Protein and drug interactions in the minor groove of DNA
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
11861910
PubMed Central
PMC101234
DOI
10.1093/nar/30.5.1182
Knihovny.cz E-zdroje
- MeSH
- aminokyseliny chemie metabolismus MeSH
- chemické modely MeSH
- deoxyribonukleotidy chemie metabolismus MeSH
- DNA vazebné proteiny chemie metabolismus MeSH
- DNA chemie metabolismus MeSH
- dusík chemie MeSH
- konformace nukleové kyseliny MeSH
- krystalografie rentgenová MeSH
- kyslík chemie MeSH
- ligandy MeSH
- makromolekulární látky MeSH
- racionální návrh léčiv MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- voda chemie MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
- deoxyribonukleotidy MeSH
- DNA vazebné proteiny MeSH
- DNA MeSH
- dusík MeSH
- kyslík MeSH
- ligandy MeSH
- makromolekulární látky MeSH
- voda MeSH
Interactions between proteins, drugs, water and B-DNA minor groove have been analyzed in crystal structures of 60 protein-DNA and 14 drug-DNA complexes. It was found that only purine N3, pyrimidine O2, guanine N2 and deoxyribose O4' are involved in the interactions, and that contacts to N3 and O2 are most frequent and more polar than contacts to O4'. Many protein contacts are mediated by water, possibly to increase the DNA effective surface. Fewer water-mediated contacts are observed in drug complexes. The distributions of ligands around N3 are significantly more compact than around O2, and distributions of water molecules are the most compact. Distributions around O4' are more diffuse than for the base atoms but most distributions still have just one binding site. Ligands bind to N3 and O2 atoms in analogous positions, and simultaneous binding to N3 and N2 in guanines is extremely rare. Contacts with two consecutive nucleotides are much more frequent than base-sugar contacts within one nucleotide. The probable reason for this is the large energy of deformation of hydrogen bonds for the one nucleotide motif. Contacts of Arg, the most frequent amino acid ligand, are stereochemically indistinguishable from the binding of the remaining amino acids except asparagine (Asn) and phenylalanine (Phe). Asn and Phe bind in distinct ways, mostly to a deformed DNA, as in the complexes of TATA-box binding proteins. DNA deformation concentrates on dinucleotide regions with a distinct deformation of the delta and epsilon backbone torsion angles for the Asn and delta, epsilon, zeta and chi for the Phe-contacted regions.
Zobrazit více v PubMed
Wemmer D.E. and Dervan,P.B. (1997) Targeting the minor groove of DNA. Curr. Opin. Struct. Biol., 7, 355–361. PubMed
Reddy B.S.P., Sondhi,S.M. and Lown,J.W. (1999) Synthetic DNA minor-groove binding drugs. Pharmacol. Ther., 84, 1–111. PubMed
Neidle S. (2001) DNA minor-groove recognition by small molecules. Natural Prod. Rep., 18, 291–309. PubMed
Dervan P.B. and Buerli,R.W. (1999) Sequence-specific DNA recognition by polyamides. Curr. Opin. Chem. Biol., 3, 688–693. PubMed
Neidle S. (1997) Crystallographic insights into DNA minor groove recognition by drugs. Biopolymers, 44, 105–121.
Tabernero L., Bella,J. and Alemán,C. (1996) Hydrogen bond geometry in DNA-minor groove binding drug complexes. Nucleic Acids Res., 24, 3458–3466. PubMed PMC
Mandel-Gutfreund Y., Schueler,O. and Margalit,H. (1995) Comprehensive analysis of hydrogen bonds in regulatory protein DNA-complexes: in search of common principles. J. Mol. Biol., 253, 370–382. PubMed
Jones S., van Heyningen,P., Berman,H.M. and Thornton,J.M. (1999) Protein–DNA interactions: a structural analysis. J. Mol. Biol., 287, 877–896. PubMed
Nadassy K., Wodak,S.J. and Janin,J. (1999) Structural features of protein-nucleic acid recognition sites. Biochemistry, 38, 1999–2017. PubMed
Pabo C.O. and Nekludova,L. (2000) Geometric analysis and comparison of protein–DNA interfaces: why is there no simple code for recognition? J. Mol. Biol., 301, 597–624. PubMed
Luscombe N.M., Laskowski,R.A. and Thornton,J.M. (2001) Amino acid-base interactions: a three-dimensional analysis of protein–DNA interactions at an atomic level. Nucleic Acids Res., 29, 2860–2874. PubMed PMC
Suzuki M., Brenner,S.E., Gerstein,M. and Yagi,N. (1995) DNA recognition code of transcription factors. Protein Eng., 8, 319–328. PubMed
Gray S. (2001) Rules for 3D protein–DNA interactions. Trends Genet., 17, 494–494.
Berman H.M., Olson,W.K., Beveridge,D.L., Westbrook,J., Gelbin,A., Demeny,T., Hsieh,S.-H., Srinivasan,A.R. and Schneider,B. (1992) The Nucleic Acid Database—a comprehensive relational database of three-dimensional structures of nucleic acids. Biophys. J., 63, 751–759. PubMed PMC
Cohen D., Vadaparty,K. and Dickinson,B. (1995) Efficient algorithms for distance queries in macromolecular structure databases. University of Pittsburgh, Pittsburgh, PA.
Clowney L., Jain,S.C., Srinivasan,A.R., Westbrook,J., Olson,W.K. and Berman,H.M. (1996) Geometric parameters in nucleic acids: nitrogenous bases. J. Am. Chem. Soc., 118, 509–518.
Jones T.A., Zou,J.-Y., Cowan,S.W. and Kjeldgaard,M. (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A, 47, 110–119. PubMed
Schneider B., Cohen,D.M., Schleifer,L., Srinivasan,A.R., Olson,W.K. and Berman,H.M. (1993) A systematic method for studying the spatial distribution of water molecules around nucleic acid bases. Biophys. J., 65, 2291–2303. PubMed PMC
Schneider B. and Berman,H.M. (1995) Hydration of the DNA bases is local. Biophys. J., 69, 2661–2669. PubMed PMC
Frisch M.J., Trucks,G.W., Schlegel,H.B., Gill,P.M.W., Johnson,B.G., Robb,M.A., Cheeseman,J.R., Keith,T., Petersson,G.A., Montgomery,J.A., Raghavachari,K., Al-Laham,M.A., Zakrzewski,V.G., Ortiz,J.V., Foresman,J.B., Cioslowski,J., Stefanov,B.B., Nanayakkara,A., Challacombe,M., Peng,C.Y., Ayala,P.Y., Chen,W., Wong,M.W., Andres,J.L., Replogle,E.S., Gomperts,R., Martin,R.L., Fox,D.J., Binkley,J.S., Defries,D.J., Baker,J., Stewart,J.P., Head-Gordon,M., Gonzalez,C. and Pople,J.A. (1995) Gaussian 94, Revision E.2. Gaussian Inc., Pittsburgh, PA.
Woda J., Schneider,B., Patel,K., Mistry,K. and Berman,H.M. (1998) An analysis of the relationship between hydration and protein–DNA interactions. Biophys. J., 75, 2170–2177. PubMed PMC
Juo Z.S., Chiu,T.K., Leiberman,P.M., Baikalov,I., Berk,A.J. and Dickerson,R.E. (1996) How proteins recognize the TATA box. J. Mol. Biol., 261, 239–254. PubMed
Kim J.L. and Burley,S.K. (1994) 1.9 Å Resolution refined structure of TBP recognizing the minor groove of TATAAAAG. Nature Struct. Biol., 1, 638–653. PubMed
Kim Y., Geiger,J.H., Hahn,S. and Sigler,P.B. (1993) Crystal structure of a yeast TBP/TATA-box complex. Nature, 365, 512–520. PubMed
Kosa P.F., Ghosh,G., Dedecker,B.S. and Sigler,P.B. (1997) The 2.1-Å crystal structure of an archaeal preinitiation complex: TATA-box-binding protein/transcription factor (II)B core/TATA-box. Proc. Natl Acad. Sci. USA, 94, 6042–6047. PubMed PMC
Kim Y., Grable,J.C., Love,R., Greene,P.J. and Rosenberg,J.M. (1990) Refinement of EcoRI endonuclease crystal structure: a revised protein chain tracing. Science, 249, 1307–1309. PubMed
Weston S.A., Lahm,A. and Suck,D. (1992) X-ray structure of the DNase I-d(GGTATACC)2 complex at 2.3 Å resolution. J. Mol. Biol., 226, 1237–1256. PubMed
Lahm A. and Suck,D. (1991) DNase I-induced DNA conformation. 2 Å Structure of a DNase I–octamer complex. J. Mol. Biol., 221, 645–667. PubMed
Feng J.A., Johnson,R.C. and Dickerson,R.E. (1994) Hin recombinase bound to DNA—the origin of specificity in major and minor groove interactions. Science, 263, 348–355. PubMed
Buckle A.M. and Fersht,A.R. (1994) Subsite binding in an RNase: structure of a barnase-tetranucleotide complex at 1.76 Å resolution. Biochemistry, 33, 1644–1653. PubMed
Birdsall D.L. and McPherson,A. (1992) Crystal structure disposition of thymidylic acid tetramer in complex with ribonuclease A. J. Biol. Chem., 267, 22230–22236. PubMed
Fontecilla-Camps J.C., de Llorens,R., le Du,M.H. and Cuchillo,C.M. (1994) Crystal structure of the ribonuclease A–d(ApTpApApG) complex. Direct evidence for extended substrate recognition. J. Biol. Chem., 269, 21526–21531. PubMed
Sawaya M.R., Prasad,R., Wilson,S.H., Kraut,J. and Pelletier,H. (1997) Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism. Biochemistry, 36, 11205–11215. PubMed
van Pouderoyen G., Ketting,R.F., Perrakis,A., Plasterk,R.H.A. and Sixma,T.K. (1997) Crystal structure of the specific DNA-binding domain of Tc3 transposase of C.elegans in complex with transposon DNA. EMBO J., 16, 6044–6054. PubMed PMC
Doublié S., Tabor,S., Richardson,C. and Ellenberger,T. (1998) Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution. Nature, 391, 251–258. PubMed
Brautigam C.A. and Steitz,T.A. (1998) Structural principles for the inhibition of the 3′–5′ exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates. J. Mol. Biol., 277, 363–377. PubMed
Horton N.C., Newberry,K.J. and Perona,J.J. (1998) Metal ion-mediated substance-assisted catalysis in type II restriction endonucleases. Proc. Natl Acad. Sci. USA, 95, 13489–13494. PubMed PMC
Kostrewa D. and Winkler,F.K. (1995) Mg2+ binding to the active site of EcoRV endonuclease: a crystallographic study of complexes with substrate and product DNA at 2 Å resolution. Biochemistry, 34, 683–696. PubMed
Redinbo M.R., Stewart,L., Kuhn,P., Champoux,J.J. and Hol,W.G.J. (1998) Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. Science, 279, 1504–1513. PubMed
Flick K.E., Jurica,M.S., Monnat,R.J. and Stoddard,B.L. (1998) DNA binding and cleavage by the nuclear intron-encoded homing endonuclease I-PpoI. Nature, 394, 96–101. PubMed
Martin A.M., Sam,M.D., Reich,N.O. and Perona,J.J. (1999) Structural and energetic origins of indirect readout in site-specifc DNA cleavage by a restriction endonuclease. Nature Struct. Biol., 6, 269–277. PubMed
Newman M., Strzelecka,T., Dorner,L.F., Schildkraut,I. and Aggarwal,A.K. (1995) Structure of BamHI endonuclease bound to DNA: partial folding and unfolding on DNA binding. Science, 269, 656–663. PubMed
Wilson D.S., Guenther,B., Desplan,C. and Kuriyan,J. (1995) High resolution crystal structure of a paired (Pax) class cooperative homeodomain dimer on DNA. Cell, 82, 709–719. PubMed
Savva R., McAuley-Hecht,K., Brown,T. and Pearl,L. (1995) The structural basis of specific base-excision repair by uracil-DNA glycosylase. Nature, 373, 487–493. PubMed
Wang J., Yu,P., Lin,T.C., Konigsberg,W.H. and Steitz,T.A. (1996) Crystal structures of an NH2-terminal fragment of T4 DNA polymerase and its complexes with single-stranded DNA and with divalent metal ions. Biochemistry, 35, 8110–8119. PubMed
Perona J.J. and Martin,A.M. (1997) Conformational transitions and structural deformability of EcoRV endonuclease revealed by crystallographic analysis. J. Mol. Biol., 273, 207–225. PubMed
Kumar S., Horton,J.R., Jones,G.D., Walker,R.T., Roberts,R.J. and Cheng,X. (1997) DNA containing 4′-thio-2′-deozycytidine inhibits methylation by HhaI methyltransferase. Nucleic Acids Res., 25, 2773–2783. PubMed PMC
Bochkarev A., Pfuetzner,R.A., Edwards,A.M. and Frappier,L. (1997) Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature, 385, 176–181. PubMed
Aggarwal A.K., Rodgers,D.W., Drottar,M., Ptashne,M. and Harrison,S.C. (1988) Recognition of a DNA operator by the repressor of phage 434: a view at high resolution. Science, 242, 899–907. PubMed
Otwinowski Z., Schevitz,R.W., Zhang,R.-G., Lawson,C.L., Joachimiak,A., Marmorstein,R.Q., Luisi,B.F. and Sigler,P.B. (1988) Crystal structure of trp repressor/operator complex at atomic resolution. Nature, 335, 321–329. PubMed
Shimon L.J.W. and Harrison,S.C. (1993) The phage 434 OR2/R1-69 complex at 2.5 Å resolution. J. Mol. Biol., 232, 826–838. PubMed
Lawson C.L. and Carey,J. (1993) Tandem binding in crystals of a trp repressor/operator half-site complex. Nature, 366, 178–182. PubMed
Rodgers D.W. and Harrison,S.C. (1993) The complex between phage 434 repression DNA-binding domain and operator site Or3: structural differences between consensus and non-consensus half-sites. Structure, 1, 227–240. PubMed
Xu W.G., Rould,M.A., Jun,S., Desplan,C. and Pabo,C.O. (1995) Crystal structure of a paired domain-DNA complex at 2.5 Å resolution reveals structural basis for Pax developmental mutations. Cell, 80, 639–650. PubMed
Rastinejad F., Perlmann,T., Evans,R.M. and Sigler,P.B. (1995) Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature, 375, 203–211. PubMed
Cho Y., Gorina,S., Jeffrey,P.D. and Pavletich,N.P. (1994) Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science, 265, 346–355. PubMed
Jacobson E.M., Li,P., Leon-del-Rio,A., Rosenfeld,M.G. and Aggarwal,A.K. (1997) Structure of Pit-1 POU domain bound to DNA as a dimer: unexpected arrangement and flexibility. Genes Dev., 11, 198–212. PubMed
Tan S. and Richmond,T.J. (1998) Crystal structure of the yeast MAT alpha 2/MCM1/DNA ternary complex. Nature, 391, 660–666. PubMed
Li T., Jin,Y., Vershon,A.K. and Wolberger,C. (1998) Crystal structure of the MATa1/MATα2 homeodomain heterodimer in complex with DNA containing an A-tract. Nucleic Acids Res., 26, 5707–5718. PubMed PMC
Kim J.L., Nikolov,D.B. and Burley,S.K. (1993) Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature, 365, 520–527. PubMed
Clark K.L., Halay,E.D., Lai,E. and Burley,S.K. (1993) Co-crystal structure of the HNF-3/Fork head DNA-recognition motif resembles histone H5. Nature, 364, 412–420. PubMed
Ghosh G., Vanduyne,G., Ghosh,S. and Sigler,P.B. (1995) Structure of NF-kappa B p50 homodimer bound to a kappa B site. Nature, 373, 303–310. PubMed
Li T., Stark,M.R., Johnson,A.D. and Wolberger,C. (1995) Crystal structure of the MAT 1/MAT alpha 2 homeodomain heterodimer bound to DNA. Science, 270, 262–269. PubMed
Keller W., Konig,P. and Richmond,T.J. (1995) Crystal structure of a bZIP/DNA complex at 2.2 Å: determinants of DNA specific recognition. J. Mol. Biol., 254, 657–667. PubMed
Gewirth D.T. and Sigler,P.B. (1995) The basis for half-site specificity explored through a non-cognate steroid receptor-DNA complex. Nature Struct. Biol., 2, 386–394. PubMed
Hirsch J.A. and Aggarwal,A.K. (1995) Structure of the even-skipped homeodomain complexed to AT-rich DNA: new perspectives on homeodomain specificity. EMBO J., 14, 6280–6291. PubMed PMC
Koenig P., Giraldo,R., Chapman,L. and Rhodes,D. (1996) Crystal structure of the DNA binding domain of yeast RAP1 in complex with a telomeric DNA site. Cell, 85, 125–136. PubMed
Tan S., Hunziker,Y., Sargent,D.F. and Richmond,T.J. (1996) Crystal structure of a yeast TFIIA/TBP/DNA complex. Nature, 381, 127–134. PubMed
Houbaviy H.B., Usheva,A., Shenk,T. and Burley,S.K. (1996) Cocrystal structure of YY1 bound to the adeno-associated virus P5 initiator. Proc. Natl Acad. Sci. USA, 93, 13577–13582. PubMed PMC
Rice P.A., Yang,S.-W., Mizuuchi,K. and Nash,H.A. (1996) Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell, 87, 1295–1306. PubMed
Tucker-Kellogg L., Rould,M.A., Chambers,K.A., Ades,S.E., Sauer,R.T. and Pabo,C.O. (1997) Engrailed (Gln50→Lys) homeodomain-DNA complex at 1.9 Å resolution: structural basis for enhanced affinity and altered specificity. Structure, 5, 1047–1054. PubMed
Swaminathan K., Flynn,P., Reece,R.J. and Marmorstein,R. (1997) Crystal structure of a Put3-DNA complex reveals a novel mechanism for DNA recognition by a protein containing a Zn2Cys6 binuclear cluster. Nature Struct. Biol., 4, 751–759. PubMed
Muller C.W. and Herrmann,B.G. (1997) Crystallographic structure of the T domain-DNA complex of the brachyury transcription factor. Nature, 389, 884–888. PubMed
Chen X., Ramakrishnan,B., Rao,S.T. and Sundaralingam,M. (1994) Side by side binding of two distamycin a drugs in the minor groove of an alternating B-DNA duplex. Nature Struct. Biol., 1, 169–175. PubMed
Kopka M.L., Goodsell,D.S., Han,G.W., Chiu,T.K., Lown,J.W. and Dickerson,R.E. (1997) Defining GC-specificity in the minor groove: side-by-side binding of the diimidazole. Structure, 5, 1033–1046. PubMed
Quintana J.R., Lipanov,A.A. and Dickerson,R.E. (1991) Low-temperature crystallographic analysis of the binding of the hoechst-33258 to the double-helical DNA dodecamer C-G-C-G-A-A-T-T-C-G-C-G. Biochemistry, 30, 10294–10306. PubMed
Brown D.G., Sanderson,M.R., Garman,E. and Neidle,S. (1992) Crystal structure of a berenil-d(CGCAAATTTGCG) complex. An example of drug-DNA recognition based on sequence-dependent structural features. J. Mol. Biol., 226, 481–490. PubMed
Sriram M., van der Marel,G.A., Roelen,L.P.F., van Boom,J.H. and Wang,A.H.-J. (1992) Conformation of B-DNA containing O6-ethyl G•C base pairs stabilised by minor grove binding drugs: molecular structure of d[CGC(e6G)AATTCGCG] complexed with Hoechst 33258 or Hoechst 33342. EMBO J., 11, 225–232. PubMed PMC
Wood A.A., Nunn,C.M., Czarny,A., Boykin,D.W. and Neidle,S. (1995) Variability in DNA minor groove width recognized by ligand binding: the crystal structure of a bis-benzimidazole compound bound to the DNA duplex d(CGCGAATTCGCG)(2). Nucleic Acids Res., 23, 3678–3684. PubMed PMC
Chen X., Ramakrishnan,B. and Sundaralingam,M. (1997) Crystal structures of the side-by-side binding of distamycin to AT-containing DNA octamers d(ICITACIC) and d(ICATATIC). J. Mol. Biol., 267, 1157–1170. PubMed
Chen X., Ramakrishnan,B. and Sundaralingam,M. (1995) Crystal structures of B-form DNA-RNA chimers complexed with distamycin. Nature Struct. Biol., 2, 733–735. PubMed
Schneider B., Neidle,S. and Berman,H.M. (1997) Conformations of the sugar-phosphate backbone in helical DNA crystal structures. Biopolymers, 42, 113–124. PubMed
Automatic workflow for the classification of local DNA conformations