The Arabidopsis thaliana Class II Formin FH13 Modulates Pollen Tube Growth
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
803048
European Research Council - International
PubMed
33679824
PubMed Central
PMC7929981
DOI
10.3389/fpls.2021.599961
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, At5g58160, Class II formin, pollen tube, tip growth,
- Publikační typ
- časopisecké články MeSH
Formins are a large, evolutionarily conserved family of actin-nucleating proteins with additional roles in regulating microfilament, microtubule, and membrane dynamics. Angiosperm formins, expressed in both sporophytic and gametophytic tissues, can be divided into two subfamilies, Class I and Class II, each often exhibiting characteristic domain organization. Gametophytically expressed Class I formins have been documented to mediate plasma membrane-based actin assembly in pollen grains and pollen tubes, contributing to proper pollen germination and pollen tube tip growth, and a rice Class II formin, FH5/RMD, has been proposed to act as a positive regulator of pollen tube growth based on mutant phenotype and overexpression data. Here we report functional characterization of the Arabidopsis thaliana pollen-expressed typical Class II formin FH13 (At5g58160). Consistent with published transcriptome data, live-cell imaging in transgenic plants expressing fluorescent protein-tagged FH13 under the control of the FH13 promoter revealed expression in pollen and pollen tubes with non-homogeneous signal distribution in pollen tube cytoplasm, suggesting that this formin functions in the male gametophyte. Surprisingly, fh13 loss of function mutations do not affect plant fertility but result in stimulation of in vitro pollen tube growth, while tagged FH13 overexpression inhibits pollen tube elongation. Pollen tubes of mutants expressing a fluorescent actin marker exhibited possible minor alterations of actin organization. Our results thus indicate that FH13 controls or limits pollen tube growth, or, more generally, that typical Class II formins should be understood as modulators of pollen tube elongation rather than merely components of the molecular apparatus executing tip growth.
Zobrazit více v PubMed
Bartolini F., Gundersen G. G. (2010). Formins and microtubules. Biochim. Biophys. Acta 1803 164–173. 10.1016/j.bbamcr.2009.07.006 PubMed DOI PMC
Blanchoin L., Staiger C. J. (2010). Plant formins: diverse isoforms and unique molecular mechanism. Biochim. Biophys. Acta 1803 201–206. 10.1016/j.bbamcr.2008.09.015 PubMed DOI
Chang M., Li Z., Huang S. (2017). Monomeric G-actin is uniformly distributed in pollen tubes and is rapidly redistributed via cytoplasmic streaming during pollen tube growth. Plant J. 92 509–519. 10.1111/tpj.13668 PubMed DOI
Cheung A. Y., Niroomand S., Zou Y., Wu H. M. (2010). A transmembrane formin nucleates subapical actin assembly and controls tip-focused growth in pollen tubes. Proc. Natl. Acad. Sci. U.S.A. 107 16390–16395. 10.1073/pnas.1008527107 PubMed DOI PMC
Cheung A. Y., Wu H. M. (2004). Overexpression of an Arabidopsis formin stimulates supernumerary actin cable formation from pollen tube cell membrane. Plant Cell 16 257–269. 10.1105/tpc.016550 PubMed DOI PMC
Clough E., Barrett T. (2016). The gene expression omnibus database. Methods Mol. Biol. 1418 93–110. 10.1007/978-1-4939-3578-9_5 PubMed DOI PMC
Clough S. J., Bent A. F. (1998). Floral dip: a simplified method for Agrobacterium−mediated transformation of Arabidopsis thaliana. Plant J. 16 735–743. 10.1046/j.1365-313x.1998.00343.x PubMed DOI
Courtemanche N. (2018). Mechanisms of formin-mediated actin assembly and dynamics. Biophys. Rev. 10 1553–1569. 10.1007/s12551-018-0468-6 PubMed DOI PMC
Cvrčková F. (2013). Formins and membranes: anchoring cortical actin to the cell wall and beyond. Front. Plant Sci. 4:436. 10.3389/fpls.2013.00436 PubMed DOI PMC
Cvrčková F. (2019). From data to illustrations: common (free) tools for proper image data handling and processing. Methods Mol. Biol. 1992 121–133. 10.1007/978-1-4939-9469-4_8 PubMed DOI
Cvrčková F., Grunt M., Žárský V. (2012). Expression of GFP-mTalin reveals an actin-related role for the Arabidopsis Class II formin AtFH12. Biologia Plantarum 56 431–440. 10.1007/s10535-012-0071-9 DOI
Cvrčková F., Novotný M., Pícková D., Žárský V. (2004). Formin homology 2 domains occur in multiple contexts in angiosperms. BMC Genom. 5:44. 10.1186/1471-2164-5-44 PubMed DOI PMC
Cvrčková F., Oulehlová D. (2017). A new kymogram-based method reveals unexpected effects of marker protein expression and spatial anisotropy of cytoskeletal dynamics in plant cell cortex. Plant Methods 13:19. 10.1186/s13007-017-0171-9 PubMed DOI PMC
Deeks M. J., Cvrčková F., Machesky L. M., Mikitová V., Ketelaar T., Žárský V., et al. (2005). Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression. New Phytol. 168 529–540. 10.1111/j.1469-8137.2005.01582.x PubMed DOI
Deeks M. J., Hussey P. J., Davies B. (2002). Formins: intermediates in signal-transduction cascades that affect cytoskeletal reorganization. Trends Plant Sci. 7 492–498. 10.1016/s1360-1385(02)02341-5 PubMed DOI
Diao M., Ren S., Wang Q., Qian L., Shen J., Liu Y., et al. (2018). Arabidopsis formin 2 regulates cell-to-cell trafficking by capping and stabilizing actin filaments at plasmodesmata. eLife 7:e36316. 10.7554/eLife.36316 PubMed DOI PMC
Fu Y. (2015). The cytoskeleton in the pollen tube. Curr. Opin. Plant Biol. 28 111–119. 10.1016/j.pbi.2015.10.004 PubMed DOI
Grebnev G., Ntefidou M., Kost B. (2017). Secretion and endocytosis in pollen tubes: models of tip growth in the spot light. Front. Plant Sci. 8:154. 10.3389/fpls.2017.00154 PubMed DOI PMC
Grefen C., Donald N., Hashimoto K., Kudla J., Schumacher K., Blatt M. R. (2010). A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant J. 64 355–365. 10.1111/j.1365-313X.2010.04322.x PubMed DOI
Grunt M., Žárský V., Cvrčková F. (2008). Roots of angiosperm formins: the evolutionary history of plant FH2 domain-containing proteins. BMC Evol. Biol. 8:115. 10.1186/1471-2148-8-115 PubMed DOI PMC
Henty-Ridilla J. L., Rankova A., Eskin J. A., Kenny K., Goode B. L. (2016). Accelerated actin filament polymerization from microtubule plus ends. Science 352 1004–1009. 10.1126/science.aaf1709 PubMed DOI PMC
Hepler P. K., Winship L. J. (2015). The pollen tube clear zone: clues to the mechanism of polarized growth. J. Integr. Plant Biol. 57 79–92. 10.1111/jipb.12315 PubMed DOI
Honys D., Twell D. (2003). Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol. 2003 640–652. 10.1104/pp.103.020925 PubMed DOI PMC
Hruz T., Laule O., Szabo G., Wessendorp F., Bleuler S., Oertle L., et al. (2008). Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv. Bioinform. 2008:420747. 10.1155/2008/420747 PubMed DOI PMC
Huang J., Kim C. M., Xuan Y. H., Liu J., Kim T. H., Kim B. K., et al. (2013). Formin homology 1 (OsFH1) regulates root-hair elongation in rice (Oryza sativa). Planta 237 1227–1239. 10.1007/s00425-013-1838-8 PubMed DOI
Karimi M., De Meyer B., Hilson P. (2005). Modular cloning in plant cells. Trends Plant Sci. 10 103–105. 10.1016/j.tplants.2005.01.008 PubMed DOI
Kollárová E., Baquero Forero A., Stillerová L., Přerostová S., Cvrčková F. (2020). Arabidopsis Class II formins AtFH13 and AtFH14 can form heterodimers but exhibit distinct patterns of cellular localization. Int. J. Mol. Sci. 21:348. 10.3390/ijms21010348 PubMed DOI PMC
Kulich I., Cole R., Drdová E., Cvrčková F., Soukup A., Fowler J., et al. (2010). Arabidopsis exocyst subunits SEC8 and EXO70A1 and exocyst interactor ROH1 are involved in the localized deposition of seed coat pectin. New Phytol. 188 615–625. 10.1111/j.1469-8137.2010.03372.x PubMed DOI
Lan Y., Liu X., Fu Y., Huang S. (2018). Arabidopsis Class I formins control membrane-originated actin polymerization at pollen tube tips. PLoS Genet. 14:e1007789. 10.1371/journal.pgen.1007789 PubMed DOI PMC
Li S., Dong H., Pei W., Liu C., Zhang S., Sun T., et al. (2017). LlFH1-mediated interaction between actin fringe and exocytic vesicles is involved in pollen tube tip growth. New Phytol. 214 745–761. 10.1111/nph.14395 PubMed DOI
Li Y., Shen Y., Cai C., Zhong C., Zhu L., Yuan M., et al. (2010). The type II Arabidopsis Formin14 interacts with microtubules and microfilaments to regulate cell division. Plant Cell 22 2710–2726. 10.1105/tpc.110.075507 PubMed DOI PMC
Li G., Yang X., Zhang X., Song Y., Liang W., Zhang D. (2018) Rice Morphology Determinant-mediated actin filament organization contributes to pollen tube growth. Plant Physiol 177 255–270. 10.1104/pp.17.01759 PubMed DOI PMC
Liu C., Zhang Y., Ren H. (2018). Actin polymerization mediated by AtFH5 directs the polarity establishment and vesicle trafficking for pollen germination in Arabidopsis. Mol. Plant 11 1389–1399. 10.1016/j.molp.2018.09.004 PubMed DOI
Liu R., Linardopoulou E. V., Osborn G. E., Parkhurst S. M. (2010). Formins in development: orchestrating body plan origami. Biochim. Biophys. Acta 1803 207–225. 10.1016/j.bbamcr.2008.09.016 PubMed DOI PMC
Liu X., Qu X., Jiang Y., Chang M., Zhang R., Wu Y., et al. (2015). Profilin regulates apical actin polymerization to control polarized pollen tube growth. Mol. Plant 8 1694–1709. 10.1016/j.molp.2015.09.013 PubMed DOI
Mergner J., Frejno M., List M., Papacek M., Chen X., Chaudhary A., et al. (2020). Mass-spectrometry-based draft of the Arabidopsis proteome. Nature 579 409–414. 10.1038/s41586-020-2094-2 PubMed DOI
Moscatelli A., Idilli A. I. (2009). Pollen tube growth: a delicate equilibrium between secretory and endocytic pathways. J. Integr. Plant Biol. 51 727–739. 10.1111/j.1744-7909.2009.00842.x PubMed DOI
Oulehlová D., Kollárová E., Cifrová P., Pejchar P., Žárský V., Cvrčková F. (2019). Arabidopsis Class I formin FH1 relocates between membrane compartments during root cell ontogeny and associates with plasmodesmata. Plant Cell Physiol. 60 1855–1870. 10.1093/pcp/pcz102 PubMed DOI
Peragine A., Yoshikawa M., Wu G., Albrecht H. L., Poethig R. S. (2004). SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev. 18 2368–2379. 10.1101/gad.1231804 PubMed DOI PMC
Pina C., Pinto F., Feijó J. A., Becker J. D. (2005). Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol. 138 744–756. 10.1104/pp.104.057935 PubMed DOI PMC
Qin T., Liu X., Li J., Sun J., Song L., Mao T. (2014). Arabidopsis microtubule-destabilizing protein 25 functions in pollen tube growth by severing actin filaments. Plant Cell 26 325–339. 10.1105/tpc.113.119768 PubMed DOI PMC
Qu X., Jiang Y., Chang M., Liu X., Zhang R., Huang S. (2015). Organization and regulation of the actin cytoskeleton in the pollen tube. Front. Plant Sci. 5:786. 10.3389/fpls.2014.00786 PubMed DOI PMC
Rivero F., Muramoto T., Meyer A. K., Urushihara H., Uyeda T. Q., Kitayama C. (2005). A comparative sequence analysis reveals a common GBD/FH3-FH1-FH2-DAD architecture in formins from Dictyostelium, fungi and metazoa. BMC Genomics 6:28. 10.1186/1471-2164-6-28 PubMed DOI PMC
Rosero A., Žárský V., Cvrčková F. (2013). AtFH1 formin mutation affects actin filament and microtubule dynamics in Arabidopsis thaliana. J. Exp. Bot. 64 585–597. 10.1093/jxb/ers351 PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9 676–682. 10.1038/nmeth.2019 PubMed DOI PMC
Schoenaers S., Balcerowicz D., Vissenberg K., Feijó J. (2017). “Molecular mechanisms regulating root hair tip growth: a comparison with pollen tubes,” in Pollen Tip Growth, ed. Obermeyer G. (Cham: Springer; ), 167–243. 10.1007/978-3-319-56645-0_9 DOI
Song Y., Li G., Nowak J., Zhang X., Xu D., Yang X., et al. (2019). The rice actin-binding protein RMD regulates light-dependent shoot gravitropism. Plant Physiol. 181 630–644. 10.1104/pp.19.00497 PubMed DOI PMC
Spitzer M., Wildenhain J., Rappsilber J., Tyers M. (2014). BoxPlotR: a web tool for generation of box plots. Nat. Methods 11 121–122. 10.1038/nmeth.2811 PubMed DOI PMC
Srivastava A. K., Lu Y., Zinta G., Lang Z., Zhu J. K. (2018). UTR-dependent control of gene expression in plants. Trends Plant Sci. 23 248–259. 10.1016/j.tplants.2017.11.003 PubMed DOI PMC
Stephan O. O. H. (2017). Actin fringes of polar cell growth. J. Exp. Bot. 68 3303–3320. 10.1093/jxb/erx195 PubMed DOI
Synek L., Vukašinović N., Kulich I., Hála M., Aldorfová K., Fendrych M., et al. (2017). EXO70C2 is a key regulatory factor for optimal tip growth of pollen. Plant Physiol. 174 223–240. 10.1104/pp.16.01282 PubMed DOI PMC
van Gisbergen P., Wu S. Z., Cheng X., Pattavina K. A., Bezanilla M. (2020). In vivo analysis of formin dynamics in the moss P. patens reveals functional class diversification. J. Cell Sci. 133:jcs233791. 10.1242/jcs.233791 PubMed DOI PMC
van Gisbergen P. A., Bezanilla M. (2013). Plant formins: membrane anchors for actin polymerization. Trends Cell Biol. 23 227–233. 10.1016/j.tcb.2012.12.001 PubMed DOI
van Gisbergen P. A., Li M., Wu S. Z., Bezanilla M. (2012). Class II formin targeting to the cell cortex by binding PI(3,5)P(2) is essential for polarized growth. J. Cell Biol. 198 235–250. 10.1083/jcb.201112085 PubMed DOI PMC
Vasavada N. (2016). Online Web Statistical Calculators For Categorical Data Analysis. Available online at https://astatsa.com/ (accessed August 25, 2020).
Vidali L., Bezanilla M. (2012). Physcomitrella patens: a model for tip cell growth and differentiation. Curr. Opin. Plant Biol. 1 625–631. 10.1016/j.pbi.2012.09.008 PubMed DOI
Vidali L., van Gisbergen P. A., Guérin C., Franco P., Li W., Burkart G. M., et al. (2009). Rapid formin-mediated actin-filament elongation is essential for polarized plant cell growth. Proc. Natl. Acad. Sci. U.S.A. 106 13341–13346. 10.1073/pnas.0901170106 PubMed DOI PMC
Waese J., Fan J., Pasha A., Yu H., Fucile G., Shi R., et al. (2017). ePlant: visualizing and exploring multiple levels of data for hypothesis generation in plant biology. Plant Cell 29 1806–1821. 10.1105/tpc.17.00073 PubMed DOI PMC
Wang J., Zhang Y., Wu J., Meng L., Ren H. (2013). AtFH16, an Arabidopsis type II formin, binds and bundles both microfilaments and microtubules, and preferentially binds to microtubules. J. Int. Plant Biol. 55 1002–1015. 10.1111/jipb.12089 PubMed DOI
Yang W., Ren S., Zhang X., Gao M., Ye S., Qi Y., et al. (2011). BENT UPPERMOST INTERNODE1 encodes the Class II formin FH5 crucial for actin organization and rice development. Plant Cell 23 661–680. 10.1105/tpc.110.081802 PubMed DOI PMC
Ye J., Zheng Y., Yan A., Chen N., Wang Z., Huang S., et al. (2009). Arabidopsis Formin3 directs the formation of actin cables and polarized growth in pollen tubes. Plant Cell 21 3868–3884. 10.1105/tpc.109.068700 PubMed DOI PMC
Yi K., Guo C., Chen D., Zhao B., Yang B., Ren H. (2005). Cloning and functional characterization of a formin-like protein (AtFH8) from Arabidopsis. Plant Physiol. 138 1071–1082. 10.1104/pp.104.055665 PubMed DOI PMC
Zhang S., Liu C., Wang J., Ren Z., Staiger C. J., Ren H. (2016). A processive Arabidopsis formin modulates actin filament dynamics in association with profilin. Mol. Plant 9 900–910. 10.1016/j.molp.2016.03.006 PubMed DOI
Zhang S., Wang C., Xie M., Liu J., Kong Z., Su H. (2018). Actin bundles in the pollen tube. Int. J. Mol. Sci. 19:3710. 10.3390/ijms19123710 PubMed DOI PMC
Zhang Z., Zhang Y., Tan H., Wang Y., Li G., Liang W., et al. (2011). RICE MORPHOLOGY DETERMINANT encodes the type II formin FH5 and regulates rice morphogenesis. Plant Cell 23 681–700. 10.1105/tpc.110.081349 PubMed DOI PMC
Zhou Z., Shi H., Chen B., Zhang R., Huang S., Fu Y. (2015). Arabidopsis RIC1 severs actin filaments at the apex to regulate pollen tube growth. Plant Cell 27 1140–1161. 10.1105/tpc.114.135400 PubMed DOI PMC
Transmembrane formins as active cargoes of membrane trafficking