Synthesis of Tetravalent Thio- and Selenogalactoside-Presenting Galactoclusters and Their Interactions with Bacterial Lectin PA-IL from Pseudomonas aeruginosa

. 2021 Jan 21 ; 26 (3) : . [epub] 20210121

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33494330

Grantová podpora
K119509 Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
K128368 Nemzeti Kutatási, Fejlesztési és Innovaciós Alap
GINOP 2.3.2-15-2016-00008 European Regional Development Fund
János Bolyai Fellowship Magyar Tudományos Akadémia
18-18964S Grantová Agentura České Republiky
LM2018127 Central European Institute of Technology

Synthesis of tetravalent thio- and selenogalactopyranoside-containing glycoclusters using azide-alkyne click strategy is presented. Prepared compounds are potential ligands of Pseudomonas aeruginosa lectin PA-IL. P. aeruginosa is an opportunistic human pathogen associated with cystic fibrosis, and PA-IL is one of its virulence factors. The interactions of PA-IL and tetravalent glycoconjugates were investigated using hemagglutination inhibition assay and compared with mono- and divalent galactosides (propargyl 1-thio- and 1-seleno-β-d-galactopyranoside, digalactosyl diselenide and digalactosyl disulfide). The lectin-carbohydrate interactions were also studied by saturation transfer difference NMR technique. Both thio- and seleno-tetravalent glycoconjugates were able to inhibit PA-IL significantly better than simple d-galactose or their intermediate compounds from the synthesis.

Zobrazit více v PubMed

Sharon N., Lis H. Lectins: Carbohydrate-specific proteins that mediate cellular recognition. Chem. Rev. 1998;98:637–674. doi: 10.1021/cr940413g. PubMed DOI

Sharon N. Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochim. Biophys. Acta. 2006;1760:527–537. doi: 10.1016/j.bbagen.2005.12.008. PubMed DOI

Cecioni S., Imberty A., Vidal S. Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem. Rev. 2015;115:525–561. doi: 10.1021/cr500303t. PubMed DOI

Folkesson A., Jelsbak L., Yang L., Johansen H.K., Ciofu O., Høiby N., Molin S. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: An evolutionary perspective. Nat. Rev. Microbiol. 2012;10:841–851. doi: 10.1038/nrmicro2907. PubMed DOI

Bhagirath A.Y., Li Y., Somayajula D., Dadashi M., Badr S., Duan K. Cystic fibrosis lung environment and Pseudomonas aeruginosa infection. BMC Pulm. Med. 2016;16:174–196. doi: 10.1186/s12890-016-0339-5. PubMed DOI PMC

Cioci G., Mitchell E.P., Gautier C., Wimmerová M., Sudakevitz D., Pérez S., Gilboa-Garber N., Imberty A. Structural basis of calcium and galactose recognition by the lectin PA-IL of Pseudomonas aeruginosa. FEBS Lett. 2003;555:297–301. doi: 10.1016/S0014-5793(03)01249-3. PubMed DOI

Chemani C., Imberty A., de Bentzmann S., Pierre M., Wimmerová M., Guery B.P., Faure K. Role of LecA and LecB lectins in Pseudomonas aeruginosa-induced lung injury and effect of carbohydrate ligands. Infect. Immun. 2009;77:2065–2075. doi: 10.1128/IAI.01204-08. PubMed DOI PMC

Diggle S.P., Stacey R.E., Dodd C., Cámara M., Williams P., Winzer K. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ. Microbiol. 2006;8:1095–1104. doi: 10.1111/j.1462-2920.2006.001001.x. PubMed DOI

Novoa A., Eierhoff T., Topin J., Varrot A., Barluenga S., Imberty A., Römer W., Winssinger N. A LecA Ligand Identified from a Galactoside-Conjugate Array Inhibits Host Cell Invasion by Pseudomonas aeruginosa. Angew. Chem. Int. Ed. 2014;53:8885–8889. doi: 10.1002/anie.201402831. PubMed DOI

Bajolet-Laudinat O., Bentzmann S.G.-D., Tournier J.M., Madoulet C., Plotkowski M.C., Chippaux C., Puchelle E. Cytotoxicity of Pseudomonas aeruginosa internal lectin PA-I to respiratory epithelial cells in primary culture. Infect. Immun. 1994;62:4481–4487. doi: 10.1128/IAI.62.10.4481-4487.1994. PubMed DOI PMC

Thai L.S., Malinovská L., Vašková M., Mező E., Kelemen V., Borbás A., Hodek P., Wimmerová M., Csávás M. Investigation of the Binding Affinity of a Broad Array of L-Fucosides with Six Fucose-Specific Lectins of Bacterial and Fungal Origin. Molecules. 2019;24:2262. doi: 10.3390/molecules24122262. PubMed DOI PMC

Malinovská L., Thai L.S., Herczeg M., Vašková M., Houser J., Fujdiarová E., Komárek J., Hodek P., Borbás A., Wimmerová M., et al. Synthesis of β-D-galactopyranoside-presenting glycoclusters, investigation of their interactions with Pseudomonas aeruginosa lectin A (PA-IL) and evaluation of their anti-adhesion potential. Biomolecules. 2019;9:686. doi: 10.3390/biom9110686. PubMed DOI PMC

Mangiavacchi F., Dias I.F.C., Di Lorenzo I., Grzes P., Palomba M., Rosati O., Bagnoli L., Marini F., Santi C., Lenardao E.J., et al. Sweet Selenium: Synthesis and Properties of Selenium-Containing Sugars and Derivatives. Pharmaceuticals. 2020;13:211. doi: 10.3390/ph13090211. PubMed DOI PMC

Suzuki T., Makyio H., Ando H., Komura N., Menjo M., Yamada Y., Imamura A., Ishida H., Wakatsuki S., Kato R., et al. Expanded potential of seleno-carbohydrates as a molecular tool for X-ray structural determination of a carbohydrate–protein complex with single/multi-wavelength anomalous dispersion phasing. Bioorg. Med. Chem. 2014;22:2090–2101. doi: 10.1016/j.bmc.2014.02.023. PubMed DOI

Valerio S., Iadonisi A., Adinolfi M., Ravidá A. Novel Approaches for the Synthesis and Activation of Thio- and Selenoglycoside Donors. J. Org. Chem. 2007;72:6097–6106. doi: 10.1021/jo070670o. PubMed DOI

Gamblin D.P., Garnier P., Van Kasteren S., Oldham N.J., Fairbanks A.J., Davis B.G. Glyco-SeS: Selenenylsulfide-Mediated Protein Glycoconjugation—A New Strategy in Post-Translational Modification. Angew. Chem. Int. Ed. 2004;43:828–833. doi: 10.1002/anie.200352975. PubMed DOI

Kim E.J., Love N.C., Darout E., Abdo M., Rempel B., Withers S.G., Rablen P.R., Hanover J.A., Knapp S. OGA inhibition by GlcNAc-selenazoline. Bioorg. Med. Chem. 2010;18:7058–7064. doi: 10.1016/j.bmc.2010.08.010. PubMed DOI PMC

Mehta S., Andrews J.S., Svensson B., Pinto B.M. Synthesis and Enzymic Activity of Novel Glycosidase Inhibitors Containing Sulfur and Selenium. J. Am. Chem. Soc. 1995;117:9783–9790. doi: 10.1021/ja00144a001. DOI

André S., Kövér K.E., Gabius H.-J., Szilágyi L. Thio- and selenoglycosides as ligands for biomedically relevant lectins: Valency–activity correlations for benzene-based dithiogalactoside clusters and first assessment for (di)selenodigalactosides. Bioorg. Med. Chem. Lett. 2015;25:931–935. doi: 10.1016/j.bmcl.2014.12.049. PubMed DOI

Cumpstey I., Ramstadius C., Akhtar T., Goldstein I.J., Winter H.C. Non-Glycosidically Linked Pseudodisaccharides: Thioethers, Sulfoxides, Sulfones, Ethers, Selenoethers, and Their Binding to Lectins. Eur. J. Org. Chem. 2010;10:1951–1970. doi: 10.1002/ejoc.200901481. DOI

Affeldt R.F., Braga H.C., Baldassari L.L., Luedtke D.S. Synthesis of selenium-linked neoglycoconjugates and pseudodisaccharides. Tetrahedron. 2012;68:10470–10475. doi: 10.1016/j.tet.2012.08.075. DOI

Boutureira O., Bernardes G.J.L., Fernández-González M., Anthony D.C., Davis B.G. Selenenylsulfide-Linked Homogeneous Glycopeptides and Glycoproteins: Synthesis of Human “Hepatic Se Metabolite A”. Angew. Chem. Int. Ed. 2011;51:1432–1436. doi: 10.1002/anie.201106658. PubMed DOI

Raics M., Timári I., Diercks T., Szilágyi L., Gabius H.-J., Kövér K.E. Selenoglycosides as Lectin Ligands: 77Se-Edited CPMG-HSQMBC NMR Spectroscopy To Monitor Biomedically Relevant Interactions. ChemBioChem. 2019;20:1688–1692. doi: 10.1002/cbic.201900088. PubMed DOI PMC

Llamas I., Boutureira O., Claridge T.D.W., Davis B.G. Glycosyldiselenides as lectin ligands detectable by NMR in biofluids. Chem. Commun. 2015;51:12208–12211. doi: 10.1039/c5cc03952e. PubMed DOI

Dondoni A. Triazole: The Keystone in Glycosylated Molecular Architectures Constructed by a Click Reaction. Chem. Asian J. 2007;2:700–708. doi: 10.1002/asia.200700015. PubMed DOI

Ziegler T., Pietrzik N., Schips C. Efficient Synthesis of Glycosylated Asparaginic Acid Building Blocks via Click Chemistry. Synthesis. 2008;4:519–526. doi: 10.1055/s-2008-1032150. DOI

Giguere D., Bonin M.-A., Cloutier P., Patnam R., St-Pierre C., Sato S., Roy R. Synthesis of stable and selective inhibitors of human galectins-1 and -3. Bioorg. Med. Chem. 2008;16:7811–7823. doi: 10.1016/j.bmc.2008.06.044. PubMed DOI

Adamová L., Malinovská L., Wimmerová M. New sensitive detection method for lectin hemagglutination using microscopy. Microsc. Res. Tech. 2014;77:841–849. doi: 10.1002/jemt.22407. PubMed DOI

Mayer M., Meyer B. Characterization of Ligand Binding by Saturation Transfer Difference NMR Spectroscopy. Angew. Chem. Int. Ed. 1999;38:1784–1788. doi: 10.1002/(SICI)1521-3773(19990614)38:12<1784::AID-ANIE1784>3.0.CO;2-Q. PubMed DOI

Mayer M., Meyer B. Group Epitope Mapping by Saturation Transfer Difference NMR To Identify Segments of a Ligand in Direct Contact with a Protein Receptor. J. Am. Chem. Soc. 2001;123:6108–6117. doi: 10.1021/ja0100120. PubMed DOI

Groves P., Kövér K.E., André S., Bandorowicz-Pikuła J., Batta G., Bruix M., Buchet R., Canales Á., Cañada F.J., Gabius H.-J., et al. Temperature dependence of ligand-protein complex formation as reflected by saturation transfer difference NMR experiments. J. Magn. Reson. Chem. 2007;45:745–748. doi: 10.1002/mrc.2041. PubMed DOI

Driguez H. Glycoscience Synthesis of Substrate Analogs and Mimetics. Springer; Berlin/Heidelberg, Germany: 1997. Thiooligosaccharides in glycobiology; pp. 85–116. DOI

Hauber H.-P., Schulz M., Pforte A., Mack D., Zabel P., Schumacher U. Inhalation with Fucose and Galactose for Treatment of Pseudomonas Aeruginosa in Cystic Fibrosis Patients. Int. J. Med. Sci. 2008;5:371–376. doi: 10.7150/ijms.5.371. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...