Prospecting microbiota of Adriatic fish: Bacillus velezensis as a potential probiotic candidate
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
10045161
Interreg Italy-Croatia
10045161
Interreg Italy-Croatia
10045161
Interreg Italy-Croatia
NNF19SA0059360
Novo Nordisk Fonden
NNF19SA0059360
Novo Nordisk Fonden
DNRF137
Danmarks Grundforskningsfond
DNRF137
Danmarks Grundforskningsfond
PubMed
40517265
PubMed Central
PMC12167591
DOI
10.1186/s42523-025-00429-5
PII: 10.1186/s42523-025-00429-5
Knihovny.cz E-resources
- Keywords
- Bacillus velezensis, Dicentrarchus labrax, Sparus aurata, Aquaculture, Probiotics, Whole genome sequencing,
- Publication type
- Journal Article MeSH
BACKGROUND: Aquaculture is one of the fastest growing sectors of food production and covers more than half of the market demand for fish and fishery products. However, aquaculture itself faces numerous challenges, such as infectious disease outbreaks, which are one of the limiting factors for the growth and environmental sustainability of modern aquaculture. Understanding the composition and diversity of the gut microbiota of fish is important to elucidate its role in host health and aquaculture management. In addition, the gut microbiota represents a valuable source of bacteria with probiotic potential for farmed fish. RESULTS: In this study, we analysed the intestinal microbiota of two economically important fish species, the European seabass (Dicentrarchus labrax) and the gilthead seabream (Sparus aurata), using 16S rRNA gene amplicon sequencing. The taxonomic analysis identified 462 amplicon sequence variants at a similarity level of 99 and showed similar alpha diversity indices between seabass and gilthead seabream. Beta diversity analysis showed no significant differentiation in gut microbiota between fish species or aquaculture sites. Among the culturable isolates, a high proportion of Photobacterium damselae and Bacillus spp. was detected. We selected a single Bacillus velezensis isolate and further characterised its biosynthetic potential by performing whole genome sequencing. Its genome contains biosynthetic gene clusters for most of the common secondary metabolites typical of B. velezensis. Antibiotic susceptibility testing showed the sensitivity of the selected isolates to several antibiotics according to EFSA recommendations. Furthermore, stimulation of peripheral blood leukocytes (PBL) with B. velezensis resulted in a strong pro-inflammatory response, with a pronounced upregulation of cytokines il1b, il6, tnfa and il10 observed over time. CONCLUSIONS: Overall, this study provides an insight into the composition of the intestinal microbiota and the diversity of culturable intestinal bacteria of two economically most important fish species from Adriatic cage culture and sheds light on the autochthonous intestinal B. velezensis as a promising probiotic candidate for Mediterranean aquaculture.
Department of Marine Studies University of Split Split Croatia
DTU Bioengineering Technical University of Denmark Kgs Lyngby Denmark
Faculty of Science University of Split Split Croatia
Institute for Marine and Antarctic Studies University of Tasmania Hobart TAS Australia
Institute of Biology Leiden University Leiden The Netherlands
Institute of Oceanography and Fisheries Split Croatia
Institute of Parasitology BC CAS Česke Budêjovice Czech Republic
See more in PubMed
FAO. In brief to the state of world fisheries and aqauculture 2024. Blue Transformation in Action. Nat. Resour. Rome; 2024.
FEAP. European Aquaculture Production Report 2016–20222. FEAP Prod. Rep. 2023. Available from: https://feap.info/wp-content/uploads/2020/10/20201007_feap-production-report-2020.pdf
Hellenic Aquaculture Producers Organisation (HAPO). Aquaculture in Greece - Annual report 2023. 2023;1–52. Available from: https://fishfromgreece.com/wp-content/uploads/2023/10/HAPO_AR23_WEB-NEW.pdf
Mladineo I, Bušelić I, Hrabar J, Radonić I, Vrbatović A, Jozić S, et al. Autochthonous bacterial isolates successfully stimulate PubMed PMC
Maldonado-Miranda JJ, Castillo-Pérez LJ, Ponce-Hernández A, Carranza-Álvarez C. Summary of economic losses due to bacterial pathogens in aquaculture industry. In: Dar HG, Bhat RA, Qadri H, Al-Ghamdy KM, Hakeem KR, editors. Bact Fish Dis. Academic Press; 2022. p. 399–417.
The World Bank. Reducing disease risk in aquaculture. World Bank Agric Environ Serv. 2014;119. Available from: http://documents.worldbank.org/curated/en/110681468054563438/Reducing-disease-risk-in-aquaculture
Ahmed N, Turchini GM. Recirculating aquaculture systems (RAS): environmental solution and climate change adaptation. J Clean Prod. 2021;297:126604.
Kubin E, Menna M, Mauri E, Notarstefano G, Mieruch S, Poulain PM. Heat content and temperature trends in the Mediterranean sea as derived from Argo float data. Front Mar Sci. 2023;10:1271638.
Reverter M, Sarter S, Caruso D, Avarre JC, Combe M, Pepey E, et al. Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat Commun. 2020;11:1870. PubMed PMC
Pepi M, Focardi S. Antibiotic-resistant bacteria in aquaculture and climate change: a challenge for health in the Mediterranean area. Int J Environ Res Public Health. 2021;18:5273. PubMed PMC
MacFadden DR, McGough SF, Fisman D, Santillana M, Brownstein JS. Antibiotic resistance increases with local temperature. Nat Clim Chang. 2018;8:510–4. PubMed PMC
Guidetti P, Fanelli G, Fraschetti S, Terlizzi A, Boero F. Coastal fish indicate human-induced changes in the mediterranean littoral. Mar Environ Res. 2002;53:77–94. PubMed
Cascarano MC, Stavrakidis-Zachou O, Mladineo I, Thompson KD, Papandroulakis N, Katharios P. Mediterranean aquaculture in a changing climate: temperature effects on pathogens and diseases of three farmed fish species. Pathogens. 2021;10:1205. PubMed PMC
Toranzo AE, Magariños B, Romalde JL. A review of the main bacterial fish diseases in mariculture systems. Aquaculture. 2005;246:37–61.
Vendramin N, Zrnčić S, Padrós F, Oraić D, Le Breton A, Zarza C, et al. Fish health in mediterranean aquaculture, past mistakes and future challenges. Bull Eur Assoc Fish Pathol. 2016;36:38–45.
Mladineo I, Volpatti D, Beraldo P, Rigos G, Katharios P, Padros F. Monogenean
Daskalov H. The importance of
Semwal A, Kumar A, Kumar N. A review on pathogenicity of PubMed PMC
Rivas AJ, Lemos ML, Osorio CR. PubMed PMC
Hashish E, Merwad A, Elgaml S, Amer A, Kamal H, Elsadek A, et al. PubMed PMC
Jacobs JM, Stine CB, Baya AM, Kent ML. A review of mycobacteriosis in marine fish. J Fish Dis. 2009;32:119–30. PubMed
Sanches-Fernandes GMM, Sá-Correia I, Costa R. Vibriosis outbreaks in aquaculture: addressing environmental and public health concerns and preventive therapies using gilthead seabream farming as a model system. Front Microbiol. 2022;13:904815. PubMed PMC
Hernández-Cabanyero C, Sanjuán E, Mercado L, Amaro C. Evidence that fish death after PubMed
Henriksson PJG, Rico A, Troell M, Klinger DH, Buschmann AH, Saksida S, et al. Unpacking factors influencing antimicrobial use in global aquaculture and their implication for management: a review from a systems perspective. Sustain Sci. 2018;13:1105–20. PubMed PMC
Watts JEM, Schreier HJ, Lanska L, Hale MS. The rising tide of antimicrobial resistance in aquaculture: sources, sinks and solutions. Mar Drugs. 2017;15:158. PubMed PMC
Ibrahim M, Ahmad F, Yaqub B, Ramzan A, Imran A, Afzaal M, et al. Current trends of antimicrobials used in food animals and aquaculture. In: Hashmi MZ, editor. Antibiot Antimicrob Resist Genes Environ Vol 1 Adv Environ Pollut Res Ser. Elsevier; 2020. p. 39–69
Bajagai YS, Klieve A V., Dart PJ, Bryden WL. Probiotics in animal nutrition - production, impact and regulation. Makkar HPS, editor. FAO Anim. Prod. Heal. Pap. No 179. Rome; 2016
Dawood MAO, Koshio S, Abdel-Daim MM, Van Doan H. Probiotic application for sustainable aquaculture. Rev Aquac. 2019;11:907–24.
El-Saadony MT, Alagawany M, Patra AK, Kar I, Tiwari R, Dawood MAO, et al. The functionalyity of probiotics in aquaculture: an overview. Fish Shellfish Immunol. 2021;117:36–52. PubMed
Nayak SK. Probiotics and immunity: a fish perspective. Fish Shellfish Immunol. 2010;29:2–14. PubMed
Thomas CM, Versalovic J. Probiotic-host communication: modulation of host signaling pathways. Gut Microbes. 2010;1:148–63. PubMed PMC
Frouël S, Le Bihan E, Serpentini A, Lebel JM, Koueta N, Nicolas JL. Preliminary study of the effects of commercial lactobacilli preparations on digestive metabolism of juvenile sea bass ( PubMed
Picchietti S, Fausto AM, Randelli E, Carnevali O, Taddei AR, Buonocore F, et al. Early treatment with PubMed
Carnevali O, de Vivo L, Sulpizio R, Gioacchini G, Olivotto I, Silvi S, et al. Growth improvement by probiotic in European sea bass juveniles (
Silvi S, Nardi M, Sulpizio R, Orpianesi C, Caggiano M, Carnevali O, et al. Effect of the addition of
Chouayekh H, Farhat-Khemakhem A, Karray F, Boubaker I, Mhiri N, Ben Abdallah M, et al. Effects of dietary supplementation with PubMed
Monzón-Atienza L, Bravo J, Torrecillas S, Montero D, de Canales AFG, de la Banda IG, et al. Isolation and characterization of a PubMed
Monzón-Atienza L, Bravo J, Fernández-Montero Á, Charlie-Silva I, Montero D, Ramos-Vivas J, et al. Dietary supplementation of PubMed
Rangel F, Monteiro M, Santos RA, Ferreira-Martins D, Cortinhas R, Gasco L, et al. Novel chitinolytic
Carnevali O, Zamponi MC, Sulpizio R, Rollo A, Nardi M, Orpianesi C, et al. Administration of probiotic strain to improve sea bream wellness during development. Aquac Int. 2004;12:377–86.
Suzer C, Çoban D, Kamaci HO, Saka Ş, Firat K, Otgucuoǧlu Ö, et al. Lactobacillus spp bacteria as probiotics in gilthead sea bream (
Salinas I, Cuesta A, Esteban MÁ, Meseguer J. Dietary administration of PubMed
Cordero H, Morcillo P, Meseguer J, Cuesta A, Esteban MÁ. Effects of PubMed
Varela JL, Ruiz-Jarabo I, Vargas-Chacoff L, Arijo S, León-Rubio JM, García-Millán I, et al. Dietary administration of probiotic Pdp11 promotes growth and improves stress tolerance to high stocking density in gilthead seabream
Cerezuela R, Guardiola FA, Meseguer J, Esteban MÁ. Increases in immune parameters by inulin and Bacillus subtilis dietary administration to gilthead seabream ( PubMed
Santos RA, Mariz-Ponte N, Martins N, Magalhães R, Jerusik R, Saavedra MJ, et al. In vitro modulation of gilthead seabream ( PubMed
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1. PubMed PMC
Estaki M, Jiang L, Bokulich NA, McDonald D, González A, Kosciolek T, et al. QIIME 2 enables comprehensive end-to-end analysis of diverse microbiome data and comparative studies with publicly available data. Curr Protoc Bioinforma. 2020;70:e100. PubMed PMC
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. PubMed PMC
Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:90. PubMed PMC
R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.
McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217. PubMed PMC
Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol. 1997;63:3233–41. PubMed PMC
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9. PubMed PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10. PubMed
Caulier S, Nannan C, Gillis A, Licciardi F, Bragard C, Mahillon J. Overview of the antimicrobial compounds produced by members of the PubMed PMC
Tachibana L, Telli GS, de Carla DD, Gonçalves GS, Guimarães MC, Ishikawa CM, et al.
Mukherjee A, Chandra G, Ghosh K. Single or conjoint application of autochthonous
Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res Notes. BioMed Central; 2016;9:88 PubMed PMC
Wick RR. Porechop. https://github.com/rrwick/Porechop. 2017.
Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13:e1005595. PubMed PMC
Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics. 2015;31:3350–2. PubMed PMC
Waterhouse RM, Seppey M, Simao FA, Manni M, Ioannidis P, Klioutchnikov G, et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol. 2018;35:543–8. PubMed PMC
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55. PubMed PMC
Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. AntiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47:W81–7. PubMed PMC
EUCAST. Breakpoint tables for interpretation of MICs and zone diameters. [cited 2023 Oct 6]. Available from: http://www.eucast.org
EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed), Rychen G, Aqulina G, Azimoti G, Bampidis V, Bastos ML, et al. Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA J. 2018;16:5206 PubMed PMC
Attaya A, Jiang Y, Secombes CJ, Wang T. Distinct response of immune gene expression in peripheral blood leucocytes modulated by bacterin vaccine candidates in rainbow trout PubMed
Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol Lett. 2004;26:509–15. PubMed
Piazzon MC, Mladineo I, Dirks RP, Yebra-Pimentel ES, Hrabar J, Sitjà-Bobadilla A. PubMed PMC
Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. New York: Springer-Verlag; 2016.
Lahti L, Shetty S. Tools for microbiome analysis in R. 2017. Available from: https://microbiome.github.io/tutorials/
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. PubMed PMC
Phipson B, Lee S, Majewski IJ, Alexander WS, Smyth G. Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Ann Appl Stat. 2016;10:946–63. PubMed PMC
Song L, Nielsen LJD, Xu X, Mohite OS, Nuhamunada M, Xu Z, et al. Expanding the genome information on PubMed PMC
Kiesewalter HT, Lozano-Andrade CN, Maróti G, Snyder D, Cooper VS, Jørgensen TS, et al. Complete genome sequences of 13 PubMed PMC
Wanka KM, Damerau T, Costas B, Krueger A, Schulz C, Wuertz S. Isolation and characterization of native probiotics for fish farming. BMC Microbiol. 2018;18:119. PubMed PMC
Hasan KN, Banerjee G. Recent studies on probiotics as beneficial mediator in aquaculture: a review. J Basic Appl Zool. 2020;81:53.
Huang Q, Sham RC, Deng Y, Mao Y, Wang C, Zhang T, et al. Diversity of gut microbiomes in marine fishes is shaped by host-related factors. Mol Ecol. 2020;29:5019–34. PubMed PMC
Moschos S, Kormas KA, Karayanni H. Prokaryotic diversity in marine and freshwater recirculating aquaculture systems. Rev Aquac. 2022;14:1861–86.
Pamanji R, Selvin J. Marine fish microbiome: current status and future perspectives. In: Sony R, Suyal DC, Morales-Oyervides L, Fouillad M, editors. Curr Status Mar Water Microbiol. 1st ed. Singapore: Springer Singapore; 2023. p. 461–80.
Brown RM, Wiens GD, Salinas I. Analysis of the gut and gill microbiome of resistant and susceptible lines of rainbow trout ( PubMed PMC
Serra CR, Oliva-Teles A, Enes P, Tavares F. Gut microbiota dynamics in carnivorous European seabass ( PubMed PMC
Blandford MI, Taylor-Brown A, Schlacher TA, Nowak B, Polkinghorne A. Epitheliocystis in fish: an emerging aquaculture disease with a global impact. Transbound Emerg Dis. 2018;65:1436–46. PubMed
Binda C, Lopetuso LR, Rizzatti G, Gibiino G, Cennamo V, Gasbarrini A. Actinobacteria: a relevant minority for the maintenance of gut homeostasis. Dig Liver Dis. 2018;50:421–8. PubMed
Tarnecki AM, Burgos FA, Ray CL, Arias CR. Fish intestinal microbiome: diversity and symbiosis unraveled by metagenomics. J Appl Microbiol. 2017;123:2–17. PubMed
Ringø E, Zhou Z, Vecino JLG, Wadsworth S, Romero J, Krogdahl A, et al. Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story? Aquac Nutr. 2016;22:219–82.
Nikouli E, Meziti A, Smeti E, Antonopoulou E, Mente E, Kormas KA. Gut microbiota of five sympatrically farmed marine fish species in the Aegean Sea. Microb Ecol. 2020;81:14–6. PubMed
Hai Q, Wang J, Kang W, Cheng S, Li J, Lyu N, et al. Metagenomic and metabolomic analysis of changes in intestinal contents of rainbow trout ( PubMed PMC
Kim PS, Shin NR, Lee JB, Kim MS, Whon TW, Hyun DW, et al. Host habitat is the major determinant of the gut microbiome of fish. Microbiome. 2021;9:166. PubMed PMC
Pan B, Han X, Yu K, Sun H, Mu R, Lian C-A. Geographical distance, host evolutionary history and diet drive gut microbiome diversity of fish across the Yellow River. Mol Ecol. 2023;32:1183–96. PubMed
Ruiz-Rodríguez M, Scheifler M, Sanchez-Brosseau S, Magnanou E, West N, Suzuki M, et al. Host species and body site explain the variation in the microbiota associated to wild sympatric Mediterranean teleost fishes. Microb Ecol Microbial Ecology. 2020;80:212–22. PubMed
Gauthier G, Lafay B, Ruimy R, Breittmayer V, Nicolas JL, Gauthier M, et al. Small-subunit rRNA sequences and whole DNA relatedness concur for the reassignment of PubMed
Větrovsky T, Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE. 2013;8:e57923. PubMed PMC
Abellan-Schneyder I, Matchado MS, Reitmeier S, Sommer A, Sewald Z, Baumbach J, et al. Primer, pipelines, parameters: issues in 16S rRNA gene sequencing. mSphere. 2021;6:e01202-e1220. PubMed PMC
Rajan PR, Lin JHY, Ho MS, Yang HL. Simple and rapid detection of PubMed
Essam HM, Abdellrazeq GS, Tayel SI, Torky HA, Fadel AH. Pathogenesis of PubMed
Romalde JL. PubMed
Baptista T, Romalde JL, Toranzo AE. First occurrence of pasteurellosis in Portugal affecting cultured gilthead seabream (
Vera P, Navas JI, Fouz B. First isolation of
Magariños B, Romalde JL, Bandín I, Fouz B, Toranzo AE. Phenotypic, antigenic, and molecular characterization of PubMed PMC
Labella A, Sanchez-Montes N, Berber C, Aparicio M, Castro D, Manchado M, et al. Toxicity of PubMed
Eissa AE, Abou-Okada M, Alkurdi ARM, El Zlitne RA, Prince A, Abdelsalam M, et al. Catastrophic mass mortalities caused by
Magariños B, Couso N, Noya M, Merino P, Toranzo AE, Lamas J. Effect of temperature on the development of pasteurellosis in carrier gilthead seabream (
Matanza XM, Osorio CR. Transcriptome changes in response to temperature in the fish pathogen PubMed PMC
Korun J, Timur G. The first pasterurellosis case in cultrued sea bass (
Guimarães D, Ribeiro L, Vieira L, Coelho R. Necrotizing fasciitis caused by PubMed
Hayano S, Masaki T, Tadakuma R, Kashima M. PubMed PMC
Feliatra F, Batubara UM, Nurulita Y, Lukistyowati I, Setiaji J. The potentials of secondary metabolites from PubMed
Yun L, Kang M, Shen Y, Feng J, Yang G, Zhang J, et al. Dietary PubMed
Touraki M, Frydas I, Karamanlidou G, Mamara A. Partial purification and characterization of a bacteriocin produced by
Büyükdeveci EM, Cengizler I, Balcázar JL, Demirkale I. Effects of two host-associated probiotics PubMed
Wu PS, Liu CH, Hu SY. Probiotic PubMed PMC
Abarike ED, Cai J, Lu Y, Yu H, Chen L, Jian J, et al. Effects of a commercial probiotic BS containing PubMed
Selim KM, Reda RM. Improvement of immunity and disease resistance in the Nile tilapia, PubMed
Guo Q, Dong W, Li S, Lu X, Wang P, Zhang X, et al. Fengycin produced by PubMed
Moyne AL, Shelby R, Cleveland TE, Tuzun S. Bacillomycin D: an iturin with antifungal activity against PubMed
Romero D, De Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, et al. The iturin and fengycin families of lipopeptides are key factors in antagonism of PubMed
Ongena M, Jacques P. PubMed
Kenig M, Vandamme E, Abraham EP. The mode of action of bacilysin and anticapsin and biochemical properties of bacilysin-resistant mutants. J Gen Microbiol. 1976;94:46–54. PubMed
Lu XL, Xu QZ, Shen YH, Liu XY, Jiao BH, Zhang WD, et al. Macrolactin S, a novel macrolactin antibiotic from marine PubMed
Mojid Mondol MA, Kim JH, Lee HS, Lee YJ, Shin HJ. Macrolactin W, a new antibacterial macrolide from a marine PubMed
Patel PS, Huang S, Fisher S, Pirnik D, Aklonis C, Dean L, et al. Bacillaene, a novel inhibitor of procaryotic protein synthesis produced by PubMed
Romero-Tabarez M, Jansen R, Sylla M, Lünsdorf H, Häußler S, Santosa DA, et al. 7-O-malonyl macrolactin A, a new macrolactin antibiotic from PubMed PMC
Zimmerman SB, Schwartz CD, Monaghan RL, Pelak BA, Weissberger B, Gilfillan E, et al. Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by PubMed
May JJ, Wendrich TM, Marahiel MA. The dhb operon of PubMed
Jacques P. Surfactin and other Lipopeptides from
Adeniji AA, Loots DT, Babalola OO. PubMed
Fazle Rabbee M, Baek KH. Antimicrobial activities of lipopeptides and polyketides of PubMed PMC
Jang S, Choi SK, Zhang H, Zhang S, Ryu CM, Kloepper JW. History of a model plant growth-promoting rhizobacterium, PubMed PMC
Wang S-Y, Herrera-Balandrano DD, Wang Y-X, Shi X-C, Chen X, Jin Y, et al. Biocontrol ability of the PubMed
Sam-on MFS, Mustafa S, Mohd Hashim A, Yusof MT, Zulkifly S, Malek AZA, et al. Mining the genome of PubMed
Sam-on MFS, Mustafa S, Hashim AM, Yusof MT, Zulkifly S, Roslan MAH. Determination of prebiotic utilisation capability of potential probiotic
Zhang D, Gao Y, Ke X, Yi M, Liu Z, Han X, et al. PubMed
Yi Y, Zhang Z, Zhao F, Liu H, Yu L, Zha J, et al. Probiotic potential of PubMed
Gao XY, Liu Y, Miao LL, Li EW, Sun GX, Liu Y, et al. Characterization and mechanism of anti- PubMed
Li J, Wu ZB, Zhang Z, Zha JW, Qu SY, Qi XZ, et al. Effects of potential probiotic PubMed
Salinas I, Abelli L, Bertoni F, Picchietti S, Roque A, Furones D, et al. Monospecies and multispecies probiotic formulations produce different systemic and local immunostimulatory effects in the gilthead seabream ( PubMed
Hu Y, Maisey K, Subramani PA, Liu F, Flores-Kossack C, Imarai M, et al. Characterisation of rainbow trout peripheral blood leucocytes prepared by hypotonic lysis of erythrocytes, and analysis of their phagocytic activity, proliferation and response to PAMPs and proinflammatory cytokines. Dev Comp Immunol Pergamon. 2018;88:104–13. PubMed
Zou J, Secombes CJ. The function of fish cytokines. Biology (Basel). 2016;5:23. PubMed PMC
Zhu L yun, Nie L, Zhu G, Xiang L xing, Shao J zhong. Advances in research of fish immune-relevant genes: A comparative overview of innate and adaptive immunity in teleosts. Dev Comp Immunol. 2013;39:39–62. PubMed
Zou J, Peddie S, Scapigliati G, Zhang Y, Bols NC, Ellis AE, et al. Functional characterisation of the recombinant tumor necrosis factors in rainbow trout, PubMed
García-Castillo J, Chaves-Pozo E, Olivares P, Pelegrin P, Meseguer J, Mulero V. The tumor necrosis factor α of the bony fish seabream exhibits the in vivo proinflammatory and proliferative activities of its mammalian counterparts, yet it functions in a species-specific manner. Cell Mol Life Sci. 2004;61:1331–40. PubMed PMC
Grayfer L, Walsh JG, Belosevic M. Characterization and functional analysis of goldfish ( PubMed
Forlenza M, Fink IR, Raes G, Wiegertjes GF. Heterogeneity of macrophage activation in fish. Dev Comp Immunol. 2011;35:1246–55. PubMed
Kim WL, Kim MS, Kim KH. Molecular cloning of rock bream’s ( PubMed
Zhang A, Chen D, Wei H, Du L, Zhao T, Wang X, et al. Functional characterization of TNF-α in grass carp head kidney leukocytes: induction and involvement in the regulation of NF-κB signaling. Fish Shellfish Immunol. 2012;33:1123–32. PubMed
Zhang J, Kong X, Zhou C, Li L, Nie G, Li X. Toll-like receptor recognition of bacteria in fish: Ligand specificity and signal pathways. Fish Shellfish Immunol. 2014;41:380–8. PubMed
Buonocore F, Mazzini M, Forlenza M, Randelli E, Secombes CJ, Zou J, et al. Expression in PubMed
Hong S, Zou J, Crampe M, Peddie S, Scapigliati G, Bols N, et al. The production and bioactivity of rainbow trout ( PubMed
Scapigliati G, Buonocore F, Bird S, Zou J, Pelegrin P, Falasca C, et al. Phylogeny of cytokines: molecular cloning and expression analysis of sea bass PubMed
Hong S, Zou J, Collet B, Bols NC, Secombes CJ. Analysis and characterisation of IL-1β processing in rainbow trout, PubMed
Pelegrín P, Chaves-Pozo E, Mulero V, Meseguer J. Production and mechanism of secretion of interleukin-1β from the marine fish gilthead seabream. Dev Comp Immunol. 2004;28:229–37. PubMed
Dinarello CA. Interleukin-1 and interleukin-1 antagonism. Blood. 1991;77:1627–52. PubMed
Kaneda M, Odaka T, Suetake H, Tahara D, Miyadai T. Teleost IL-6 promotes antibody production through STAT3 signaling via IL-6R and gp130. Dev Comp Immunol. 2012;38:224–31. PubMed
Varela M, Dios S, Novoa B, Figueras A. Characterisation, expression and ontogeny of interleukin-6 and its receptors in zebrafish ( PubMed
Castellana B, Iliev DB, Sepulcre MP, MacKenzie S, Goetz FW, Mulero V, et al. Molecular characterization of interleukin-6 in the gilthead seabream ( PubMed
Chen HH, Lin HT, Foung YF, Han-You LJ. The bioactivity of teleost IL-6: IL-6 protein in orange-spotted grouper ( PubMed
Zhu K, Lu XJ, Jian-Fei L, Chen J. The interleukin-6 regulates the function of monocytes/macrophages (MO/MФ) via the interleukin-6 receptor β in ayu ( PubMed
Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801. PubMed
Wang KL, Ji W, Zhang GR, Wei KJ, Shi ZC, Zhang XT, et al. Molecular characterization and expression analysis of three TLR genes in yellow catfish ( PubMed