Synthesis of Tetravalent Thio- and Selenogalactoside-Presenting Galactoclusters and Their Interactions with Bacterial Lectin PA-IL from Pseudomonas aeruginosa
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
K119509
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
K128368
Nemzeti Kutatási, Fejlesztési és Innovaciós Alap
GINOP 2.3.2-15-2016-00008
European Regional Development Fund
János Bolyai Fellowship
Magyar Tudományos Akadémia
18-18964S
Grantová Agentura České Republiky
LM2018127
Central European Institute of Technology
PubMed
33494330
PubMed Central
PMC7865631
DOI
10.3390/molecules26030542
PII: molecules26030542
Knihovny.cz E-zdroje
- Klíčová slova
- PA-IL lectin, Pseudomonas aeruginosa, galactoclusters, multivalency, selenoglycosides,
- MeSH
- bakteriální proteiny chemie MeSH
- glykokonjugáty * chemická syntéza chemie MeSH
- lektiny chemie MeSH
- lidé MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- Pseudomonas aeruginosa chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- glykokonjugáty * MeSH
- lektiny MeSH
Synthesis of tetravalent thio- and selenogalactopyranoside-containing glycoclusters using azide-alkyne click strategy is presented. Prepared compounds are potential ligands of Pseudomonas aeruginosa lectin PA-IL. P. aeruginosa is an opportunistic human pathogen associated with cystic fibrosis, and PA-IL is one of its virulence factors. The interactions of PA-IL and tetravalent glycoconjugates were investigated using hemagglutination inhibition assay and compared with mono- and divalent galactosides (propargyl 1-thio- and 1-seleno-β-d-galactopyranoside, digalactosyl diselenide and digalactosyl disulfide). The lectin-carbohydrate interactions were also studied by saturation transfer difference NMR technique. Both thio- and seleno-tetravalent glycoconjugates were able to inhibit PA-IL significantly better than simple d-galactose or their intermediate compounds from the synthesis.
Central European Institute of Technology Masaryk University Kamenice 5 625 00 Brno Czech Republic
Department of Organic Chemistry University of Debrecen Egyetem tér 1 H 4032 Debrecen Hungary
Department of Pharmaceutical Chemistry University of Debrecen Egyetem tér 1 H 4032 Debrecen Hungary
Zobrazit více v PubMed
Sharon N., Lis H. Lectins: Carbohydrate-specific proteins that mediate cellular recognition. Chem. Rev. 1998;98:637–674. doi: 10.1021/cr940413g. PubMed DOI
Sharon N. Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochim. Biophys. Acta. 2006;1760:527–537. doi: 10.1016/j.bbagen.2005.12.008. PubMed DOI
Cecioni S., Imberty A., Vidal S. Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem. Rev. 2015;115:525–561. doi: 10.1021/cr500303t. PubMed DOI
Folkesson A., Jelsbak L., Yang L., Johansen H.K., Ciofu O., Høiby N., Molin S. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: An evolutionary perspective. Nat. Rev. Microbiol. 2012;10:841–851. doi: 10.1038/nrmicro2907. PubMed DOI
Bhagirath A.Y., Li Y., Somayajula D., Dadashi M., Badr S., Duan K. Cystic fibrosis lung environment and Pseudomonas aeruginosa infection. BMC Pulm. Med. 2016;16:174–196. doi: 10.1186/s12890-016-0339-5. PubMed DOI PMC
Cioci G., Mitchell E.P., Gautier C., Wimmerová M., Sudakevitz D., Pérez S., Gilboa-Garber N., Imberty A. Structural basis of calcium and galactose recognition by the lectin PA-IL of Pseudomonas aeruginosa. FEBS Lett. 2003;555:297–301. doi: 10.1016/S0014-5793(03)01249-3. PubMed DOI
Chemani C., Imberty A., de Bentzmann S., Pierre M., Wimmerová M., Guery B.P., Faure K. Role of LecA and LecB lectins in Pseudomonas aeruginosa-induced lung injury and effect of carbohydrate ligands. Infect. Immun. 2009;77:2065–2075. doi: 10.1128/IAI.01204-08. PubMed DOI PMC
Diggle S.P., Stacey R.E., Dodd C., Cámara M., Williams P., Winzer K. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ. Microbiol. 2006;8:1095–1104. doi: 10.1111/j.1462-2920.2006.001001.x. PubMed DOI
Novoa A., Eierhoff T., Topin J., Varrot A., Barluenga S., Imberty A., Römer W., Winssinger N. A LecA Ligand Identified from a Galactoside-Conjugate Array Inhibits Host Cell Invasion by Pseudomonas aeruginosa. Angew. Chem. Int. Ed. 2014;53:8885–8889. doi: 10.1002/anie.201402831. PubMed DOI
Bajolet-Laudinat O., Bentzmann S.G.-D., Tournier J.M., Madoulet C., Plotkowski M.C., Chippaux C., Puchelle E. Cytotoxicity of Pseudomonas aeruginosa internal lectin PA-I to respiratory epithelial cells in primary culture. Infect. Immun. 1994;62:4481–4487. doi: 10.1128/IAI.62.10.4481-4487.1994. PubMed DOI PMC
Thai L.S., Malinovská L., Vašková M., Mező E., Kelemen V., Borbás A., Hodek P., Wimmerová M., Csávás M. Investigation of the Binding Affinity of a Broad Array of L-Fucosides with Six Fucose-Specific Lectins of Bacterial and Fungal Origin. Molecules. 2019;24:2262. doi: 10.3390/molecules24122262. PubMed DOI PMC
Malinovská L., Thai L.S., Herczeg M., Vašková M., Houser J., Fujdiarová E., Komárek J., Hodek P., Borbás A., Wimmerová M., et al. Synthesis of β-D-galactopyranoside-presenting glycoclusters, investigation of their interactions with Pseudomonas aeruginosa lectin A (PA-IL) and evaluation of their anti-adhesion potential. Biomolecules. 2019;9:686. doi: 10.3390/biom9110686. PubMed DOI PMC
Mangiavacchi F., Dias I.F.C., Di Lorenzo I., Grzes P., Palomba M., Rosati O., Bagnoli L., Marini F., Santi C., Lenardao E.J., et al. Sweet Selenium: Synthesis and Properties of Selenium-Containing Sugars and Derivatives. Pharmaceuticals. 2020;13:211. doi: 10.3390/ph13090211. PubMed DOI PMC
Suzuki T., Makyio H., Ando H., Komura N., Menjo M., Yamada Y., Imamura A., Ishida H., Wakatsuki S., Kato R., et al. Expanded potential of seleno-carbohydrates as a molecular tool for X-ray structural determination of a carbohydrate–protein complex with single/multi-wavelength anomalous dispersion phasing. Bioorg. Med. Chem. 2014;22:2090–2101. doi: 10.1016/j.bmc.2014.02.023. PubMed DOI
Valerio S., Iadonisi A., Adinolfi M., Ravidá A. Novel Approaches for the Synthesis and Activation of Thio- and Selenoglycoside Donors. J. Org. Chem. 2007;72:6097–6106. doi: 10.1021/jo070670o. PubMed DOI
Gamblin D.P., Garnier P., Van Kasteren S., Oldham N.J., Fairbanks A.J., Davis B.G. Glyco-SeS: Selenenylsulfide-Mediated Protein Glycoconjugation—A New Strategy in Post-Translational Modification. Angew. Chem. Int. Ed. 2004;43:828–833. doi: 10.1002/anie.200352975. PubMed DOI
Kim E.J., Love N.C., Darout E., Abdo M., Rempel B., Withers S.G., Rablen P.R., Hanover J.A., Knapp S. OGA inhibition by GlcNAc-selenazoline. Bioorg. Med. Chem. 2010;18:7058–7064. doi: 10.1016/j.bmc.2010.08.010. PubMed DOI PMC
Mehta S., Andrews J.S., Svensson B., Pinto B.M. Synthesis and Enzymic Activity of Novel Glycosidase Inhibitors Containing Sulfur and Selenium. J. Am. Chem. Soc. 1995;117:9783–9790. doi: 10.1021/ja00144a001. DOI
André S., Kövér K.E., Gabius H.-J., Szilágyi L. Thio- and selenoglycosides as ligands for biomedically relevant lectins: Valency–activity correlations for benzene-based dithiogalactoside clusters and first assessment for (di)selenodigalactosides. Bioorg. Med. Chem. Lett. 2015;25:931–935. doi: 10.1016/j.bmcl.2014.12.049. PubMed DOI
Cumpstey I., Ramstadius C., Akhtar T., Goldstein I.J., Winter H.C. Non-Glycosidically Linked Pseudodisaccharides: Thioethers, Sulfoxides, Sulfones, Ethers, Selenoethers, and Their Binding to Lectins. Eur. J. Org. Chem. 2010;10:1951–1970. doi: 10.1002/ejoc.200901481. DOI
Affeldt R.F., Braga H.C., Baldassari L.L., Luedtke D.S. Synthesis of selenium-linked neoglycoconjugates and pseudodisaccharides. Tetrahedron. 2012;68:10470–10475. doi: 10.1016/j.tet.2012.08.075. DOI
Boutureira O., Bernardes G.J.L., Fernández-González M., Anthony D.C., Davis B.G. Selenenylsulfide-Linked Homogeneous Glycopeptides and Glycoproteins: Synthesis of Human “Hepatic Se Metabolite A”. Angew. Chem. Int. Ed. 2011;51:1432–1436. doi: 10.1002/anie.201106658. PubMed DOI
Raics M., Timári I., Diercks T., Szilágyi L., Gabius H.-J., Kövér K.E. Selenoglycosides as Lectin Ligands: 77Se-Edited CPMG-HSQMBC NMR Spectroscopy To Monitor Biomedically Relevant Interactions. ChemBioChem. 2019;20:1688–1692. doi: 10.1002/cbic.201900088. PubMed DOI PMC
Llamas I., Boutureira O., Claridge T.D.W., Davis B.G. Glycosyldiselenides as lectin ligands detectable by NMR in biofluids. Chem. Commun. 2015;51:12208–12211. doi: 10.1039/c5cc03952e. PubMed DOI
Dondoni A. Triazole: The Keystone in Glycosylated Molecular Architectures Constructed by a Click Reaction. Chem. Asian J. 2007;2:700–708. doi: 10.1002/asia.200700015. PubMed DOI
Ziegler T., Pietrzik N., Schips C. Efficient Synthesis of Glycosylated Asparaginic Acid Building Blocks via Click Chemistry. Synthesis. 2008;4:519–526. doi: 10.1055/s-2008-1032150. DOI
Giguere D., Bonin M.-A., Cloutier P., Patnam R., St-Pierre C., Sato S., Roy R. Synthesis of stable and selective inhibitors of human galectins-1 and -3. Bioorg. Med. Chem. 2008;16:7811–7823. doi: 10.1016/j.bmc.2008.06.044. PubMed DOI
Adamová L., Malinovská L., Wimmerová M. New sensitive detection method for lectin hemagglutination using microscopy. Microsc. Res. Tech. 2014;77:841–849. doi: 10.1002/jemt.22407. PubMed DOI
Mayer M., Meyer B. Characterization of Ligand Binding by Saturation Transfer Difference NMR Spectroscopy. Angew. Chem. Int. Ed. 1999;38:1784–1788. doi: 10.1002/(SICI)1521-3773(19990614)38:12<1784::AID-ANIE1784>3.0.CO;2-Q. PubMed DOI
Mayer M., Meyer B. Group Epitope Mapping by Saturation Transfer Difference NMR To Identify Segments of a Ligand in Direct Contact with a Protein Receptor. J. Am. Chem. Soc. 2001;123:6108–6117. doi: 10.1021/ja0100120. PubMed DOI
Groves P., Kövér K.E., André S., Bandorowicz-Pikuła J., Batta G., Bruix M., Buchet R., Canales Á., Cañada F.J., Gabius H.-J., et al. Temperature dependence of ligand-protein complex formation as reflected by saturation transfer difference NMR experiments. J. Magn. Reson. Chem. 2007;45:745–748. doi: 10.1002/mrc.2041. PubMed DOI
Driguez H. Glycoscience Synthesis of Substrate Analogs and Mimetics. Springer; Berlin/Heidelberg, Germany: 1997. Thiooligosaccharides in glycobiology; pp. 85–116. DOI
Hauber H.-P., Schulz M., Pforte A., Mack D., Zabel P., Schumacher U. Inhalation with Fucose and Galactose for Treatment of Pseudomonas Aeruginosa in Cystic Fibrosis Patients. Int. J. Med. Sci. 2008;5:371–376. doi: 10.7150/ijms.5.371. PubMed DOI PMC