Mapping of Plasma Membrane Proteins Interacting With Arabidopsis thaliana Flotillin 2

. 2018 ; 9 () : 991. [epub] 20180712

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30050548

Arabidopsis flotillin 2 (At5g25260) belongs to the group of plant flotillins, which are not well characterized. In contrast, metazoan flotillins are well known as plasma membrane proteins associated with membrane microdomains that act as a signaling hub. The similarity of plant and metazoan flotillins, whose functions most likely consist of affecting other proteins via protein-protein interactions, determines the necessity of detecting their interacting partners in plants. Nevertheless, identifying the proteins that form complexes on the plasma membrane is a challenging task due to their low abundance and hydrophobic character. Here we present an approach for mapping Arabidopsis thaliana flotillin 2 plasma membrane interactors, based on the immunoaffinity purification of crosslinked and enriched plasma membrane proteins with mass spectrometry detection. Using this approach, 61 proteins were enriched in the AtFlot-GFP plasma membrane fraction, and 19 of them were proposed to be flotillin 2 interaction partners. Among our proposed partners of Flot2, proteins playing a role in the plant response to various biotic and abiotic stresses were detected. Additionally, the use of the split-ubiquitin yeast system helped us to confirm that plasma-membrane ATPase 1, early-responsive to dehydration stress protein 4, syntaxin-71, harpin-induced protein-like 3, hypersensitive-induced response protein 2 and two aquaporin isoforms interact with flotillin 2 directly. Based on the results of our study and the reported properties of Flot2 interactors, we propose that Flot2 complexes may be involved in plant-pathogen interactions, water transport and intracellular trafficking.

Zobrazit více v PubMed

Alexandersson E., Fraysse L., Sjovall-Larsen S., Gustavsson S., Fellert M., Karlsson M., et al. (2005). Whole gene family expression and drought stress regulation of aquaporins. PubMed DOI

Amaddii M., Meister M., Banning A., Tomasovic A., Mooz J., Rajalingam K., et al. (2012). Flotillin-1/reggie-2 protein plays dual role in activation of receptor-tyrosine kinase/mitogen-activated protein kinase signaling. PubMed DOI PMC

Ascencio-Ibanez J. T., Sozzani R., Lee T. J., Chu T. M., Wolfinger R. D., Cella R., et al. (2008). Global analysis of PubMed DOI PMC

Bao Y. M., Sun S. J., Li M., Li L., Cao W. L., Luo J., et al. (2012). Overexpression of the Qc-SNARE gene PubMed DOI

Baumann C. A., Ribon V., Kanzaki M., Thurmond D. C., Mora S., Shigematsu S., et al. (2000). CAP defines a second signalling pathway required for insulin-stimulated glucose transport. PubMed DOI

Bellati J., Champeyroux C., Hem S., Rofidal V., Krouk G., Maurel C., et al. (2016). Novel aquaporin regulatory mechanisms revealed by interactomics. PubMed DOI PMC

Besserer A., Burnotte E., Bienert G. P., Chevalier A. S., Errachid A., Grefen C., et al. (2012). Selective regulation of maize plasma membrane aquaporin trafficking and activity by the SNARE SYP121. PubMed DOI PMC

Bickel P. E., Scherer P. E., Schnitzer J. E., Oh P., Lisanti M. P., Lodish H. F. (1997). Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins. PubMed DOI

Borner G. H. H., Sherrier D. J., Weimar T., Michaelson L. V., Hawkins N. D., MacAskill A., et al. (2005). Analysis of detergent-resistant membranes in PubMed DOI PMC

Boursiac Y., Chen S., Luu D. T., Sorieul M., van den Dries N., Maurel C. (2005). Early effects of salinity on water transport in PubMed DOI PMC

Browman D. T., Hoegg M. B., Robbins S. M. (2007). The SPFH domain-containing proteins: more than lipid raft markers. PubMed DOI

Cacas J. L., Bure C., Grosjean K., Gerbeau-Pissot P., Lherminier J., Rombouts Y., et al. (2016). Revisiting plant plasma membrane lipids in tobacco: a focus on sphingolipids. PubMed DOI PMC

Cheng W., Xiao Z. L., Cai H. Y., Wang C. Q., Hu Y., Xiao Y. P., et al. (2017). A novel leucine-rich repeat protein, CaLRR51, acts as a positive regulator in the response of pepper to PubMed DOI PMC

Choi H., Larsen B., Lin Z. Y., Breitkreutz A., Mellacheruvu D., Fermin D., et al. (2011). SAINT: probabilistic scoring of affinity purification-mass spectrometry data. PubMed DOI PMC

Choi H. W., Kim Y. J., Hwang B. K. (2011). The Hypersensitive induced reaction and leucine-rich repeat proteins regulate plant cell death associated with disease and plant immunity. PubMed DOI

Coll N. S., Epple P., Dangl J. L. (2011). Programmed cell death in the plant immune system. PubMed DOI PMC

Collins M. O., Choudhary J. S. (2008). Mapping multiprotein complexes by affinity purification and mass spectrometry. PubMed DOI

Danek M., Valentova O., Martinec J. (2016). Flotillins, erlins, and hirs: from animal base camp to plant new horizons. DOI

Davletova S., Schlauch K., Coutu J., Mittler R. (2005). The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in PubMed DOI PMC

Dedecker M., Van Leene J., De Jaeger G. (2015). Unravelling plant molecular machineries through affinity purification coupled to mass spectrometry. PubMed DOI

Dermine J. F., Duclos S., Garin J., St-Louis F., Rea S., Parton R. G., et al. (2001). Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes. PubMed DOI

Di C., Xu W. Y., Su Z., Yuan J. S. (2010). Comparative genome analysis of PHB gene family reveals deep evolutionary origins and diverse gene function. PubMed DOI PMC

Diévart A., Clark S. E. (2003). Using mutant alleles to determine the structure and function of leucine-rich repeat receptor-like kinases. PubMed DOI

Ditt R. F., Kerr K. F., de Figueiredo P., Delrow J., Comai L., Nester E. W. (2006). The PubMed DOI

Dorr J. M., Scheidelaar S., Koorengevel M. C., Dominguez J. J., Schafer M., van Walree C. A., et al. (2016). The styrene-maleic acid copolymer: a versatile tool in membrane research. PubMed DOI PMC

Dunham W. H., Mullin M., Gingras A. C. (2012). Affinity-purification coupled to mass spectrometry: basic principles and strategies. PubMed DOI

Ephritikhine G., Ferro M., Rolland N. (2004). Plant membrane proteomics. PubMed DOI

Fuglsang A. T., Kristensen A., Cuin T. A., Schulze W. X., Persson J., Thuesen K. H., et al. (2014). Receptor kinase-mediated control of primary active proton pumping at the plasma membrane. PubMed DOI

Fujiwara M., Uemura T., Ebine K., Nishimori Y., Ueda T., Nakano A., et al. (2014). Interactomics of Qa-SNARE in PubMed DOI

Gehl B., Lee C. P., Bota P., Blatt M. R., Sweetlove L. J. (2014). An PubMed DOI PMC

Gilmore J. M., Washburn M. P. (2010). Advances in shotgun proteomics and the analysis of membrane proteomes. PubMed DOI

Glebov O. O., Bright N. A., Nichols B. J. (2006). Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. PubMed DOI

Green J. B., Young J. P. W. (2008). Slipins: ancient origin, duplication and diversification of the stomatin protein family. PubMed DOI PMC

Grefen C. (2014). “The split-ubiquitin system for the analysis of three-component interactions,” in PubMed

Grefen C., Lalonde S., Obrdlik P. (2007). Split-ubiquitin system for identifying protein-protein interactions in membrane and full-length proteins. PubMed DOI

Grefen C., Obrdlik P., Harter K. (2009). “The determination of protein-protein interactions by the mating-based split-ubiquitin system (mbSUS),” in PubMed

Hachez C., Laloux T., Reinhardt H., Cavez D., Degand H., Grefen C., et al. (2014). PubMed DOI PMC

Hakoyama T., Oi R., Hazuma K., Suga E., Adachi Y., Kobayashi M., et al. (2012). The SNARE protein SYP71 expressed in vascular tissues is involved in symbiotic nitrogen fixation in PubMed DOI PMC

Haney C. H., Long S. R. (2010). Plant flotillins are required for infection by nitrogen-fixing bacteria. PubMed DOI PMC

Haney C. H., Riely B. K., Tricoli D. M., Cook D. R., Ehrhardt D. W., Long S. R. (2011). Symbiotic rhizobia bacteria trigger a change in localization and dynamics of the PubMed DOI PMC

Hao H. Q., Fan L. S., Chen T., Li R. L., Li X. J., He Q. H., et al. (2014). Clathrin and membrane microdomains cooperatively regulate rbohd dynamics and activity in PubMed DOI PMC

Hashimoto-Sugimoto M., Higaki T., Yaeno T., Nagami A., Irie M., Fujimi M., et al. (2013). A Munc13-like protein in PubMed DOI PMC

Heckwolf M., Pater D., Hanson D. T., Kaldenhoff R. (2011). The PubMed DOI

Ho Y., Gruhler A., Heilbut A., Bader G. D., Moore L., Adams S. L., et al. (2002). Systematic identification of protein complexes in PubMed DOI

Huang B. X., Kim H. Y. (2013). Effective identification of Akt interacting proteins by two-step chemical crosslinking, co-immunoprecipitation and mass spectrometry. PubMed DOI PMC

Huang D. W., Sherman B. T., Lempicki R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. PubMed DOI

Ishikawa T., Aki T., Yanagisawa S., Uchimiya H., Kawai-Yamada M. (2015). Overexpression of BAX INHIBITOR-1 links plasma membrane microdomain proteins to stress. PubMed DOI PMC

Jafferali M. H., Vijayaraghavan B., Figueroa R. A., Crafoord E., Gudise S., Larsson V. J., et al. (2014). MCLIP, an effective method to detect interactions of transmembrane proteins of the nuclear envelope in live cells. PubMed DOI

Jarsch I. K., Konrad S. S. A., Stratil T. F., Urbanus S. L., Szymanski W., Braun P., et al. (2014). Plasma membranes are subcompartmentalized into a plethora of coexisting and diverse microdomains in PubMed DOI PMC

Jones A. M., Xuan Y., Xu M., Wang R.-S., Ho C.-H., Lalonde S., et al. (2014). Border control-a membrane-linked interactome of PubMed DOI

Jozefkowicz C., Berny M.C., Chaumont F., Alleva K. (2017). “Heteromerization of plant aquaporins,” in DOI

Jung H. W., Hwang B. K. (2007). The leucine-rich repeat (LRR) protein, CaLRR1, interacts with the hypersensitive induced reaction (HIR) protein, CaHIR1, and suppresses cell death induced by the CaHIR1 protein. PubMed DOI

Kaake R. M., Wang X. R., Burke A., Yu C., Kandur W., Yang Y. Y., et al. (2014). A new PubMed DOI PMC

Keinath N. F., Kierszniowska S., Lorek J., Bourdais G., Kessler S. A., Shimosato-Asano H., et al. (2010). PAMP (Pathogen-Associated Molecular Pattern)-induced changes in plasma membrane compartmentalization reveal novel components of plant immunity. PubMed DOI PMC

Kiyosue T., Yamaguchi-Shinozaki K., Shinozaki K. (1994). Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) in PubMed DOI

Ladwig F., Dahlke R. I., Stuhrwohldt N., Hartmann J., Harter K., Sauter M. (2015). Phytosulfokine regulates growth in PubMed DOI PMC

Langhorst M. F., Reuter A., Jaeger F. A., Wippich F. M., Luxenhofer G., Plattner H., et al. (2008). Trafficking of the microdomain scaffolding protein reggie-1/flotillin-2. PubMed DOI

Li N., Huang X., Zhao Z. L., Chen G. Y., Zhang W. P., Cao X. T. (2000). Identification and characterization of a novel gene KE04 differentially expressed by activated human dendritic cells. PubMed DOI

Li R. L., Liu P., Wan Y. L., Chen T., Wang Q. L., Mettbach U., et al. (2012). A membrane microdomain-associated protein, PubMed DOI PMC

Li X. J., Wang X. H., Yang Y., Li R. L., He Q. H., Fang X. H., et al. (2011). Single-molecule analysis of pip2;1 dynamics and partitioning reveals multiple modes of PubMed DOI PMC

Liu J., DeYoung S. M., Zhang M., Dold L. H., Saltiel A. R. (2005). The stomatin/prohibitin/flotillin/HflK/C domain of flotillin-1 contains distinct sequences that direct plasma membrane localization and protein interactions in 3T3-L1 adipocytes. PubMed DOI

Liu J., Elmore J. M., Fuglsang A. T., Palmgren M. G., Staskawicz B. J., Coaker G. (2009). RIN4 functions with plasma membrane H+-atpases to regulate stomatal apertures during pathogen attack. PubMed DOI PMC

Liu M. J., Peng Y., Li H. Y., Deng L., Wang X. J., Kang Z. S. (2016). TaSYP71, a Qc-SNARE, contributes to wheat resistance against PubMed DOI PMC

Liu P., Li R. L., Zhang L., Wang Q. L., Niehaus K., Baluska F., et al. (2009). Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in PubMed DOI

Liu Y., Li H., Shi Y., Song Y., Wang T., Li Y. (2009). A maize early responsive to dehydration gene, DOI

Luang S., Hrmova M. (2017). “Structural basis of the permeation function of plant aquaporins,” in DOI

Lv X. Q., Jing Y. P., Xiao J. W., Zhang Y. D., Zhu Y. F., Julian R., et al. (2017). Membrane microdomains and the cytoskeleton constrain AtHIR1 dynamics and facilitate the formation of an AtHIR1-associated immune complex. PubMed DOI

Marmagne A., Ferro M., Meinnel T., Bruley C., Kuhn L., Garin J., et al. (2007). A high content in lipid-modified peripheral proteins and integral receptor kinases features in the PubMed DOI

Mohr P. G., Cahill D. M. (2007). Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in PubMed DOI

Mongrand S., Morel J., Laroche J., Claverol S., Carde J. P., Hartmann M. A., et al. (2004). Lipid rafts in higher plant cells – purification and characterization of triton X-100-insoluble microdomains from tobacco plasma membrane. PubMed DOI

Morrow I. C., Rea S., Martin S., Prior I. A., Prohaska R., Hancock J. F., et al. (2002). Flotillin-1/Reggie-2 traffics to surface raft domains via a novel Golgi-independent pathway – identification of a novel membrane targeting domain and a role for palmitoylation. PubMed DOI

Mosher R. A., Durrant W. E., Wang D., Song J. Q., Dong X. N. (2006). A comprehensive structure-function analysis of PubMed DOI PMC

Murata K., Mitsuoka K., Hirai T., Walz T., Agre P., Heymann J. B., et al. (2000). Structural determinants of water permeation through aquaporin-1. PubMed DOI

Nesvizhskii A. I. (2012). Computational and informatics strategies for identification of specific protein interaction partners in affinity purification mass spectrometry experiments. PubMed DOI PMC

Neumann-Giesen C., Falkenbach B., Beicht P., Claasen S., Luers G., Stuermer C. A. O., et al. (2004). Membrane and raft association of reggie-1/flotillin-2: role of myristoylation, palmitoylation and oligomerization and induction of filopodia by overexpression. PubMed DOI PMC

Neumann-Giesen C., Fernow I., Amaddii M., Tikkanen R. (2007). Role of EGF-induced tyrosine phosphorylation of reggie-1/flotillin-2 in cell spreading and signaling to the actin cytoskeleton. PubMed DOI

Ogura M., Yamaki J., Homma M. K., Homma Y. (2014). Phosphorylation of flotillin-1 by mitochondrial c-Src is required to prevent the production of reactive oxygen species. PubMed DOI

Pardo M., Choudhary F. S. (2012). Assignment of protein interactions from affinity purification/mass spectrometry data. PubMed DOI

Peremyslov V. V., Morgun E. A., Kurth E. G., Makarova K. S., Koonin E. V., Dolja V. V. (2013). Identification of myosin XI receptors in PubMed DOI PMC

Pizzio G. A., Hirschi K. D., Gaxiola R. A. (2017). Conjecture regarding posttranslational modifications to the PubMed DOI PMC

Pleskot R., Potocky M., Pejchar P., Linek J., Bezvoda R., Martinec J., et al. (2010). Mutual regulation of plant phospholipase D and the actin cytoskeleton. PubMed DOI

Popov N., Schmitt M., Schulzeck S., Matthies H. (1975). Reliable micromethod for determining protein-content in tissue material. PubMed

Postaire O., Tournaire-Roux C., Grondin A., Boursiac Y., Morillon R., Schaffner A. R., et al. (2010). A PIP1 aquaporin contributes to hydrostatic pressure-induced water transport in both the root and rosette of PubMed DOI PMC

Qi Y. P., Katagiri F. (2009). Purification of low-abundance PubMed DOI

Qi Y. P., Tsuda K., Nguyen L. V., Wang X., Lin J. S., Murphy A. S., et al. (2011). Physical association of PubMed DOI PMC

Roitbak T., Surviladze Z., Tikkanen R., Wandinger-Ness A. (2005). A polycystin multiprotein complex constitutes a cholesterol-containing signalling microdomain in human kidney epithelia. PubMed DOI PMC

Sanderfoot A. A., Kovaleva V., Bassham D. C., Raikhel N. V. (2001). Interactions between syntaxins identify at least five SNARE complexes within the golgi/prevacuolar system of the PubMed DOI PMC

Santamaria A., Castellanos E., Gomez V., Benedit P., Renau-Piqueras J., Morote J., et al. (2005). PTOV1 enables the nuclear translocation and mitogenic activity of flotillin-1, a major protein of lipid rafts. PubMed DOI PMC

Savas J. N., Stein B. D., Wu C. C., Yates J. R. (2011). Mass spectrometry accelerates membrane protein analysis. PubMed DOI PMC

Shahollari B., Peskan-Berghöfer T., Oelmüller R. (2004). Receptor kinases with leucine-rich repeats are enriched in Triton X-100 insoluble plasma membrane microdomains from plants. DOI

Schindler J., Nothwang H. G. (2006). Aqueous polymer two-phase systems: effective tools for plasma membrane proteomics. PubMed DOI

Schroeder W. T., Stewartgaletka S., Mandavilli S., Parry D. A. D., Goldsmith L., Duvic M. (1994). Cloning and characterization of a novel epidermal-cell surface-antigen (Esa). PubMed

Schulte T., Lottspeich F., Stuermer C. A. O. (1995). Characterization of reggie-1 and isolation of reggie-2, cell surface proteins of the goldfish CNS.

Simons K., Ikonen E. (1997). Functional rafts in cell membranes. PubMed DOI

Simons K., Toomre D. (2000). Lipid rafts and signal transduction. PubMed DOI

Singh N., Swain S., Singh A., Nandi A. K. (2018). AtOZF1 positively regulates defense against bacterial pathogens and NPR1-independent salicylic acid signaling. PubMed DOI

Smaczniak C., Li N., Boeren S., America T., van Dongen W., Goerdayal S. S., et al. (2012). Proteomics-based identification of low-abundance signaling and regulatory protein complexes in native plant tissues. PubMed DOI

Solis G. P., Hoegg M., Munderloh C., Schrock Y., Malaga-Trillo E., Rivera-Milla E., et al. (2007). Reggie/flotillin proteins are organized into stable tetramers in membrane microdomains. PubMed DOI PMC

Speers A. E., Wu C. C. (2007). Proteomics of integral membrane proteins-theory and application. PubMed DOI

Tan S., Tan H. T., Chung M. C. M. (2008). Membrane proteins and membrane proteomics. PubMed DOI

ten Have S., Boulon S., Ahmad Y., Lamond A. I. (2011). Mass spectrometry-based immuno-precipitation proteomics - The user’s guide. PubMed DOI PMC

Uehlein N., Sperling H., Heckwolf M., Kaldenhoff R. (2012). The PubMed DOI

Ullrich A., Schlessinger J. (1990). Signal transduction by receptors with tyrosine kinase-activity. PubMed DOI

Van Leene J., Eeckhout D., Cannoot B., De Winne N., Persiau G., Van De Slijke E., et al. (2015). An improved toolbox to unravel the plant cellular machinery by tandem affinity purification of PubMed DOI

Varet A., Hause B., Hause G., Scheel D., Lee J. (2003). The Arabidopsis PubMed DOI PMC

Varet A., Parker J., Tornero P., Nass N., Nürnberger T., Dangl J. L., et al. (2002). PubMed DOI

Volonté D., Galbiati F., Li S., Nishiyama K., Okamoto T., Lisanti M. P. (1999). Flotillins/cavatellins are differentially expressed in cells and tissues and form a hetero-oligomeric complex with caveolins PubMed DOI

Wang L., Li H., Lv X. Q., Chen T., Li R. L., Xue Y. Q., et al. (2015). Spatiotemporal dynamics of the bri1 receptor and its regulation by membrane microdomains in living PubMed DOI

Wei T. Y., Zhang C. W., Hou X. L., Sanfacon H., Wang A. M. (2013). The SNARE protein SYP71 is essential for turnip mosaic virus infection by mediating fusion of virus-induced vesicles with chloroplasts. PubMed DOI PMC

Weis C., Pfeilmeier S., Glawischnig E., Isono E., Pachl F., Hahne H., et al. (2013). Co-immunoprecipitation-based identification of putative BAX INHIBITOR-1-interacting proteins involved in cell death regulation and plant-powdery mildew interactions. PubMed DOI PMC

Xing S., Wallmeroth N., Berendzen K. W., Grefen C. (2016). Techniques for the analysis of protein-protein interactions in vivo. PubMed DOI PMC

Yamauchi S., Takemiya A., Sakamoto T., Kurata T., Tsutsumi T., Kinoshita T., et al. (2016). The plasma membrane H+-ATPase AHA1 plays a major role in stomatal opening in response to blue light. PubMed DOI PMC

Yan S. L., McLamore E. S., Dong S. S., Gao H. B., Taguchi M., Wang N. N., et al. (2015). The role of plasma membrane H+-ATPase in jasmonate-induced ion fluxes and stomatal closure in PubMed DOI

Yu M., Liu H. J., Dong Z. Y., Xiao J. W., Su B. D., Fan L. S., et al. (2017). The dynamics and endocytosis of Flot1 protein in response to flg22 in PubMed DOI

Zelazny E., Borst J. W., Muylaert M., Batoko H., Hemminga M. A., Chaumont F. (2007). FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization. PubMed DOI PMC

Zheng M. S., Takahashi H., Miyazaki A., Hamamoto H., Shah J., Yamaguchi I., et al. (2004). Up-regulation of PubMed DOI

Zhou L., Cheung M. Y., Zhang Q., Lei C. L., Zhang S. H., Sun S. S., et al. (2009). A novel simple extracellular leucine-rich repeat (eLRR) domain protein from rice (OsLRR1) enters the endosomal pathway and interacts with the hypersensitive-induced reaction protein 1 (OsHIR1). PubMed DOI

Zhou L. A., Cheung M. Y., Li M. W., Fu Y. P., Sun Z. X., Sun S. M., et al. (2010). Rice hypersensitive induced reaction protein 1 (OsHIR1) associates with plasma membrane and triggers hypersensitive cell death. PubMed DOI PMC

Zhou Z. Y., Wu Y. J., Yang Y. Q., Du M. M., Zhang X. J., Guo Y., et al. (2015). An PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Temporary heat stress suppresses PAMP-triggered immunity and resistance to bacteria in Arabidopsis thaliana

. 2019 Jul ; 20 (7) : 1005-1012. [epub] 20190329

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...