Mapping of Plasma Membrane Proteins Interacting With Arabidopsis thaliana Flotillin 2
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30050548
PubMed Central
PMC6052134
DOI
10.3389/fpls.2018.00991
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis flotillin 2, immunopurification, intracellular trafficking, mass spectrometry, plant–pathogen interaction, protein–protein interactions, split-ubiquitin yeast system, water transport,
- Publikační typ
- časopisecké články MeSH
Arabidopsis flotillin 2 (At5g25260) belongs to the group of plant flotillins, which are not well characterized. In contrast, metazoan flotillins are well known as plasma membrane proteins associated with membrane microdomains that act as a signaling hub. The similarity of plant and metazoan flotillins, whose functions most likely consist of affecting other proteins via protein-protein interactions, determines the necessity of detecting their interacting partners in plants. Nevertheless, identifying the proteins that form complexes on the plasma membrane is a challenging task due to their low abundance and hydrophobic character. Here we present an approach for mapping Arabidopsis thaliana flotillin 2 plasma membrane interactors, based on the immunoaffinity purification of crosslinked and enriched plasma membrane proteins with mass spectrometry detection. Using this approach, 61 proteins were enriched in the AtFlot-GFP plasma membrane fraction, and 19 of them were proposed to be flotillin 2 interaction partners. Among our proposed partners of Flot2, proteins playing a role in the plant response to various biotic and abiotic stresses were detected. Additionally, the use of the split-ubiquitin yeast system helped us to confirm that plasma-membrane ATPase 1, early-responsive to dehydration stress protein 4, syntaxin-71, harpin-induced protein-like 3, hypersensitive-induced response protein 2 and two aquaporin isoforms interact with flotillin 2 directly. Based on the results of our study and the reported properties of Flot2 interactors, we propose that Flot2 complexes may be involved in plant-pathogen interactions, water transport and intracellular trafficking.
Department of Experimental Plant Biology Faculty of Science Charles University Prague Czechia
Institute of Experimental Botany of the Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Alexandersson E., Fraysse L., Sjovall-Larsen S., Gustavsson S., Fellert M., Karlsson M., et al. (2005). Whole gene family expression and drought stress regulation of aquaporins. PubMed DOI
Amaddii M., Meister M., Banning A., Tomasovic A., Mooz J., Rajalingam K., et al. (2012). Flotillin-1/reggie-2 protein plays dual role in activation of receptor-tyrosine kinase/mitogen-activated protein kinase signaling. PubMed DOI PMC
Ascencio-Ibanez J. T., Sozzani R., Lee T. J., Chu T. M., Wolfinger R. D., Cella R., et al. (2008). Global analysis of PubMed DOI PMC
Bao Y. M., Sun S. J., Li M., Li L., Cao W. L., Luo J., et al. (2012). Overexpression of the Qc-SNARE gene PubMed DOI
Baumann C. A., Ribon V., Kanzaki M., Thurmond D. C., Mora S., Shigematsu S., et al. (2000). CAP defines a second signalling pathway required for insulin-stimulated glucose transport. PubMed DOI
Bellati J., Champeyroux C., Hem S., Rofidal V., Krouk G., Maurel C., et al. (2016). Novel aquaporin regulatory mechanisms revealed by interactomics. PubMed DOI PMC
Besserer A., Burnotte E., Bienert G. P., Chevalier A. S., Errachid A., Grefen C., et al. (2012). Selective regulation of maize plasma membrane aquaporin trafficking and activity by the SNARE SYP121. PubMed DOI PMC
Bickel P. E., Scherer P. E., Schnitzer J. E., Oh P., Lisanti M. P., Lodish H. F. (1997). Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins. PubMed DOI
Borner G. H. H., Sherrier D. J., Weimar T., Michaelson L. V., Hawkins N. D., MacAskill A., et al. (2005). Analysis of detergent-resistant membranes in PubMed DOI PMC
Boursiac Y., Chen S., Luu D. T., Sorieul M., van den Dries N., Maurel C. (2005). Early effects of salinity on water transport in PubMed DOI PMC
Browman D. T., Hoegg M. B., Robbins S. M. (2007). The SPFH domain-containing proteins: more than lipid raft markers. PubMed DOI
Cacas J. L., Bure C., Grosjean K., Gerbeau-Pissot P., Lherminier J., Rombouts Y., et al. (2016). Revisiting plant plasma membrane lipids in tobacco: a focus on sphingolipids. PubMed DOI PMC
Cheng W., Xiao Z. L., Cai H. Y., Wang C. Q., Hu Y., Xiao Y. P., et al. (2017). A novel leucine-rich repeat protein, CaLRR51, acts as a positive regulator in the response of pepper to PubMed DOI PMC
Choi H., Larsen B., Lin Z. Y., Breitkreutz A., Mellacheruvu D., Fermin D., et al. (2011). SAINT: probabilistic scoring of affinity purification-mass spectrometry data. PubMed DOI PMC
Choi H. W., Kim Y. J., Hwang B. K. (2011). The Hypersensitive induced reaction and leucine-rich repeat proteins regulate plant cell death associated with disease and plant immunity. PubMed DOI
Coll N. S., Epple P., Dangl J. L. (2011). Programmed cell death in the plant immune system. PubMed DOI PMC
Collins M. O., Choudhary J. S. (2008). Mapping multiprotein complexes by affinity purification and mass spectrometry. PubMed DOI
Danek M., Valentova O., Martinec J. (2016). Flotillins, erlins, and hirs: from animal base camp to plant new horizons. DOI
Davletova S., Schlauch K., Coutu J., Mittler R. (2005). The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in PubMed DOI PMC
Dedecker M., Van Leene J., De Jaeger G. (2015). Unravelling plant molecular machineries through affinity purification coupled to mass spectrometry. PubMed DOI
Dermine J. F., Duclos S., Garin J., St-Louis F., Rea S., Parton R. G., et al. (2001). Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes. PubMed DOI
Di C., Xu W. Y., Su Z., Yuan J. S. (2010). Comparative genome analysis of PHB gene family reveals deep evolutionary origins and diverse gene function. PubMed DOI PMC
Diévart A., Clark S. E. (2003). Using mutant alleles to determine the structure and function of leucine-rich repeat receptor-like kinases. PubMed DOI
Ditt R. F., Kerr K. F., de Figueiredo P., Delrow J., Comai L., Nester E. W. (2006). The PubMed DOI
Dorr J. M., Scheidelaar S., Koorengevel M. C., Dominguez J. J., Schafer M., van Walree C. A., et al. (2016). The styrene-maleic acid copolymer: a versatile tool in membrane research. PubMed DOI PMC
Dunham W. H., Mullin M., Gingras A. C. (2012). Affinity-purification coupled to mass spectrometry: basic principles and strategies. PubMed DOI
Ephritikhine G., Ferro M., Rolland N. (2004). Plant membrane proteomics. PubMed DOI
Fuglsang A. T., Kristensen A., Cuin T. A., Schulze W. X., Persson J., Thuesen K. H., et al. (2014). Receptor kinase-mediated control of primary active proton pumping at the plasma membrane. PubMed DOI
Fujiwara M., Uemura T., Ebine K., Nishimori Y., Ueda T., Nakano A., et al. (2014). Interactomics of Qa-SNARE in PubMed DOI
Gehl B., Lee C. P., Bota P., Blatt M. R., Sweetlove L. J. (2014). An PubMed DOI PMC
Gilmore J. M., Washburn M. P. (2010). Advances in shotgun proteomics and the analysis of membrane proteomes. PubMed DOI
Glebov O. O., Bright N. A., Nichols B. J. (2006). Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. PubMed DOI
Green J. B., Young J. P. W. (2008). Slipins: ancient origin, duplication and diversification of the stomatin protein family. PubMed DOI PMC
Grefen C. (2014). “The split-ubiquitin system for the analysis of three-component interactions,” in PubMed
Grefen C., Lalonde S., Obrdlik P. (2007). Split-ubiquitin system for identifying protein-protein interactions in membrane and full-length proteins. PubMed DOI
Grefen C., Obrdlik P., Harter K. (2009). “The determination of protein-protein interactions by the mating-based split-ubiquitin system (mbSUS),” in PubMed
Hachez C., Laloux T., Reinhardt H., Cavez D., Degand H., Grefen C., et al. (2014). PubMed DOI PMC
Hakoyama T., Oi R., Hazuma K., Suga E., Adachi Y., Kobayashi M., et al. (2012). The SNARE protein SYP71 expressed in vascular tissues is involved in symbiotic nitrogen fixation in PubMed DOI PMC
Haney C. H., Long S. R. (2010). Plant flotillins are required for infection by nitrogen-fixing bacteria. PubMed DOI PMC
Haney C. H., Riely B. K., Tricoli D. M., Cook D. R., Ehrhardt D. W., Long S. R. (2011). Symbiotic rhizobia bacteria trigger a change in localization and dynamics of the PubMed DOI PMC
Hao H. Q., Fan L. S., Chen T., Li R. L., Li X. J., He Q. H., et al. (2014). Clathrin and membrane microdomains cooperatively regulate rbohd dynamics and activity in PubMed DOI PMC
Hashimoto-Sugimoto M., Higaki T., Yaeno T., Nagami A., Irie M., Fujimi M., et al. (2013). A Munc13-like protein in PubMed DOI PMC
Heckwolf M., Pater D., Hanson D. T., Kaldenhoff R. (2011). The PubMed DOI
Ho Y., Gruhler A., Heilbut A., Bader G. D., Moore L., Adams S. L., et al. (2002). Systematic identification of protein complexes in PubMed DOI
Huang B. X., Kim H. Y. (2013). Effective identification of Akt interacting proteins by two-step chemical crosslinking, co-immunoprecipitation and mass spectrometry. PubMed DOI PMC
Huang D. W., Sherman B. T., Lempicki R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. PubMed DOI
Ishikawa T., Aki T., Yanagisawa S., Uchimiya H., Kawai-Yamada M. (2015). Overexpression of BAX INHIBITOR-1 links plasma membrane microdomain proteins to stress. PubMed DOI PMC
Jafferali M. H., Vijayaraghavan B., Figueroa R. A., Crafoord E., Gudise S., Larsson V. J., et al. (2014). MCLIP, an effective method to detect interactions of transmembrane proteins of the nuclear envelope in live cells. PubMed DOI
Jarsch I. K., Konrad S. S. A., Stratil T. F., Urbanus S. L., Szymanski W., Braun P., et al. (2014). Plasma membranes are subcompartmentalized into a plethora of coexisting and diverse microdomains in PubMed DOI PMC
Jones A. M., Xuan Y., Xu M., Wang R.-S., Ho C.-H., Lalonde S., et al. (2014). Border control-a membrane-linked interactome of PubMed DOI
Jozefkowicz C., Berny M.C., Chaumont F., Alleva K. (2017). “Heteromerization of plant aquaporins,” in DOI
Jung H. W., Hwang B. K. (2007). The leucine-rich repeat (LRR) protein, CaLRR1, interacts with the hypersensitive induced reaction (HIR) protein, CaHIR1, and suppresses cell death induced by the CaHIR1 protein. PubMed DOI
Kaake R. M., Wang X. R., Burke A., Yu C., Kandur W., Yang Y. Y., et al. (2014). A new PubMed DOI PMC
Keinath N. F., Kierszniowska S., Lorek J., Bourdais G., Kessler S. A., Shimosato-Asano H., et al. (2010). PAMP (Pathogen-Associated Molecular Pattern)-induced changes in plasma membrane compartmentalization reveal novel components of plant immunity. PubMed DOI PMC
Kiyosue T., Yamaguchi-Shinozaki K., Shinozaki K. (1994). Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) in PubMed DOI
Ladwig F., Dahlke R. I., Stuhrwohldt N., Hartmann J., Harter K., Sauter M. (2015). Phytosulfokine regulates growth in PubMed DOI PMC
Langhorst M. F., Reuter A., Jaeger F. A., Wippich F. M., Luxenhofer G., Plattner H., et al. (2008). Trafficking of the microdomain scaffolding protein reggie-1/flotillin-2. PubMed DOI
Li N., Huang X., Zhao Z. L., Chen G. Y., Zhang W. P., Cao X. T. (2000). Identification and characterization of a novel gene KE04 differentially expressed by activated human dendritic cells. PubMed DOI
Li R. L., Liu P., Wan Y. L., Chen T., Wang Q. L., Mettbach U., et al. (2012). A membrane microdomain-associated protein, PubMed DOI PMC
Li X. J., Wang X. H., Yang Y., Li R. L., He Q. H., Fang X. H., et al. (2011). Single-molecule analysis of pip2;1 dynamics and partitioning reveals multiple modes of PubMed DOI PMC
Liu J., DeYoung S. M., Zhang M., Dold L. H., Saltiel A. R. (2005). The stomatin/prohibitin/flotillin/HflK/C domain of flotillin-1 contains distinct sequences that direct plasma membrane localization and protein interactions in 3T3-L1 adipocytes. PubMed DOI
Liu J., Elmore J. M., Fuglsang A. T., Palmgren M. G., Staskawicz B. J., Coaker G. (2009). RIN4 functions with plasma membrane H+-atpases to regulate stomatal apertures during pathogen attack. PubMed DOI PMC
Liu M. J., Peng Y., Li H. Y., Deng L., Wang X. J., Kang Z. S. (2016). TaSYP71, a Qc-SNARE, contributes to wheat resistance against PubMed DOI PMC
Liu P., Li R. L., Zhang L., Wang Q. L., Niehaus K., Baluska F., et al. (2009). Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in PubMed DOI
Liu Y., Li H., Shi Y., Song Y., Wang T., Li Y. (2009). A maize early responsive to dehydration gene, DOI
Luang S., Hrmova M. (2017). “Structural basis of the permeation function of plant aquaporins,” in DOI
Lv X. Q., Jing Y. P., Xiao J. W., Zhang Y. D., Zhu Y. F., Julian R., et al. (2017). Membrane microdomains and the cytoskeleton constrain AtHIR1 dynamics and facilitate the formation of an AtHIR1-associated immune complex. PubMed DOI
Marmagne A., Ferro M., Meinnel T., Bruley C., Kuhn L., Garin J., et al. (2007). A high content in lipid-modified peripheral proteins and integral receptor kinases features in the PubMed DOI
Mohr P. G., Cahill D. M. (2007). Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in PubMed DOI
Mongrand S., Morel J., Laroche J., Claverol S., Carde J. P., Hartmann M. A., et al. (2004). Lipid rafts in higher plant cells – purification and characterization of triton X-100-insoluble microdomains from tobacco plasma membrane. PubMed DOI
Morrow I. C., Rea S., Martin S., Prior I. A., Prohaska R., Hancock J. F., et al. (2002). Flotillin-1/Reggie-2 traffics to surface raft domains via a novel Golgi-independent pathway – identification of a novel membrane targeting domain and a role for palmitoylation. PubMed DOI
Mosher R. A., Durrant W. E., Wang D., Song J. Q., Dong X. N. (2006). A comprehensive structure-function analysis of PubMed DOI PMC
Murata K., Mitsuoka K., Hirai T., Walz T., Agre P., Heymann J. B., et al. (2000). Structural determinants of water permeation through aquaporin-1. PubMed DOI
Nesvizhskii A. I. (2012). Computational and informatics strategies for identification of specific protein interaction partners in affinity purification mass spectrometry experiments. PubMed DOI PMC
Neumann-Giesen C., Falkenbach B., Beicht P., Claasen S., Luers G., Stuermer C. A. O., et al. (2004). Membrane and raft association of reggie-1/flotillin-2: role of myristoylation, palmitoylation and oligomerization and induction of filopodia by overexpression. PubMed DOI PMC
Neumann-Giesen C., Fernow I., Amaddii M., Tikkanen R. (2007). Role of EGF-induced tyrosine phosphorylation of reggie-1/flotillin-2 in cell spreading and signaling to the actin cytoskeleton. PubMed DOI
Ogura M., Yamaki J., Homma M. K., Homma Y. (2014). Phosphorylation of flotillin-1 by mitochondrial c-Src is required to prevent the production of reactive oxygen species. PubMed DOI
Pardo M., Choudhary F. S. (2012). Assignment of protein interactions from affinity purification/mass spectrometry data. PubMed DOI
Peremyslov V. V., Morgun E. A., Kurth E. G., Makarova K. S., Koonin E. V., Dolja V. V. (2013). Identification of myosin XI receptors in PubMed DOI PMC
Pizzio G. A., Hirschi K. D., Gaxiola R. A. (2017). Conjecture regarding posttranslational modifications to the PubMed DOI PMC
Pleskot R., Potocky M., Pejchar P., Linek J., Bezvoda R., Martinec J., et al. (2010). Mutual regulation of plant phospholipase D and the actin cytoskeleton. PubMed DOI
Popov N., Schmitt M., Schulzeck S., Matthies H. (1975). Reliable micromethod for determining protein-content in tissue material. PubMed
Postaire O., Tournaire-Roux C., Grondin A., Boursiac Y., Morillon R., Schaffner A. R., et al. (2010). A PIP1 aquaporin contributes to hydrostatic pressure-induced water transport in both the root and rosette of PubMed DOI PMC
Qi Y. P., Katagiri F. (2009). Purification of low-abundance PubMed DOI
Qi Y. P., Tsuda K., Nguyen L. V., Wang X., Lin J. S., Murphy A. S., et al. (2011). Physical association of PubMed DOI PMC
Roitbak T., Surviladze Z., Tikkanen R., Wandinger-Ness A. (2005). A polycystin multiprotein complex constitutes a cholesterol-containing signalling microdomain in human kidney epithelia. PubMed DOI PMC
Sanderfoot A. A., Kovaleva V., Bassham D. C., Raikhel N. V. (2001). Interactions between syntaxins identify at least five SNARE complexes within the golgi/prevacuolar system of the PubMed DOI PMC
Santamaria A., Castellanos E., Gomez V., Benedit P., Renau-Piqueras J., Morote J., et al. (2005). PTOV1 enables the nuclear translocation and mitogenic activity of flotillin-1, a major protein of lipid rafts. PubMed DOI PMC
Savas J. N., Stein B. D., Wu C. C., Yates J. R. (2011). Mass spectrometry accelerates membrane protein analysis. PubMed DOI PMC
Shahollari B., Peskan-Berghöfer T., Oelmüller R. (2004). Receptor kinases with leucine-rich repeats are enriched in Triton X-100 insoluble plasma membrane microdomains from plants. DOI
Schindler J., Nothwang H. G. (2006). Aqueous polymer two-phase systems: effective tools for plasma membrane proteomics. PubMed DOI
Schroeder W. T., Stewartgaletka S., Mandavilli S., Parry D. A. D., Goldsmith L., Duvic M. (1994). Cloning and characterization of a novel epidermal-cell surface-antigen (Esa). PubMed
Schulte T., Lottspeich F., Stuermer C. A. O. (1995). Characterization of reggie-1 and isolation of reggie-2, cell surface proteins of the goldfish CNS.
Simons K., Ikonen E. (1997). Functional rafts in cell membranes. PubMed DOI
Simons K., Toomre D. (2000). Lipid rafts and signal transduction. PubMed DOI
Singh N., Swain S., Singh A., Nandi A. K. (2018). AtOZF1 positively regulates defense against bacterial pathogens and NPR1-independent salicylic acid signaling. PubMed DOI
Smaczniak C., Li N., Boeren S., America T., van Dongen W., Goerdayal S. S., et al. (2012). Proteomics-based identification of low-abundance signaling and regulatory protein complexes in native plant tissues. PubMed DOI
Solis G. P., Hoegg M., Munderloh C., Schrock Y., Malaga-Trillo E., Rivera-Milla E., et al. (2007). Reggie/flotillin proteins are organized into stable tetramers in membrane microdomains. PubMed DOI PMC
Speers A. E., Wu C. C. (2007). Proteomics of integral membrane proteins-theory and application. PubMed DOI
Tan S., Tan H. T., Chung M. C. M. (2008). Membrane proteins and membrane proteomics. PubMed DOI
ten Have S., Boulon S., Ahmad Y., Lamond A. I. (2011). Mass spectrometry-based immuno-precipitation proteomics - The user’s guide. PubMed DOI PMC
Uehlein N., Sperling H., Heckwolf M., Kaldenhoff R. (2012). The PubMed DOI
Ullrich A., Schlessinger J. (1990). Signal transduction by receptors with tyrosine kinase-activity. PubMed DOI
Van Leene J., Eeckhout D., Cannoot B., De Winne N., Persiau G., Van De Slijke E., et al. (2015). An improved toolbox to unravel the plant cellular machinery by tandem affinity purification of PubMed DOI
Varet A., Hause B., Hause G., Scheel D., Lee J. (2003). The Arabidopsis PubMed DOI PMC
Varet A., Parker J., Tornero P., Nass N., Nürnberger T., Dangl J. L., et al. (2002). PubMed DOI
Volonté D., Galbiati F., Li S., Nishiyama K., Okamoto T., Lisanti M. P. (1999). Flotillins/cavatellins are differentially expressed in cells and tissues and form a hetero-oligomeric complex with caveolins PubMed DOI
Wang L., Li H., Lv X. Q., Chen T., Li R. L., Xue Y. Q., et al. (2015). Spatiotemporal dynamics of the bri1 receptor and its regulation by membrane microdomains in living PubMed DOI
Wei T. Y., Zhang C. W., Hou X. L., Sanfacon H., Wang A. M. (2013). The SNARE protein SYP71 is essential for turnip mosaic virus infection by mediating fusion of virus-induced vesicles with chloroplasts. PubMed DOI PMC
Weis C., Pfeilmeier S., Glawischnig E., Isono E., Pachl F., Hahne H., et al. (2013). Co-immunoprecipitation-based identification of putative BAX INHIBITOR-1-interacting proteins involved in cell death regulation and plant-powdery mildew interactions. PubMed DOI PMC
Xing S., Wallmeroth N., Berendzen K. W., Grefen C. (2016). Techniques for the analysis of protein-protein interactions in vivo. PubMed DOI PMC
Yamauchi S., Takemiya A., Sakamoto T., Kurata T., Tsutsumi T., Kinoshita T., et al. (2016). The plasma membrane H+-ATPase AHA1 plays a major role in stomatal opening in response to blue light. PubMed DOI PMC
Yan S. L., McLamore E. S., Dong S. S., Gao H. B., Taguchi M., Wang N. N., et al. (2015). The role of plasma membrane H+-ATPase in jasmonate-induced ion fluxes and stomatal closure in PubMed DOI
Yu M., Liu H. J., Dong Z. Y., Xiao J. W., Su B. D., Fan L. S., et al. (2017). The dynamics and endocytosis of Flot1 protein in response to flg22 in PubMed DOI
Zelazny E., Borst J. W., Muylaert M., Batoko H., Hemminga M. A., Chaumont F. (2007). FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization. PubMed DOI PMC
Zheng M. S., Takahashi H., Miyazaki A., Hamamoto H., Shah J., Yamaguchi I., et al. (2004). Up-regulation of PubMed DOI
Zhou L., Cheung M. Y., Zhang Q., Lei C. L., Zhang S. H., Sun S. S., et al. (2009). A novel simple extracellular leucine-rich repeat (eLRR) domain protein from rice (OsLRR1) enters the endosomal pathway and interacts with the hypersensitive-induced reaction protein 1 (OsHIR1). PubMed DOI
Zhou L. A., Cheung M. Y., Li M. W., Fu Y. P., Sun Z. X., Sun S. M., et al. (2010). Rice hypersensitive induced reaction protein 1 (OsHIR1) associates with plasma membrane and triggers hypersensitive cell death. PubMed DOI PMC
Zhou Z. Y., Wu Y. J., Yang Y. Q., Du M. M., Zhang X. J., Guo Y., et al. (2015). An PubMed DOI PMC