Mapping of Plasma Membrane Proteins Interacting With Arabidopsis thaliana Flotillin 2
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30050548
PubMed Central
PMC6052134
DOI
10.3389/fpls.2018.00991
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis flotillin 2, immunopurification, intracellular trafficking, mass spectrometry, plant–pathogen interaction, protein–protein interactions, split-ubiquitin yeast system, water transport,
- Publikační typ
- časopisecké články MeSH
Arabidopsis flotillin 2 (At5g25260) belongs to the group of plant flotillins, which are not well characterized. In contrast, metazoan flotillins are well known as plasma membrane proteins associated with membrane microdomains that act as a signaling hub. The similarity of plant and metazoan flotillins, whose functions most likely consist of affecting other proteins via protein-protein interactions, determines the necessity of detecting their interacting partners in plants. Nevertheless, identifying the proteins that form complexes on the plasma membrane is a challenging task due to their low abundance and hydrophobic character. Here we present an approach for mapping Arabidopsis thaliana flotillin 2 plasma membrane interactors, based on the immunoaffinity purification of crosslinked and enriched plasma membrane proteins with mass spectrometry detection. Using this approach, 61 proteins were enriched in the AtFlot-GFP plasma membrane fraction, and 19 of them were proposed to be flotillin 2 interaction partners. Among our proposed partners of Flot2, proteins playing a role in the plant response to various biotic and abiotic stresses were detected. Additionally, the use of the split-ubiquitin yeast system helped us to confirm that plasma-membrane ATPase 1, early-responsive to dehydration stress protein 4, syntaxin-71, harpin-induced protein-like 3, hypersensitive-induced response protein 2 and two aquaporin isoforms interact with flotillin 2 directly. Based on the results of our study and the reported properties of Flot2 interactors, we propose that Flot2 complexes may be involved in plant-pathogen interactions, water transport and intracellular trafficking.
Department of Experimental Plant Biology Faculty of Science Charles University Prague Czechia
Institute of Experimental Botany of the Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Alexandersson E., Fraysse L., Sjovall-Larsen S., Gustavsson S., Fellert M., Karlsson M., et al. (2005). Whole gene family expression and drought stress regulation of aquaporins. Plant Mol. Biol. 59 469–484. 10.1007/s11103-005-0352-1 PubMed DOI
Amaddii M., Meister M., Banning A., Tomasovic A., Mooz J., Rajalingam K., et al. (2012). Flotillin-1/reggie-2 protein plays dual role in activation of receptor-tyrosine kinase/mitogen-activated protein kinase signaling. J. Biol. Chem. 287 7265–7278. 10.1074/jbc.M111.287599 PubMed DOI PMC
Ascencio-Ibanez J. T., Sozzani R., Lee T. J., Chu T. M., Wolfinger R. D., Cella R., et al. (2008). Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol. 148 436–454. 10.1104/pp.108.121038 PubMed DOI PMC
Bao Y. M., Sun S. J., Li M., Li L., Cao W. L., Luo J., et al. (2012). Overexpression of the Qc-SNARE gene OsSYP71 enhances tolerance to oxidative stress and resistance to rice blast in rice (Oryza sativa L.). Gene 504 238–244. 10.1016/j.gene.2012.05.011 PubMed DOI
Baumann C. A., Ribon V., Kanzaki M., Thurmond D. C., Mora S., Shigematsu S., et al. (2000). CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 407 202–207. 10.1038/35025089 PubMed DOI
Bellati J., Champeyroux C., Hem S., Rofidal V., Krouk G., Maurel C., et al. (2016). Novel aquaporin regulatory mechanisms revealed by interactomics. Mol. Cell. Proteomics 15 3473–3487. 10.1074/mcp.M116.060087 PubMed DOI PMC
Besserer A., Burnotte E., Bienert G. P., Chevalier A. S., Errachid A., Grefen C., et al. (2012). Selective regulation of maize plasma membrane aquaporin trafficking and activity by the SNARE SYP121. Plant Cell 24 3463–3481. 10.1105/tpc.112.101758 PubMed DOI PMC
Bickel P. E., Scherer P. E., Schnitzer J. E., Oh P., Lisanti M. P., Lodish H. F. (1997). Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins. J. Biol. Chem. 272 13793–13802. 10.1074/jbc.272.21.13793 PubMed DOI
Borner G. H. H., Sherrier D. J., Weimar T., Michaelson L. V., Hawkins N. D., MacAskill A., et al. (2005). Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol. 137 104–116. 10.1104/pp.104.053041 PubMed DOI PMC
Boursiac Y., Chen S., Luu D. T., Sorieul M., van den Dries N., Maurel C. (2005). Early effects of salinity on water transport in Arabidopsis roots. molecular and cellular features of aquaporin expression. Plant Physiol. 139 790–805. 10.1104/pp.105.065029 PubMed DOI PMC
Browman D. T., Hoegg M. B., Robbins S. M. (2007). The SPFH domain-containing proteins: more than lipid raft markers. Trends Cell Biol. 17 394–402. 10.1016/j.tcb.2007.06.005 PubMed DOI
Cacas J. L., Bure C., Grosjean K., Gerbeau-Pissot P., Lherminier J., Rombouts Y., et al. (2016). Revisiting plant plasma membrane lipids in tobacco: a focus on sphingolipids. Plant Physiol. 170 367–384. 10.1104/pp.15.00564 PubMed DOI PMC
Cheng W., Xiao Z. L., Cai H. Y., Wang C. Q., Hu Y., Xiao Y. P., et al. (2017). A novel leucine-rich repeat protein, CaLRR51, acts as a positive regulator in the response of pepper to Ralstonia solanacearum infection. Mol. Plant Pathol. 18 1089–1100. 10.1111/mpp.12462 PubMed DOI PMC
Choi H., Larsen B., Lin Z. Y., Breitkreutz A., Mellacheruvu D., Fermin D., et al. (2011). SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nat. Methods 8 70–73. 10.1038/Nmeth.1541 PubMed DOI PMC
Choi H. W., Kim Y. J., Hwang B. K. (2011). The Hypersensitive induced reaction and leucine-rich repeat proteins regulate plant cell death associated with disease and plant immunity. Mol. Plant Microbe Interact. 24 68–78. 10.1094/MPMI-02-10-0030 PubMed DOI
Coll N. S., Epple P., Dangl J. L. (2011). Programmed cell death in the plant immune system. Cell Death Differ. 18 1247–1256. 10.1038/cdd.2011.37 PubMed DOI PMC
Collins M. O., Choudhary J. S. (2008). Mapping multiprotein complexes by affinity purification and mass spectrometry. Curr. Opin. Biotechnol. 19 324–330. 10.1016/j.copbio.2008.06.002 PubMed DOI
Danek M., Valentova O., Martinec J. (2016). Flotillins, erlins, and hirs: from animal base camp to plant new horizons. Crit. Rev. Plant Sci. 35 191–214. 10.1080/07352689.2016.1249690 DOI
Davletova S., Schlauch K., Coutu J., Mittler R. (2005). The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol. 139 847–856. 10.1104/pp.105.068254 PubMed DOI PMC
Dedecker M., Van Leene J., De Jaeger G. (2015). Unravelling plant molecular machineries through affinity purification coupled to mass spectrometry. Curr. Opin. Plant Biol. 24 1–9. 10.1016/j.pbi.2015.01.001 PubMed DOI
Dermine J. F., Duclos S., Garin J., St-Louis F., Rea S., Parton R. G., et al. (2001). Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes. J. Biol. Chem. 276 18507–18512. 10.1074/jbc.M101113200 PubMed DOI
Di C., Xu W. Y., Su Z., Yuan J. S. (2010). Comparative genome analysis of PHB gene family reveals deep evolutionary origins and diverse gene function. BMC Bioinformatics 11(Suppl. 6):S22. 10.1186/1471-2105-11-s6-s22 PubMed DOI PMC
Diévart A., Clark S. E. (2003). Using mutant alleles to determine the structure and function of leucine-rich repeat receptor-like kinases. Curr. Opin. Plant Biol. 6 507–516. 10.1016/S1369-5266(03)00089-X PubMed DOI
Ditt R. F., Kerr K. F., de Figueiredo P., Delrow J., Comai L., Nester E. W. (2006). The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens. Mol. Plant Microbe Interact. 19 665–681. 10.1094/MPMI-19-0665 PubMed DOI
Dorr J. M., Scheidelaar S., Koorengevel M. C., Dominguez J. J., Schafer M., van Walree C. A., et al. (2016). The styrene-maleic acid copolymer: a versatile tool in membrane research. Eur. Biophys. J. 45 3–21. 10.1007/s00249-015-1093-y PubMed DOI PMC
Dunham W. H., Mullin M., Gingras A. C. (2012). Affinity-purification coupled to mass spectrometry: basic principles and strategies. Proteomics 12 1576–1590. 10.1002/pmic.201100523 PubMed DOI
Ephritikhine G., Ferro M., Rolland N. (2004). Plant membrane proteomics. Plant Physiol. Biochem. 42 943–962. 10.1016/j.plaphy.2004.11.004 PubMed DOI
Fuglsang A. T., Kristensen A., Cuin T. A., Schulze W. X., Persson J., Thuesen K. H., et al. (2014). Receptor kinase-mediated control of primary active proton pumping at the plasma membrane. Plant J. 80 951–964. 10.1111/tpj.12680 PubMed DOI
Fujiwara M., Uemura T., Ebine K., Nishimori Y., Ueda T., Nakano A., et al. (2014). Interactomics of Qa-SNARE in Arabidopsis thaliana. Plant Cell Physiol. 55 781–789. 10.1093/pcp/pcu038 PubMed DOI
Gehl B., Lee C. P., Bota P., Blatt M. R., Sweetlove L. J. (2014). An Arabidopsis stomatin-like protein affects mitochondrial respiratory supercomplex organization. Plant Physiol. 164 1389–1400. 10.1104/pp.113.230383 PubMed DOI PMC
Gilmore J. M., Washburn M. P. (2010). Advances in shotgun proteomics and the analysis of membrane proteomes. J. Proteomics 73 2078–2091. 10.1016/j.jprot.2010.08.005 PubMed DOI
Glebov O. O., Bright N. A., Nichols B. J. (2006). Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat. Cell Biol. 8 46–54. 10.1038/ncb1342 PubMed DOI
Green J. B., Young J. P. W. (2008). Slipins: ancient origin, duplication and diversification of the stomatin protein family. BMC Evol. Biol. 8:44. 10.1186/1471-2148-8-44 PubMed DOI PMC
Grefen C. (2014). “The split-ubiquitin system for the analysis of three-component interactions,” in Arabidopsis Protocols, eds Sanchez-Serrano J. J., Salinas J. (Totowa, NJ: Humana Press; ) 659–678. PubMed
Grefen C., Lalonde S., Obrdlik P. (2007). Split-ubiquitin system for identifying protein-protein interactions in membrane and full-length proteins. Curr. Protoc. Neurosci. 41 5.27.1–5.27.41. 10.1002/0471142301.ns0527s41 PubMed DOI
Grefen C., Obrdlik P., Harter K. (2009). “The determination of protein-protein interactions by the mating-based split-ubiquitin system (mbSUS),” in Plant Signal Transduction: Methods and Protocols, ed. Pfannschmidt T. (Totowa, NJ: Humana Press; ), 217–233. PubMed
Hachez C., Laloux T., Reinhardt H., Cavez D., Degand H., Grefen C., et al. (2014). Arabidopsis SNAREs SYP61 and SYP121 coordinate the trafficking of plasma membrane aquaporin PIP2;7 to modulate the cell membrane water permeability. Plant Cell 26 3132–3147. 10.1105/tpc.114.127159 PubMed DOI PMC
Hakoyama T., Oi R., Hazuma K., Suga E., Adachi Y., Kobayashi M., et al. (2012). The SNARE protein SYP71 expressed in vascular tissues is involved in symbiotic nitrogen fixation in Lotus japonicus nodules. Plant Physiol. 160 897–905. 10.1104/pp.112.200782 PubMed DOI PMC
Haney C. H., Long S. R. (2010). Plant flotillins are required for infection by nitrogen-fixing bacteria. Proc. Natl. Acad. Sci. U.S.A. 107 478–483. 10.1073/pnas.0910081107 PubMed DOI PMC
Haney C. H., Riely B. K., Tricoli D. M., Cook D. R., Ehrhardt D. W., Long S. R. (2011). Symbiotic rhizobia bacteria trigger a change in localization and dynamics of the Medicago truncatula receptor kinase LYK3. Plant Cell 23 2774–2787. 10.1105/tpc.111.086389 PubMed DOI PMC
Hao H. Q., Fan L. S., Chen T., Li R. L., Li X. J., He Q. H., et al. (2014). Clathrin and membrane microdomains cooperatively regulate rbohd dynamics and activity in Arabidopsis. Plant Cell 26 1729–1745. 10.1105/tpc.113.122358 PubMed DOI PMC
Hashimoto-Sugimoto M., Higaki T., Yaeno T., Nagami A., Irie M., Fujimi M., et al. (2013). A Munc13-like protein in Arabidopsis mediates H+-ATPase translocation that is essential for stomatal responses. Nat. Commun. 4:2215. 10.1038/ncomms3215 PubMed DOI PMC
Heckwolf M., Pater D., Hanson D. T., Kaldenhoff R. (2011). The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO2 transport facilitator. Plant J. 67 795–804. 10.1111/j.1365-313X.2011.04634.x PubMed DOI
Ho Y., Gruhler A., Heilbut A., Bader G. D., Moore L., Adams S. L., et al. (2002). Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415 180–183. 10.1038/415180a PubMed DOI
Huang B. X., Kim H. Y. (2013). Effective identification of Akt interacting proteins by two-step chemical crosslinking, co-immunoprecipitation and mass spectrometry. PLoS One 8:e61430. 10.1371/journal.pone.0061430 PubMed DOI PMC
Huang D. W., Sherman B. T., Lempicki R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4 44–57. 10.1038/nprot.2008.211 PubMed DOI
Ishikawa T., Aki T., Yanagisawa S., Uchimiya H., Kawai-Yamada M. (2015). Overexpression of BAX INHIBITOR-1 links plasma membrane microdomain proteins to stress. Plant Physiol. 169 1333–1343. 10.1104/pp.15.00445 PubMed DOI PMC
Jafferali M. H., Vijayaraghavan B., Figueroa R. A., Crafoord E., Gudise S., Larsson V. J., et al. (2014). MCLIP, an effective method to detect interactions of transmembrane proteins of the nuclear envelope in live cells. Biochim. Biophys. Acta 1838 2399–2403. 10.1016/j.bbamem.2014.06.008 PubMed DOI
Jarsch I. K., Konrad S. S. A., Stratil T. F., Urbanus S. L., Szymanski W., Braun P., et al. (2014). Plasma membranes are subcompartmentalized into a plethora of coexisting and diverse microdomains in Arabidopsis and Nicotiana benthamiana. Plant Cell 26 1698–1711. 10.1105/tpc.114.124446 PubMed DOI PMC
Jones A. M., Xuan Y., Xu M., Wang R.-S., Ho C.-H., Lalonde S., et al. (2014). Border control-a membrane-linked interactome of Arabidopsis. Science 344 711–716. 10.1126/science.1251358 PubMed DOI
Jozefkowicz C., Berny M.C., Chaumont F., Alleva K. (2017). “Heteromerization of plant aquaporins,” in Plant Aquaporins, eds Chaumont F., Tyerman S. D. (Berlin: Springer International Publishing; ), 29–46. 10.1007/978-3-319-49395-4_2 DOI
Jung H. W., Hwang B. K. (2007). The leucine-rich repeat (LRR) protein, CaLRR1, interacts with the hypersensitive induced reaction (HIR) protein, CaHIR1, and suppresses cell death induced by the CaHIR1 protein. Mol. Plant Pathol. 8 503–514. 10.1111/j.1364-3703.2007.00410.x PubMed DOI
Kaake R. M., Wang X. R., Burke A., Yu C., Kandur W., Yang Y. Y., et al. (2014). A new in vivo cross-linking mass spectrometry platform to define protein-protein interactions in living cells. Mol. Cell. Proteomics 13 3533–3543. 10.1074/mcp.M114.042630 PubMed DOI PMC
Keinath N. F., Kierszniowska S., Lorek J., Bourdais G., Kessler S. A., Shimosato-Asano H., et al. (2010). PAMP (Pathogen-Associated Molecular Pattern)-induced changes in plasma membrane compartmentalization reveal novel components of plant immunity. J. Biol. Chem. 285 39140–39149. 10.1074/jbc.M110.160531 PubMed DOI PMC
Kiyosue T., Yamaguchi-Shinozaki K., Shinozaki K. (1994). Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) in Arabidopsis thaliana L.: identification of three ERDs as HSP cognate genes. Plant Mol. Biol. 25 791–798. 10.1007/bf00028874 PubMed DOI
Ladwig F., Dahlke R. I., Stuhrwohldt N., Hartmann J., Harter K., Sauter M. (2015). Phytosulfokine regulates growth in Arabidopsis through a response module at the plasma membrane that includes cyclic nucleotide-gated CHANNEL17, H+-ATPase, and BAK1. Plant Cell 27 1718–1729. 10.1105/tpc.15.00306 PubMed DOI PMC
Langhorst M. F., Reuter A., Jaeger F. A., Wippich F. M., Luxenhofer G., Plattner H., et al. (2008). Trafficking of the microdomain scaffolding protein reggie-1/flotillin-2. Eur. J. Cell Biol. 87 211–226. 10.1016/j.ejcb.2007.12.001 PubMed DOI
Li N., Huang X., Zhao Z. L., Chen G. Y., Zhang W. P., Cao X. T. (2000). Identification and characterization of a novel gene KE04 differentially expressed by activated human dendritic cells. Biochem. Biophys. Res. Commun. 279 487–493. 10.1006/bbrc.2000.3935 PubMed DOI
Li R. L., Liu P., Wan Y. L., Chen T., Wang Q. L., Mettbach U., et al. (2012). A membrane microdomain-associated protein, Arabidopsis Flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development. Plant Cell 24 2105–2122. 10.1105/tpc.112.095695 PubMed DOI PMC
Li X. J., Wang X. H., Yang Y., Li R. L., He Q. H., Fang X. H., et al. (2011). Single-molecule analysis of pip2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. Plant Cell 23 3780–3797. 10.1105/tpc.111.091454 PubMed DOI PMC
Liu J., DeYoung S. M., Zhang M., Dold L. H., Saltiel A. R. (2005). The stomatin/prohibitin/flotillin/HflK/C domain of flotillin-1 contains distinct sequences that direct plasma membrane localization and protein interactions in 3T3-L1 adipocytes. J. Biol. Chem. 280 16125–16134. 10.1074/jbc.M500940200 PubMed DOI
Liu J., Elmore J. M., Fuglsang A. T., Palmgren M. G., Staskawicz B. J., Coaker G. (2009). RIN4 functions with plasma membrane H+-atpases to regulate stomatal apertures during pathogen attack. PLoS Biol. 7:e1000139. 10.1371/journal.pbio.1000139 PubMed DOI PMC
Liu M. J., Peng Y., Li H. Y., Deng L., Wang X. J., Kang Z. S. (2016). TaSYP71, a Qc-SNARE, contributes to wheat resistance against Puccinia striiformis f. sp tritici. Front. Plant Sci. 7:544. 10.3389/fpls.2016.00544 PubMed DOI PMC
Liu P., Li R. L., Zhang L., Wang Q. L., Niehaus K., Baluska F., et al. (2009). Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth. Plant J. 60 303–313. 10.1111/j.1365-313X.2009.03955.x PubMed DOI
Liu Y., Li H., Shi Y., Song Y., Wang T., Li Y. (2009). A maize early responsive to dehydration gene, ZmERD4, provides enhanced drought and salt tolerance in Arabidopsis. Plant Mol. Biol. Rep. 27 542–548. 10.1007/s11105-009-0119-y DOI
Luang S., Hrmova M. (2017). “Structural basis of the permeation function of plant aquaporins,” in Plant Aquaporins, eds Chaumont F., Tyerman S. D. (Berlin: Springer International Publishing; ), 1–28. 10.1007/978-3-319-49395-4_1 DOI
Lv X. Q., Jing Y. P., Xiao J. W., Zhang Y. D., Zhu Y. F., Julian R., et al. (2017). Membrane microdomains and the cytoskeleton constrain AtHIR1 dynamics and facilitate the formation of an AtHIR1-associated immune complex. Plant J. 90 3–16. 10.1111/tpj.13480 PubMed DOI
Marmagne A., Ferro M., Meinnel T., Bruley C., Kuhn L., Garin J., et al. (2007). A high content in lipid-modified peripheral proteins and integral receptor kinases features in the Arabidopsis plasma membrane proteome. Mol. Cell. Proteomics 6 1980–1996. 10.1074/mcp.M700099-MCP200 PubMed DOI
Mohr P. G., Cahill D. M. (2007). Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Funct. Integr. Genomics 7 181–191. 10.1007/s10142-006-0041-4 PubMed DOI
Mongrand S., Morel J., Laroche J., Claverol S., Carde J. P., Hartmann M. A., et al. (2004). Lipid rafts in higher plant cells – purification and characterization of triton X-100-insoluble microdomains from tobacco plasma membrane. J. Biol. Chem. 279 36277–36286. 10.1074/jbc.M403440200 PubMed DOI
Morrow I. C., Rea S., Martin S., Prior I. A., Prohaska R., Hancock J. F., et al. (2002). Flotillin-1/Reggie-2 traffics to surface raft domains via a novel Golgi-independent pathway – identification of a novel membrane targeting domain and a role for palmitoylation. J. Biol. Chem. 277 48834–48841. 10.1074/jbc.M209082200 PubMed DOI
Mosher R. A., Durrant W. E., Wang D., Song J. Q., Dong X. N. (2006). A comprehensive structure-function analysis of Arabidopsis SNI1 defines essential regions and transcriptional repressor activity. Plant Cell 18 1750–1765. 10.1105/tpc.105.039677 PubMed DOI PMC
Murata K., Mitsuoka K., Hirai T., Walz T., Agre P., Heymann J. B., et al. (2000). Structural determinants of water permeation through aquaporin-1. Nature 407 599–605. 10.1038/35036519 PubMed DOI
Nesvizhskii A. I. (2012). Computational and informatics strategies for identification of specific protein interaction partners in affinity purification mass spectrometry experiments. Proteomics 12 1639–1655. 10.1002/pmic.201100537 PubMed DOI PMC
Neumann-Giesen C., Falkenbach B., Beicht P., Claasen S., Luers G., Stuermer C. A. O., et al. (2004). Membrane and raft association of reggie-1/flotillin-2: role of myristoylation, palmitoylation and oligomerization and induction of filopodia by overexpression. Biochem. J. 378 509–518. 10.1042/bj20031100 PubMed DOI PMC
Neumann-Giesen C., Fernow I., Amaddii M., Tikkanen R. (2007). Role of EGF-induced tyrosine phosphorylation of reggie-1/flotillin-2 in cell spreading and signaling to the actin cytoskeleton. J. Cell Sci. 120 395–406. 10.1242/jcs.03336 PubMed DOI
Ogura M., Yamaki J., Homma M. K., Homma Y. (2014). Phosphorylation of flotillin-1 by mitochondrial c-Src is required to prevent the production of reactive oxygen species. FEBS Lett. 588 2837–2843. 10.1016/j.febslet.2014.06.044 PubMed DOI
Pardo M., Choudhary F. S. (2012). Assignment of protein interactions from affinity purification/mass spectrometry data. J. Proteome Res. 11 1462–1474. 10.1021/pr2011632 PubMed DOI
Peremyslov V. V., Morgun E. A., Kurth E. G., Makarova K. S., Koonin E. V., Dolja V. V. (2013). Identification of myosin XI receptors in Arabidopsis defines a distinct class of transport vesicles. Plant Cell 25 3022–3038. 10.1105/tpc.113.113704 PubMed DOI PMC
Pizzio G. A., Hirschi K. D., Gaxiola R. A. (2017). Conjecture regarding posttranslational modifications to the Arabidopsis type I Proton-pumping pyrophosphatase (AVP1). Front. Plant Sci. 8:1572. 10.3389/fpls.2017.01572 PubMed DOI PMC
Pleskot R., Potocky M., Pejchar P., Linek J., Bezvoda R., Martinec J., et al. (2010). Mutual regulation of plant phospholipase D and the actin cytoskeleton. Plant J. 62 494–507. 10.1111/j.1365-313X.2010.04168.x PubMed DOI
Popov N., Schmitt M., Schulzeck S., Matthies H. (1975). Reliable micromethod for determining protein-content in tissue material. Acta Biol. Med. Ger. 34 1441–1446. PubMed
Postaire O., Tournaire-Roux C., Grondin A., Boursiac Y., Morillon R., Schaffner A. R., et al. (2010). A PIP1 aquaporin contributes to hydrostatic pressure-induced water transport in both the root and rosette of Arabidopsis. Plant Physiol. 152 1418–1430. 10.1104/pp.109.145326 PubMed DOI PMC
Qi Y. P., Katagiri F. (2009). Purification of low-abundance Arabidopsis plasma-membrane protein complexes and identification of candidate components. Plant J. 57 932–944. 10.1111/j.1365-313X.2008.03736.x PubMed DOI
Qi Y. P., Tsuda K., Nguyen L. V., Wang X., Lin J. S., Murphy A. S., et al. (2011). Physical association of Arabidopsis hypersensitive induced reaction proteins (HIRs) with the immune receptor RPS2. J. Biol. Chem. 286 31297–31307. 10.1074/jbc.M110.211615 PubMed DOI PMC
Roitbak T., Surviladze Z., Tikkanen R., Wandinger-Ness A. (2005). A polycystin multiprotein complex constitutes a cholesterol-containing signalling microdomain in human kidney epithelia. Biochem. J. 392 29–38. 10.1042/bj20050645 PubMed DOI PMC
Sanderfoot A. A., Kovaleva V., Bassham D. C., Raikhel N. V. (2001). Interactions between syntaxins identify at least five SNARE complexes within the golgi/prevacuolar system of the Arabidopsis cell. Mol. Biol. Cell 12 3733–3743. 10.1091/mbc.12.12.3733 PubMed DOI PMC
Santamaria A., Castellanos E., Gomez V., Benedit P., Renau-Piqueras J., Morote J., et al. (2005). PTOV1 enables the nuclear translocation and mitogenic activity of flotillin-1, a major protein of lipid rafts. Mol. Cell Biol. 25 1900–1911. 10.1128/Mcb.25.5.1900-1911.2005 PubMed DOI PMC
Savas J. N., Stein B. D., Wu C. C., Yates J. R. (2011). Mass spectrometry accelerates membrane protein analysis. Trends Biochem. Sci. 36 388–396. 10.1016/j.tibs.2011.04.005 PubMed DOI PMC
Shahollari B., Peskan-Berghöfer T., Oelmüller R. (2004). Receptor kinases with leucine-rich repeats are enriched in Triton X-100 insoluble plasma membrane microdomains from plants. Physiol. Plant. 122 397–403. 10.1111/j.1399-3054.2004.00414.x DOI
Schindler J., Nothwang H. G. (2006). Aqueous polymer two-phase systems: effective tools for plasma membrane proteomics. Proteomics 6 5409–5417. 10.1002/pmic.200600243 PubMed DOI
Schroeder W. T., Stewartgaletka S., Mandavilli S., Parry D. A. D., Goldsmith L., Duvic M. (1994). Cloning and characterization of a novel epidermal-cell surface-antigen (Esa). J. Biol. Chem. 269 19983–19991. PubMed
Schulte T., Lottspeich F., Stuermer C. A. O. (1995). Characterization of reggie-1 and isolation of reggie-2, cell surface proteins of the goldfish CNS. Soc. Neurosci. Abstr. 21:795.
Simons K., Ikonen E. (1997). Functional rafts in cell membranes. Nature 387 569–572. 10.1038/42408 PubMed DOI
Simons K., Toomre D. (2000). Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1 31–39. 10.1038/35036052 PubMed DOI
Singh N., Swain S., Singh A., Nandi A. K. (2018). AtOZF1 positively regulates defense against bacterial pathogens and NPR1-independent salicylic acid signaling. Mol. Plant Microbe Interact. 31 323–333. 10.1094/MPMI-08-17-0208-R PubMed DOI
Smaczniak C., Li N., Boeren S., America T., van Dongen W., Goerdayal S. S., et al. (2012). Proteomics-based identification of low-abundance signaling and regulatory protein complexes in native plant tissues. Nat. Protoc. 7 2144–2158. 10.1038/nprot.2012.129 PubMed DOI
Solis G. P., Hoegg M., Munderloh C., Schrock Y., Malaga-Trillo E., Rivera-Milla E., et al. (2007). Reggie/flotillin proteins are organized into stable tetramers in membrane microdomains. Biochem. J. 403 313–322. 10.1042/bj20061686 PubMed DOI PMC
Speers A. E., Wu C. C. (2007). Proteomics of integral membrane proteins-theory and application. Chem. Rev. 107 3687–3714. 10.1021/cr068286z PubMed DOI
Tan S., Tan H. T., Chung M. C. M. (2008). Membrane proteins and membrane proteomics. Proteomics 8 3924–3932. 10.1002/pmic.200800597 PubMed DOI
ten Have S., Boulon S., Ahmad Y., Lamond A. I. (2011). Mass spectrometry-based immuno-precipitation proteomics - The user’s guide. Proteomics 11 1153–1159. 10.1002/pmic.201000548 PubMed DOI PMC
Uehlein N., Sperling H., Heckwolf M., Kaldenhoff R. (2012). The Arabidopsis aquaporin PIP1;2 rules cellular CO2 uptake. Plant Cell Environ. 35 1077–1083. 10.1111/j.1365-3040.2011.02473.x PubMed DOI
Ullrich A., Schlessinger J. (1990). Signal transduction by receptors with tyrosine kinase-activity. Cell 61 203–212. 10.1016/0092-8674(90)90801-K PubMed DOI
Van Leene J., Eeckhout D., Cannoot B., De Winne N., Persiau G., Van De Slijke E., et al. (2015). An improved toolbox to unravel the plant cellular machinery by tandem affinity purification of Arabidopsis protein complexes. Nat. Protoc. 10 169–187. 10.1038/nprot.2014.199 PubMed DOI
Varet A., Hause B., Hause G., Scheel D., Lee J. (2003). The Arabidopsis NHL3 gene encodes a plasma membrane protein and its overexpression correlates with increased resistance to Pseudomonas syringae pv. tomato DC3000. Plant Physiol. 132 2023–2033. 10.1104/pp.103.020438 PubMed DOI PMC
Varet A., Parker J., Tornero P., Nass N., Nürnberger T., Dangl J. L., et al. (2002). NHL25 and NHL3, two NDR1/HIN-like genes in Arabidopsis thaliana with potential role(s) in plant defense. Mol. Plant Microbe Interact. 15:608. 10.1094/MPMI.2002.15.6.608 PubMed DOI
Volonté D., Galbiati F., Li S., Nishiyama K., Okamoto T., Lisanti M. P. (1999). Flotillins/cavatellins are differentially expressed in cells and tissues and form a hetero-oligomeric complex with caveolins in vivo: characterization and epitope-mapping of a novel flotillin-1 monoclonal antibody probe. J. Biol. Chem. 274 12702–12709. 10.1074/jbc.274.18.12702 PubMed DOI
Wang L., Li H., Lv X. Q., Chen T., Li R. L., Xue Y. Q., et al. (2015). Spatiotemporal dynamics of the bri1 receptor and its regulation by membrane microdomains in living Arabidopsis cells. Mol. Plant 8 1334–1349. 10.1016/j.molp.2015.04.005 PubMed DOI
Wei T. Y., Zhang C. W., Hou X. L., Sanfacon H., Wang A. M. (2013). The SNARE protein SYP71 is essential for turnip mosaic virus infection by mediating fusion of virus-induced vesicles with chloroplasts. PLoS Pathog. 9:e1003378. 10.1371/journal.ppat.1003378 PubMed DOI PMC
Weis C., Pfeilmeier S., Glawischnig E., Isono E., Pachl F., Hahne H., et al. (2013). Co-immunoprecipitation-based identification of putative BAX INHIBITOR-1-interacting proteins involved in cell death regulation and plant-powdery mildew interactions. Mol. Plant Pathol. 14 791–802. 10.1111/mpp.12050 PubMed DOI PMC
Xing S., Wallmeroth N., Berendzen K. W., Grefen C. (2016). Techniques for the analysis of protein-protein interactions in vivo. Plant Physiol. 171 727–758. 10.1104/pp.16.00470 PubMed DOI PMC
Yamauchi S., Takemiya A., Sakamoto T., Kurata T., Tsutsumi T., Kinoshita T., et al. (2016). The plasma membrane H+-ATPase AHA1 plays a major role in stomatal opening in response to blue light. Plant Physiol. 171 2731–2743. 10.1104/pp.16.01581 PubMed DOI PMC
Yan S. L., McLamore E. S., Dong S. S., Gao H. B., Taguchi M., Wang N. N., et al. (2015). The role of plasma membrane H+-ATPase in jasmonate-induced ion fluxes and stomatal closure in Arabidopsis thaliana. Plant J. 83 638–649. 10.1111/tpj.12915 PubMed DOI
Yu M., Liu H. J., Dong Z. Y., Xiao J. W., Su B. D., Fan L. S., et al. (2017). The dynamics and endocytosis of Flot1 protein in response to flg22 in Arabidopsis. J. Plant Physiol. 215 73–84. 10.1016/j.jplph.2017.05.010 PubMed DOI
Zelazny E., Borst J. W., Muylaert M., Batoko H., Hemminga M. A., Chaumont F. (2007). FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization. Proc. Natl. Acad. Sci. U.S.A. 104 12359–12364. 10.1073/pnas.0701180104 PubMed DOI PMC
Zheng M. S., Takahashi H., Miyazaki A., Hamamoto H., Shah J., Yamaguchi I., et al. (2004). Up-regulation of Arabidopsis thaliana NHL10 in the hypersensitive response to Cucumber mosaic virus infection and in senescing leaves is controlled by signalling pathways that differ in salicylate involvement. Planta 218 740–750. 10.1007/s00425-003-1169-2 PubMed DOI
Zhou L., Cheung M. Y., Zhang Q., Lei C. L., Zhang S. H., Sun S. S., et al. (2009). A novel simple extracellular leucine-rich repeat (eLRR) domain protein from rice (OsLRR1) enters the endosomal pathway and interacts with the hypersensitive-induced reaction protein 1 (OsHIR1). Plant Cell Environ. 32 1804–1820. 10.1111/j.1365-3040.2009.02039.x PubMed DOI
Zhou L. A., Cheung M. Y., Li M. W., Fu Y. P., Sun Z. X., Sun S. M., et al. (2010). Rice hypersensitive induced reaction protein 1 (OsHIR1) associates with plasma membrane and triggers hypersensitive cell death. Bmc Plant Biol. 10:290. 10.1186/1471-2229-10-290 PubMed DOI PMC
Zhou Z. Y., Wu Y. J., Yang Y. Q., Du M. M., Zhang X. J., Guo Y., et al. (2015). An Arabidopsis plasma membrane proton ATPase modulates ja signaling and is exploited by the pseudomonas syringae effector protein avrb for stomatal invasion. Plant Cell 27 2032–2041. 10.1105/tpc.15.00466 PubMed DOI PMC