A new kymogram-based method reveals unexpected effects of marker protein expression and spatial anisotropy of cytoskeletal dynamics in plant cell cortex
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28360928
PubMed Central
PMC5368923
DOI
10.1186/s13007-017-0171-9
PII: 171
Knihovny.cz E-zdroje
- Klíčová slova
- Actin, Anisotropy, FH1 (At3g25500), Kymogram, Lateral mobility, Lifeact, Microtubules, Spinning disc confocal microscopy, Structure stability, Variable angle fluorescence microscopy,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Cytoskeleton can be observed in live plant cells in situ with high spatial and temporal resolution using a combination of specific fluorescent protein tag expression and advanced microscopy methods such as spinning disc confocal microscopy (SDCM) or variable angle epifluorescence microscopy (VAEM). Existing methods for quantifying cytoskeletal dynamics are often either based on laborious manual structure tracking, or depend on costly commercial software. Current automated methods also do not readily allow separate measurements of structure lifetime, lateral mobility, and spatial anisotropy of these parameters. RESULTS: We developed a new freeware-based, operational system-independent semi-manual technique for analyzing VAEM or SDCM data, QuACK (Quantitative Analysis of Cytoskeletal Kymograms), and validated it on data from Arabidopsis thaliana fh1 formin mutants, previously shown by conventional methods to exhibit altered actin and microtubule dynamics compared to the wild type. Besides of confirming the published mutant phenotype, QuACK was used to characterize surprising differential effects of various fluorescent protein tags fused to the Lifeact actin probe on actin dynamics in A. thaliana cotyledon epidermis. In particular, Lifeact-YFP slowed down actin dynamics compared to Lifeact-GFP at marker expression levels causing no macroscopically noticeable phenotypic alterations, although the two fluorophores are nearly identical. We could also demonstrate the expected, but previously undocumented, anisotropy of cytoskeletal dynamics in elongated epidermal cells of A. thaliana petioles and hypocotyls. CONCLUSIONS: Our new method for evaluating plant cytoskeletal dynamics has several advantages over existing techniques. It is intuitive, rapid compared to fully manual approaches, based on the free ImageJ software (including macros we provide here for download), and allows measurement of multiple parameters. Our approach was already used to document unexpected differences in actin mobility in transgenic A. thaliana expressing Lifeact fusion proteins with different fluorophores, highlighting the need for cautious interpretation of experimental results, as well as to reveal hitherto uncharacterized anisotropy of cytoskeletal mobility in elongated plant cells.
Zobrazit více v PubMed
Gräf R, Rietdorf J, Zimmermann T. Live cell spinning disk microscopy. Adv Biochem Eng Biotechnol. 2005;95:57–75. PubMed
Konopka CA, Bednarek SY. Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex. Plant J. 2008;53:186–196. doi: 10.1111/j.1365-313X.2007.03306.x. PubMed DOI
Rosero A, Žárský V, Cvrčková F. Visualizing and quantifying the in vivo structure and dynamics of the Arabidopsis cortical cytoskeleton using CLSM and VAEM. Methods Mol Biol. 2014;1080:87–97. doi: 10.1007/978-1-62703-643-6_7. PubMed DOI
Higaki T. Real-time imaging of plant cell surface dynamics with variable-angle epifluorescence microscopy. JoVE. 2015;106:e53437. PubMed PMC
Wang YS, Motes CM, Mohamalawari DR, Blancaflor EB. Green fluorescent protein fusions to Arabidopsis fimbrin 1 for spatio-temporal imaging of F-actin dynamics in roots. Cell Motil Cytoskeleton. 2004;59:79–93. doi: 10.1002/cm.20024. PubMed DOI
Sheahan MB, Staiger CJ, Rose RJ, McCurdy DW. A green fluorescent protein fusion to actin-binding domain 2 of Arabidopsis fimbrin highlights new features of a dynamic actin cytoskeleton in live plant cells. Plant Physiol. 2004;136:3968–3978. doi: 10.1104/pp.104.049411. PubMed DOI PMC
Voigt B, Timmers AC, Šamaj J, Müller J, Baluška F, Menzel D. GFP-FABD2 fusion construct allows in vivo visualization of the dynamic actin cytoskeleton in all cells of Arabidopsis seedlings. Eur J Cell Biol. 2005;84:595–608. doi: 10.1016/j.ejcb.2004.11.011. PubMed DOI
Holweg CL. Living markers for actin block myosin-dependent motility of plant organelles and auxin. Cell Motil Cytoskeleton. 2007;64:69–81. doi: 10.1002/cm.20164. PubMed DOI
Dyachok J, Sparks JA, Liao F, Wang YS, Blancaflor EB. Fluorescent protein-based reporters of the actin cytoskeleton in living plant cells: fluorophore variant, actin binding domain, and promoter considerations. Cytoskeleton. 2014;71:311–327. doi: 10.1002/cm.21174. PubMed DOI
Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bista M, Bradke F, Jenne D, Holak TA, Werb Z, Sixt M, Wedlich-Soldner R. Lifeact: a versatile marker to visualize F-actin. Nat Methods. 2008;5:605–607. doi: 10.1038/nmeth.1220. PubMed DOI PMC
van der Honing HS, van Bezouwen LS, Emons AM, Ketelaar T. High expression of Lifeact in Arabidopsis thaliana reduces dynamic reorganization of actin filaments but does not affect plant development. Cytoskeleton. 2011;68:578–587. doi: 10.1002/cm.20534. PubMed DOI
Buschmann H, Sambade A, Pesquet E, Calder G, Lloyd CW. Microtubule dynamics in plant cells. Methods Cell Biol. 2010;97:373–400. doi: 10.1016/S0091-679X(10)97020-9. PubMed DOI
Celler K, Fujita M, Kawamura E, Ambrose C, Herburger K, Holzinger A, Wasteneys GO. Microtubules in plant cells: strategies and methods for immunofluorescence, transmission electron microscopy, and live cell imaging. Methods Mol Biol. 2016;1365:155–184. doi: 10.1007/978-1-4939-3124-8_8. PubMed DOI PMC
Marc J, Granger CL, Brincat J, Fisher DD, Kao Th, McCubbin AG, Cyr RJ. A GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells. Plant Cell. 1998;10:1927–1940. PubMed PMC
Granger CL, Cyr RJ. Microtubule reorganization in tobacco BY-2 cells stably expressing GFP-MBD. Planta. 2000;210:502–509. doi: 10.1007/s004250050037. PubMed DOI
Camilleri C, Azimzadeh J, Pastuglia M, Bellini C, Grandjean O, Bouchez D. The Arabidopsis TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory subunit essential for the control of the cortical cytoskeleton. Plant Cell. 2002;14:833–845. doi: 10.1105/tpc.010402. PubMed DOI PMC
Hashimoto T. Molecular genetic analysis of left-right handedness in plants. Philos Trans R Soc Lond B Biol Sci. 2002;357:799–808. doi: 10.1098/rstb.2002.1088. PubMed DOI PMC
Ueda K, Matsuyama T, Hashimoto T. Visualization of microtubules in living cells of transgenic Arabidopsis thaliana. Protoplasma. 1999;206:201–206. doi: 10.1007/BF01279267. DOI
Kumagai F, Yoneda A, Tomida T, Sano T, Nagata T, Hasezawa S. Fate of nascent microtubules organized at the M/G1 interface, as visualized by synchronized tobacco BY-2 cells stably expressing GFP-tubulin: time-sequence observations of the reorganization of cortical microtubules in living plant cells. Plant Cell Physiol. 2001;42:723–732. doi: 10.1093/pcp/pce091. PubMed DOI
Nakamura M, Naoi K, Shoji T, Hashimoto T. Low concentrations of propyzamide and oryzalin alter microtubule dynamics in Arabidopsis epidermal cells. Plant Cell Physiol. 2004;45:1330–1334. doi: 10.1093/pcp/pch300. PubMed DOI
Kimble M, Kuzmiak C, McGovern KN, de Hostos EL. Microtubule organization and the effects of GFP-tubulin expression in Dictyostelium discoideum. Cell Motil Cytoskeleton. 2000;47:48–62. doi: 10.1002/1097-0169(200009)47:1<48::AID-CM5>3.0.CO;2-Q. PubMed DOI
Shaw SL, Kamyar R, Ehrhardt DW. Sustained microtubule treadmilling in Arabidopsis cortical arrays. Science. 2003;300:1715–1718. doi: 10.1126/science.1083529. PubMed DOI
Ambrose C, Wasteneys GO. Cell edges accumulate gamma tubulin complex components and nucleate microtubules following cytokinesis in Arabidopsis thaliana. PLoS ONE. 2011;6:e27423. doi: 10.1371/journal.pone.0027423. PubMed DOI PMC
Sambade A, Pratap A, Buschmann H, Morris RJ, Lloyd C. The influence of light on microtubule dynamics and alignment in the Arabidopsis hypocotyl. Plant Cell. 2012;24:192–201. doi: 10.1105/tpc.111.093849. PubMed DOI PMC
Rosero A, Žárský V, Cvrčková F. AtFH1 formin mutation affects actin filament and microtubule dynamics in Arabidopsis thaliana. J Exp Bot. 2013;64:585–597. doi: 10.1093/jxb/ers351. PubMed DOI PMC
Rosero A, Oulehlová D, Stillerová L, Schiebertová P, Grunt M, Žárský V, Cvrčková F. Arabidopsis FH1 formin affects cotyledon pavement cell shape by modulating cytoskeleton dynamics. Plant Cell Physiol. 2016;57:488–504. doi: 10.1093/pcp/pcv209. PubMed DOI
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Higaki T, Kutsuna N, Sano T, Hasezawa S. Quantitative analysis of changes in actin microfilament contribution to cell plate development in plant cytokinesis. BMC Plant Biol. 2008;8:80. doi: 10.1186/1471-2229-8-80. PubMed DOI PMC
Higaki T, Kutsuna N, Sano T, Kondo N, Hasezawa S. Quantification and cluster analysis of actin cytoskeletal structures in plant cells: role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells. Plant J. 2010;61:156–165. doi: 10.1111/j.1365-313X.2009.04032.x. PubMed DOI
Sampathkumar A, Lindeboom JJ, Debolt S, Gutierrez R, Ehrhardt DW, Ketelaar T, Persson S. Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in Arabidopsis. Plant Cell. 2011;23:2302–2313. doi: 10.1105/tpc.111.087940. PubMed DOI PMC
van der Honing HS, Kieft H, Emons AM, Ketelaar T. Arabidopsis VILLIN2 and VILLIN3 are required for the generation of thick actin filament bundles and for directional organ growth. Plant Physiol. 2012;158:1426–1438. doi: 10.1104/pp.111.192385. PubMed DOI PMC
Akita K, Higaki T, Kutsuna N, Hasezawa S. Quantitative analysis of microtubule orientation in interdigitated leaf pavement cells. Plant Signal Behav. 2015;10:e1024396. doi: 10.1080/15592324.2015.1024396. PubMed DOI PMC
Chi Z, Ambrose C. Microtubule encounter-based catastrophe in Arabidopsis cortical microtubule arrays. BMC Plant Biol. 2016;16:18. doi: 10.1186/s12870-016-0703-x. PubMed DOI PMC
Dixit R, Cyr R. Encounters between dynamic cortical microtubules promote ordering of the cortical array through angle-dependent modifications of microtubule behavior. Plant Cell. 2004;16:3274–3284. doi: 10.1105/tpc.104.026930. PubMed DOI PMC
Vidali L, Burkart GM, Augustine RC, Kerdavid E, Tüzel E, Bezanilla M. Myosin XI is essential for tip growth in Physcomitrella patens. Plant Cell. 2010;22:1868–1882. doi: 10.1105/tpc.109.073288. PubMed DOI PMC
Li J, Staiger BH, Henty-Ridilla JL, Abu-Abied M, Sadot E, Blanchoin L, Staiger CJ. The availability of filament ends modulates actin stochastic dynamics in live plant cells. Mol Biol Cell. 2014;25:1263–1275. doi: 10.1091/mbc.E13-07-0378. PubMed DOI PMC
Mangeol P, Prevo B, Peterman EJ. KymographClear and KymographDirect: two tools for the automated quantitative analysis of molecular and cellular dynamics using kymographs. Mol Biol Cell. 2016;27:1948–1957. doi: 10.1091/mbc.E15-06-0404. PubMed DOI PMC
Chaphalkar AR, Jain K, Gangan MS, Athale CA. Automated multi-peak tracking kymography (AMTraK): a tool to quantify sub-cellular dynamics with sub-pixel accuracy. PLoS ONE. 2016;11:e0167620. doi: 10.1371/journal.pone.0167620. PubMed DOI PMC
Daxinger L, Hunter B, Sheikh M, Jauvion V, Gasciolli V, Vaucheret H, Matzke M, Furner I. Unexpected silencing effects from T-DNA tags in Arabidopsis. Trends Plant Sci. 2008;13:4–6. doi: 10.1016/j.tplants.2007.10.007. PubMed DOI
Fendrych M, Synek L, Pečenková T, Janková Drdová E, Sekereš J, de Rycke R, Nowack MK, Žárský V. Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana. Mol Biol Cell. 2013;24:510–520. doi: 10.1091/mbc.E12-06-0492. PubMed DOI PMC
Crowell EF, Gonneau M, Vernhettes S, Höfte H. Regulation of anisotropic cell expansion in higher plants. C R Biol. 2010;333:320–324. doi: 10.1016/j.crvi.2010.01.007. PubMed DOI
Landrein B, Hamant O. How mechanical stress controls microtubule behavior and morphogenesis in plants: history, experiments and revisited theories. Plant J. 2013;75:324–338. doi: 10.1111/tpj.12188. PubMed DOI
Jacques E, Lewandowski M, Buytaert J, Fierens Y, Verbelen JP, Vissenberg K. MicroFilament Analyzer identifies actin network organizations in epidermal cells of Arabidopsis thaliana roots. Plant Signal Behav. 2013;8:e24821. doi: 10.4161/psb.24821. PubMed DOI PMC
Smal I, Grigoriev I, Akhmanova A, Niessen WJ, Meijering E. Microtubule dynamics analysis using kymographs and variable-rate particle filters. IEEE Trans Image Process. 2010;19:1861–1876. doi: 10.1109/TIP.2010.2045031. PubMed DOI
Oxford Dictionaries: Telegram. http://www.oxforddictionaries.com/definition/english/telegram. Accessed 22 Aug 2016.
Hamilton RS, Parton RM, Oliveira RA, Vendra G, Ball G, Nasmyth K, Davis I. ParticleStats: open source software for the analysis of particle motility and cytoskeletal polarity. Nucleic Acids Res. 2010;38:W641–W646. doi: 10.1093/nar/gkq542. PubMed DOI PMC
Dhonukshe P, Vischer N, Gadella TW., Jr Contribution of microtubule growth polarity and flux to spindle assembly and functioning in plant cells. J Cell Sci. 2006;119:3193–3205. doi: 10.1242/jcs.03048. PubMed DOI
Martinière A, Gayral P, Hawes C, Runions J. Building bridges: formin1 of Arabidopsis forms a connection between the cell wall and the actin cytoskeleton. Plant J. 2011;66:354–365. doi: 10.1111/j.1365-313X.2011.04497.x. PubMed DOI
Cvrčková F, Oulehlová D, Žárský V. On growth and formins. Plant Signal Behav. 2016;11:e1155017. doi: 10.1080/15592324.2016.1155017. PubMed DOI PMC
Shaner NC, Steinbach PA, Tsien RY. A guide to choosing fluorescent proteins. Nat Methods. 2005;2:905–909. doi: 10.1038/nmeth819. PubMed DOI
Courtemanche N, Pollard TD, Chen Q. Avoiding artefacts when counting polymerized actin in live cells with LifeAct fused to fluorescent proteins. Nat Cell Biol. 2016;18:676–683. doi: 10.1038/ncb3351. PubMed DOI PMC
Wachter RM, Elsliger MA, Kallio K, Hanson GT, Remington SJ. Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein. Structure. 1998;6:1267–1277. doi: 10.1016/S0969-2126(98)00127-0. PubMed DOI
Margolin W. The price of tags in protein localization studies. J Bacteriol. 2012;194:6369–6371. doi: 10.1128/JB.01640-12. PubMed DOI PMC
Li J, Blanchoin L, Staiger CJ. Signaling to actin stochastic dynamics. Annu Rev Plant Biol. 2015;66:415–440. doi: 10.1146/annurev-arplant-050213-040327. PubMed DOI
Goodbody KC, Lloyd CW. Actin filaments line up across Tradescantia epidermal cells, anticipating wound-induced divison planes. Protoplasma. 1990;157:92–101. doi: 10.1007/BF01322641. DOI
Tilsner J, Linnik O, Wright KM, Bell K, Roberts AG, Lacomme C, Santa Cruz S, Oparka KJ. The TGB1 movement protein of Potato virus X reorganizes actin and endomembranes into the X-body, a viral replication factory. Plant Physiol. 2012;158:1359–1370. doi: 10.1104/pp.111.189605. PubMed DOI PMC
Panteris E. Cortical actin filaments at the division site of mitotic plant cells: a reconsideration of the ‘actin-depleted zone’. New Phytol. 2008;179:334–341. doi: 10.1111/j.1469-8137.2008.02474.x. PubMed DOI
Qu X, Jiang Y, Chang M, Liu X, Zhang R, Huang S. Organization and regulation of the actin cytoskeleton in the pollen tube. Front Plant Sci. 2015;5:786. doi: 10.3389/fpls.2014.00786. PubMed DOI PMC
Shimmen T, Hamatani M, Saito S, Yokota E, Mimura T, Fusetani N, Karaki H. Roles of actin filaments in cytoplasmic streaming and organization of transvacuolar strands in root hair cells of Hydrocharis. Protoplasma. 1995;185:188–193. doi: 10.1007/BF01272859. DOI
Verchot-Lubicz J, Goldstein RE. Cytoplasmic streaming enables the distribution of molecules and vesicles in large plant cells. Protoplasma. 2010;240:99–107. doi: 10.1007/s00709-009-0088-x. PubMed DOI
Woodhouse FG, Goldstein RE. Cytoplasmic streaming in plant cells emerges naturally by microfilament self-organization. Proc Natl Acad Sci USA. 2013;110:14132–14137. doi: 10.1073/pnas.1302736110. PubMed DOI PMC
Havelková L, Nanda G, Martinek J, Bellinvia E, Sikorová L, Šlajcherová K, Seifertová D, Fischer L, Fišerová J, Petrášek J, Schwarzerová K. Arp2/3 complex subunit ARPC2 binds to microtubules. Plant Sci. 2015;241:96–108. doi: 10.1016/j.plantsci.2015.10.001. PubMed DOI
Chan J, Calder G, Fox S, Lloyd C. Cortical microtubule arrays undergo rotary movements in Arabidopsis hypocotyl epidermal cells. Nat Cell Biol. 2007;9:171–175. doi: 10.1038/ncb1533. PubMed DOI
Burian A, Ludynia M, Uyttewaal M, Traas J, Boudaoud A, Hamant O, Kwiatkowska D. A correlative microscopy approach relates microtubule behaviour, local organ geometry, and cell growth at the Arabidopsis shoot apical meristem. J Exp Bot. 2013;64:5753–5767. doi: 10.1093/jxb/ert352. PubMed DOI PMC
Wiesler B, Wang QY, Nick P. The stability of cortical microtubules depends on their orientation. Plant J. 2002;32:1023–1032. doi: 10.1046/j.1365-313X.2002.01489.x. PubMed DOI
Deeks MJ, Fendrych M, Smertenko A, Bell KS, Oparka K, Cvrčková F, Žársky V, Hussey PJ. The plant formin AtFH4 interacts with both actin and microtubules, and contains a newly identified microtubule-binding domain. J Cell Sci. 2010;123:1209–1215. doi: 10.1242/jcs.065557. PubMed DOI
Liu Z, Schneider R, Kesten C, Zhang Y, Somssich M, Zhang Y, Fernie AR, Persson S. Cellulose-microtubule uncoupling proteins prevent lateral displacement of microtubules during cellulose synthesis in Arabidopsis. Dev Cell. 2016;38:305–315. doi: 10.1016/j.devcel.2016.06.032. PubMed DOI
Grefen C, Donald N, Hashimoto K, Kudla J, Schumacher K, Blatt MR. A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant J. 2010;64:355–365. doi: 10.1111/j.1365-313X.2010.04322.x. PubMed DOI
Lowry R. VassarStats: Website for statistical computation. http://vassarstats.net. Accessed 18 Aug 2016.
Stangroom J. Social science statistics. http://www.socscistatistics.com. Accessed 18 Aug 2016.
Free math help–MathCracker. http://www.mathcracker.com. Accessed 18 Aug 2016.
McDonald JH. Handbook of biological statistics: Kruskal–Wallis test. http://www.biostathandbook.com/kruskalwallis.html. Accessed 18 Aug 2016.
Spitzer M, Wildenhain J. BoxPlotR: a web-tool for generation of box plots. http://boxplot.tyerslab.com. Accessed 18 Aug 2016. PubMed PMC
The Arabidopsis thaliana Class II Formin FH13 Modulates Pollen Tube Growth