. PubMed DOI PMC

Kameniarová M., Černý M., Novák J., Ondrisková V., Hrušková L., Berka M., Vankova R., Brzobohatý B. Light Quality Modulates Plant Cold Response and Freezing Tolerance. Front. Plant Sci. 2022;13:887103. doi: 10.3389/fpls.2022.887103. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Heat Stress and Plant-Biotic Interactions: Advances and Perspectives

. 2024 Jul 23 ; 13 (15) : . [epub] 20240723

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...