Mediterranean Aquaculture in a Changing Climate: Temperature Effects on Pathogens and Diseases of Three Farmed Fish Species
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
677039
H2020 Societal Challenges
PubMed
34578236
PubMed Central
PMC8466566
DOI
10.3390/pathogens10091205
PII: pathogens10091205
Knihovny.cz E-resources
- Keywords
- Mediterranean Sea, climate change, fish diseases, meagre, seabass, seabream,
- Publication type
- Journal Article MeSH
- Review MeSH
Climate change is expected to have a drastic effect on aquaculture worldwide. As we move forward with the agenda to increase and diversify aquaculture production, rising temperatures will have a progressively relevant impact on fish farming, linked to a multitude of issues associated with fish welfare. Temperature affects the physiology of both fish and pathogens, and has the potential to lead to significant increases in disease outbreaks within aquaculture systems, resulting in severe financial impacts. Significant shifts in future temperature regimes are projected for the Mediterranean Sea. We therefore aim to review and discuss the existing knowledge relating to disease outbreaks in the context of climate change in Mediterranean finfish aquaculture. The objective is to describe the effects of temperature on the physiology of both fish and pathogens, and moreover to list and discuss the principal diseases of the three main fish species farmed in the Mediterranean, namely gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax), and meagre (Argyrosomus regius). We will attempt to link the pathology of each disease to a specific temperature range, while discussing potential future disease threats associated with the available climate change trends for the Mediterranean Sea.
See more in PubMed
FEAP . European Aquaculture Production Report 2014–2019. FEAP; Brussels, Belgium: 2020.
Federation of Greek Mariculture . Aquaculture in Greece. Federation of Greek Mariculture; Athens, Greece: 2019. Annual Report.
Seth-Smith H.M.B., Dourala N., Fehr A., Qi W., Katharios P., Ruetten M., Mateos J.M., Nufer L., Weilenmann R., Ziegler U., et al. Emerging pathogens of gilthead seabream: Characterisation and genomic analysis of novel intracellular β-proteobacteria. ISME J. 2016;10:1791–1803. doi: 10.1038/ismej.2015.223. PubMed DOI PMC
Bondad-Reantaso M., Subasinghe R. Aquaculture development, health and wealth; Proceedings of the Aquaculture in the Third Millennium; Bangkok, Thailand. 20–25 February 2000; pp. 167–191.
Meyer F.P. Aquaculture disease and health management. J. Anim. Sci. 1991;69:4201–4208. doi: 10.2527/1991.69104201x. PubMed DOI
Conte F.S. Stress and the welfare of cultured fish. Appl. Anim. Behav. Sci. 2004;86:205–223. doi: 10.1016/j.applanim.2004.02.003. DOI
Wedemeyer G.A. Fish, Stress and Health in Aquaculture. Academic Press; Cambridge, MA, USA: 1997. Effects of rearing conditions on the health and physiological quality of fish in intensive culture; pp. 35–71.
Hastein T., Hjeltnes B., Lillehaug A., Utne Skare J., Berntssen M., Lundebye A.K. Food safety hazards that occur during the production stage: Challenges for fish farming and the fishing industry. Rev. Sci. Tech. 2006;25:607–625. doi: 10.20506/rst.25.2.1678. PubMed DOI
Dos Santos C.A.M.L., Howgate P. Fishborne zoonotic parasites and aquaculture: A review. Aquaculture. 2011;318:253–261. doi: 10.1016/j.aquaculture.2011.05.046. DOI
Gauthier D.T. Bacterial zoonoses of fishes: A review and appraisal of evidence for linkages between fish and human infections. Vet. J. 2015;203:27–35. doi: 10.1016/j.tvjl.2014.10.028. PubMed DOI
Rivas A.J., Lemos M.L., Osorio C.R. Photobacterium damselae subsp. damselae, a bacterium pathogenic for marine animals and humans. Front. Microbiol. 2013;4:283. doi: 10.3389/fmicb.2013.00283. PubMed DOI PMC
Gauthier D.T., Rhodes M.W. Mycobacteriosis in fishes: A review. Vet. J. 2009;180:33–47. doi: 10.1016/j.tvjl.2008.05.012. PubMed DOI
Rigos G., Troisi G.M. Antibacterial agents in Mediterranean finfish farming: A synopsis of drug pharmacokinetics in important euryhaline fish species and possible environmental implications. Rev. Fish Biol. Fish. 2005;15:53–73. doi: 10.1007/s11160-005-7850-8. DOI
Rigos G., Kogiannou D., Padrós F., Cristòfol C., Florio D., Fioravanti M., Zarza C. Best therapeutic practices for the use of antibacterial agents in finfish aquaculture: A particular view on European seabass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata) in Mediterranean aquaculture. Rev. Aquac. 2020;13:1285–1323. doi: 10.1111/raq.12523. DOI
Cabello F.C. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environ. Microbiol. 2006;8:1137–1144. doi: 10.1111/j.1462-2920.2006.01054.x. PubMed DOI
Smith P. Antimicrobial resistance in aquaculture. Rev. Sci. Tech. 2008;27:243. doi: 10.20506/rst.27.1.1799. PubMed DOI
Santos L., Ramos F. Antimicrobial resistance in aquaculture: Current knowledge and alternatives to tackle the problem. Int. J. Antimicrob. Agents. 2018;52:135–143. doi: 10.1016/j.ijantimicag.2018.03.010. PubMed DOI
Watts J.E.M., Schreier H.J., Lanska L., Hale M.S. The rising tide of antimicrobial resistance in aquaculture: Sources, sinks and solutions. Mar. Drugs. 2017;15:158. doi: 10.3390/md15060158. PubMed DOI PMC
Heuer O.E., Kruse H., Grave K., Collignon P., Karunasagar I., Angulo F.J. Human health consequences of use of antimicrobial agents in aquaculture. Clin. Infect. Dis. 2009;49:1248–1253. doi: 10.1086/605667. PubMed DOI
Rosa R., Marques A., Nunes M.L. Impact of climate change in Mediterranean aquaculture. Rev. Aquac. 2012;4:163–177. doi: 10.1111/j.1753-5131.2012.01071.x. DOI
Marras S., Cucco A., Antognarelli F., Azzurro E., Milazzo M., Bariche M., Butenschön M., Kay S., Di Bitetto M., Quattrocchi G. Predicting future thermal habitat suitability of competing native and invasive fish species: From metabolic scope to oceanographic modelling. Conserv. Physiol. 2015;3:cou059. doi: 10.1093/conphys/cou059. PubMed DOI PMC
Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M. 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change. Cambridge University Press; Cambridge, UK: New York, NY, USA: 2013.
Perkins S.E., Alexander L.V., Nairn J.R. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 2012;39:L20714. doi: 10.1029/2012GL053361. DOI
Azzurro E., Sbragaglia V., Cerri J., Bariche M., Bolognini L., Ben Souissi J., Busoni G., Coco S., Chryssanthi A., Fanelli E. Climate change, biological invasions, and the shifting distribution of Mediterranean fishes: A large-scale survey based on local ecological knowledge. Glob. Chang. Biol. 2019;25:2779–2792. doi: 10.1111/gcb.14670. PubMed DOI
Belkin I.M. Rapid warming of large marine ecosystems. Prog. Oceanogr. 2009;81:207–213. doi: 10.1016/j.pocean.2009.04.011. DOI
Oliver E.C.J., Donat M.G., Burrows M.T., Moore P.J., Smale D.A., Alexander L.V., Benthuysen J.A., Feng M., Gupta A.S., Hobday A.J. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 2018;9:1324. doi: 10.1038/s41467-018-03732-9. PubMed DOI PMC
Van Vuuren D.P., Edmonds J., Kainuma M., Riahi K., Thomson A., Hibbard K., Hurtt G.C., Kram T., Krey V., Lamarque J.-F. The representative concentration pathways: An overview. Clim. Chang. 2011;109:5. doi: 10.1007/s10584-011-0148-z. DOI
Lotze H.K., Tittensor D.P., Bryndum-Buchholz A., Eddy T.D., Cheung W.W.L., Galbraith E.D., Barange M., Barrier N., Bianchi D., Blanchard J.L. Ensemble projections of global ocean animal biomass with climate change. arXiv. 2018467175
Sarà G., Gouhier T.C., Brigolin D., Porporato E.M.D., Mangano M.C., Mirto S., Mazzola A., Pastres R. Predicting shifting sustainability trade-offs in marine finfish aquaculture under climate change. Glob. Chang. Biol. 2018;24:3654–3665. doi: 10.1111/gcb.14296. PubMed DOI
Teske S. Achieving the Paris Climate Agreement Goals. Springer; Berlin/Heidelberg, Germany: 2019.
Macias D., Garcia-Gorriz E., Piroddi C., Stips A. Biogeochemical control of marine productivity in the Mediterranean Sea during the last 50 years. Glob. Biogeochem. Cycles. 2014;28:897–907. doi: 10.1002/2014GB004846. PubMed DOI PMC
Le Traon P.Y., Reppucci A., Alvarez Fanjul E., Aouf L., Behrens A., Belmonte M., Bentamy A., Bertino L., Brando V.E., Kreiner M., et al. From observation to information and users: The Copernicus Marine Service perspective. Front. Mar. Sci. 2019;6:234. doi: 10.3389/fmars.2019.00234. DOI
Falconer L., Hjøllo S.S., Telfer T.C., McAdam B.J., Hermansen Ø., Ytteborg E. The importance of calibrating climate change projections to local conditions at aquaculture sites. Aquaculture. 2020;514:734487. doi: 10.1016/j.aquaculture.2019.734487. DOI
Hawkins E., Osborne T.M., Ho C.K., Challinor A.J. Calibration and bias correction of climate projections for crop modelling: An idealised case study over Europe. Agric. For. Meteorol. 2013;170:19–31. doi: 10.1016/j.agrformet.2012.04.007. DOI
Barredo J.I., Mauri A., Caudullo G., Dosio A. Meteorology and Climatology of the Mediterranean and Black Seas. Springer; Berlin/Heidelberg, Germany: 2019. Assessing shifts of Mediterranean and arid climates under RCP4. 5 and RCP8. 5 climate projections in Europe; pp. 235–251.
Garcias-Bonet N., Arrieta J.M., Duarte C.M., Marbà N. Nitrogen-Fixing bacteria in Mediterranean seagrass (Posidonia oceanica) roots. Aquat. Bot. 2016;131:57–60. doi: 10.1016/j.aquabot.2016.03.002. DOI
Sakalli A. Sea surface temperature change in the Mediterranean Sea under climate change: A linear model for simulation of the sea surface temperature up to 2100. Appl. Ecol. Environ. Res. 2017;15:707–716. doi: 10.15666/aeer/1501_707716. DOI
Adloff F., Somot S., Sevault F., Jordà G., Aznar R., Déqué M., Herrmann M., Marcos M., Dubois C., Padorno E. Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Clim. Dyn. 2015;45:2775–2802. doi: 10.1007/s00382-015-2507-3. DOI
European MSP Platform. [(accessed on 2 September 2021)]. Available online: https://www.msp-platform.eu/projects/med-iamer-integrated-actions-mitigate-environmental-risks-mediterranean-sea.
Hobday A.J., Alexander L.V., Perkins S.E., Smale D.A., Straub S.C., Oliver E.C.J., Benthuysen J.A., Burrows M.T., Donat M.G., Feng M. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 2016;141:227–238. doi: 10.1016/j.pocean.2015.12.014. DOI
Frölicher T.L., Fischer E.M., Gruber N. Marine heatwaves under global warming. Nature. 2018;560:360–364. doi: 10.1038/s41586-018-0383-9. PubMed DOI
Moyle P.B., Cech J.J. Fishes: An Introduction to Ichthyology. Prentice Hall; Hoboken, NJ, USA: 2004.
Little A.G., Loughland I., Seebacher F. What do warming waters mean for fish physiology and fisheries? J. Fish. Biol. 2020;97:328–340. doi: 10.1111/jfb.14402. PubMed DOI
Pörtner H. Climate change and temperature-dependent biogeography: Oxygen limitation of thermal tolerance in animals. Naturwissenschaften. 2001;88:137–146. PubMed
Pörtner H.-O. Climate variations and the physiological basis of temperature dependent biogeography: Systemic to molecular hierarchy of thermal tolerance in animals. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2002;132:739–761. doi: 10.1016/S1095-6433(02)00045-4. PubMed DOI
Johansson D., Juell J.-E., Oppedal F., Stiansen J.-E., Ruohonen K. The influence of the pycnocline and cage resistance on current flow, oxygen flux and swimming behaviour of Atlantic salmon (Salmo salar L.) in production cages. Aquaculture. 2007;265:271–287. doi: 10.1016/j.aquaculture.2006.12.047. DOI
Sundh H., Kvamme B.O., Fridell F., Olsen R.E., Ellis T., Taranger G.L., Sundell K. Intestinal barrier function of Atlantic salmon (Salmo salar L.) post smolts is reduced by common sea cage environments and suggested as a possible physiological welfare indicator. BMC Physiol. 2010;10:22. doi: 10.1186/1472-6793-10-22. PubMed DOI PMC
Rombough P.J. Global Warming: Implication of Fresh Water and Marine Fish. Volume 61. Cambridge University Press; Cambridge, UK: 1997. The effects of temperature on embryonic and larval development; pp. 177–224.
Blaxter J.H.S. The effect of temperature on larval fishes. Neth. J. Zool. 1991;42:336–357. doi: 10.1163/156854291X00379. DOI
Jobling M. Global Warming: Implication of Fresh Water and Marine Fish. Volume 61. Cambridge University Press; Cambridge, UK: 1997. Temperature and growth: Modulation of growth rate via temperature change; pp. 225–254.
Pankhurst N. Temperature effects on the reproductive performance of fish. Glob. Warm. Implic. Freshw. Mar. Fish. 1997;61:159.
Le Morvan C., Troutaud D., Deschaux P. Differential effects of temperature on specific and nonspecific immune defences in fish. J. Exp. Biol. 1998;201:165–168. doi: 10.1242/jeb.201.2.165. PubMed DOI
Peterson M.E., Daniel R.M., Danson M.J., Eisenthal R. The dependence of enzyme activity on temperature: Determination and validation of parameters. Biochem. J. 2007;402:331–337. doi: 10.1042/BJ20061143. PubMed DOI PMC
Farkas T., Fodor E., Kitajka K., Halver J.E. Response of fish membranes to environmental temperature. Aquac. Res. 2001;32:645–655. doi: 10.1046/j.1365-2109.2001.00600.x. DOI
Sandersfeld T., Davison W., Lamare M.D., Knust R., Richter C. Elevated temperature causes metabolic trade-offs at the whole-organism level in the Antarctic fish Trematomus bernacchii. J. Exp. Biol. 2015;218:2373–2381. doi: 10.1242/jeb.122804. PubMed DOI
Banerjee G., Ray A.K. The effect of seasonal temperature on endogenous gut enzyme activity in four air-breathing fish species. Croat. J. Fish. 2018;76:60–65. doi: 10.2478/cjf-2018-0007. DOI
Enders E.C., Boisclair D. Effects of environmental fluctuations on fish metabolism: Atlantic salmon Salmo salar as a case study. J. Fish. Biol. 2016;88:344–358. doi: 10.1111/jfb.12786. PubMed DOI
Korte S.M., Olivier B., Koolhaas J.M. A new animal welfare concept based on allostasis. Physiol. Behav. 2007;92:422–428. doi: 10.1016/j.physbeh.2006.10.018. PubMed DOI
Pörtner H.-O., Bock C., Mark F.C. Oxygen-and capacity-limited thermal tolerance: Bridging ecology and physiology. J. Exp. Biol. 2017;220:2685–2696. doi: 10.1242/jeb.134585. PubMed DOI
Pörtner H.O., Knust R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science. 2007;315:95–97. doi: 10.1126/science.1135471. PubMed DOI
Iwama G.K., Vijayan M.M., Forsyth R.B., Ackerman P.A. Heat shock proteins and physiological stress in fish. Am. Zool. 1999;39:901–909. doi: 10.1093/icb/39.6.901. DOI
Iwama G.K., Thomas P.T., Forsyth R.B., Vijayan M.M. Heat shock protein expression in fish. Rev. Fish. Biol. Fish. 1998;8:35–56. doi: 10.1023/A:1008812500650. DOI
Madeira D., Narciso L., Cabral H.N., Vinagre C., Diniz M.S. Influence of temperature in thermal and oxidative stress responses in estuarine fish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2013;166:237–243. doi: 10.1016/j.cbpa.2013.06.008. PubMed DOI
Vinagre C., Madeira D., Narciso L., Cabral H.N., Diniz M. Effect of temperature on oxidative stress in fish: Lipid peroxidation and catalase activity in the muscle of juvenile seabass, Dicentrarchus labrax. Ecol. Indic. 2012;23:274–279. doi: 10.1016/j.ecolind.2012.04.009. DOI
Almeida J.R., Gravato C., Guilhermino L. Effects of temperature in juvenile seabass (Dicentrarchus labrax L.) biomarker responses and behaviour: Implications for environmental monitoring. Estuaries Coasts. 2015;38:45–55. doi: 10.1007/s12237-014-9792-7. DOI
Oomen R.A., Hutchings J.A. Transcriptomic responses to environmental change in fishes: Insights from RNA sequencing. Facets. 2017;2:610–641. doi: 10.1139/facets-2017-0015. DOI
Logan C.A., Buckley B.A. Transcriptomic responses to environmental temperature in eurythermal and stenothermal fishes. J. Exp. Biol. 2015;218:1915–1924. doi: 10.1242/jeb.114397. PubMed DOI
Padilla D.K., Adolph S.C. Plastic inducible morphologies are not always adaptive: The importance of time delays in a stochastic environment. Evol. Ecol. 1996;10:105–117. doi: 10.1007/BF01239351. DOI
Deans C., Maggert K.A. What do you mean, “epigenetic”? Genetics. 2015;199:887–896. doi: 10.1534/genetics.114.173492. PubMed DOI PMC
Mousseau T.A., Fox C.W. The adaptive significance of maternal effects. Trends Ecol. Evol. 1998;13:403–407. doi: 10.1016/S0169-5347(98)01472-4. PubMed DOI
van Straalen N.M., Feder M.E. Ecological and evolutionary functional genomics. How can it contribute to the risk assessment of chemicals? Environ. Sci. Technol. 2012;46:3–9. doi: 10.1021/es2034153. PubMed DOI
Hoffmann A.A., Sgro C.M. Climate change and evolutionary adaptation. Nature. 2011;470:479–485. doi: 10.1038/nature09670. PubMed DOI
Norman J.D., Ferguson M.M., Danzmann R.G. Transcriptomics of salinity tolerance capacity in Arctic charr (Salvelinus alpinus): A comparison of gene expression profiles between divergent QTL genotypes. Physiol. Genom. 2014;46:123–137. doi: 10.1152/physiolgenomics.00105.2013. PubMed DOI PMC
Oomen R.A., Hutchings J.A. Genetic variability in reaction norms in fishes. Environ. Rev. 2015;23:353–366. doi: 10.1139/er-2014-0077. DOI
Zhang R., Ludwig A., Zhang C., Tong C., Li G., Tang Y., Peng Z., Zhao K. Local adaptation of Gymnocypris przewalskii (Cyprinidae) on the Tibetan Plateau. Sci. Rep. 2015;5:9780. doi: 10.1038/srep09780. PubMed DOI PMC
Hu P., Liu M., Liu Y., Wang J., Zhang D., Niu H., Jiang S., Wang J., Zhang D., Han B. Transcriptome comparison reveals a genetic network regulating the lower temperature limit in fish. Sci. Rep. 2016;6:28952. doi: 10.1038/srep28952. PubMed DOI PMC
Feidantsis K., Pörtner H.O., Lazou A., Kostoglou B., Michaelidis B. Metabolic and molecular stress responses of the gilthead seabream Sparus aurata during long-term exposure to increasing temperatures. Mar. Biol. 2009;156:797–809. doi: 10.1007/s00227-009-1135-z. DOI
Feidantsis K., Antonopoulou E., Lazou A., Pörtner H.O., Michaelidis B. Seasonal variations of cellular stress response of the gilthead sea bream (Sparus aurata) J. Comp. Physiol. B. 2013;183:625–639. doi: 10.1007/s00360-012-0735-y. PubMed DOI
Feidantsis K., Pörtner H.O., Vlachonikola E., Antonopoulou E., Michaelidis B. Seasonal changes in metabolism and cellular stress phenomena in the gilthead sea bream (Sparus aurata) Physiol. Biochem. Zool. 2018;91:878–895. doi: 10.1086/697170. PubMed DOI
Person-Le Ruyet J., Mahe K., Le Bayon N., Le Delliou H. Effects of temperature on growth and metabolism in a Mediterranean population of European sea bass, Dicentrarchus labrax. Aquaculture. 2004;237:269–280. doi: 10.1016/j.aquaculture.2004.04.021. DOI
Claireaux G., Lagardère J.-P. Influence of temperature, oxygen and salinity on the metabolism of the European sea bass. J. Sea Res. 1999;42:157–168. doi: 10.1016/S1385-1101(99)00019-2. DOI
Islam M.J., Kunzmann A., Bögner M., Meyer A., Thiele R., Slater M.J. Metabolic and molecular stress responses of European seabass, Dicentrarchus labrax at low and high temperature extremes. Ecol. Indic. 2020;112:106118. doi: 10.1016/j.ecolind.2020.106118. DOI
Islam M.J., Slater M.J., Bögner M., Zeytin S., Kunzmann A. Extreme ambient temperature effects in European seabass, Dicentrarchus labrax: Growth performance and hemato-biochemical parameters. Aquaculture. 2020;522:735093. doi: 10.1016/j.aquaculture.2020.735093. DOI
Duncan N.J., Estévez A., Fernández-Palacios H., Gairin I., Hernández-Cruz C.M., Roo J., Schuchardt D., Vallés R. 17—Aquaculture production of meagre (Argyrosomus regius): Hatchery techniques, ongrowing and market. In: Allan G., Burnell G., editors. Advances in Aquaculture Hatchery Technology. Woodhead Publishing; Sawston, UK: 2013. pp. 519–541. (Woodhead Publishing Series in Food Science, Technology and Nutrition).
Kir M., Sunar M.C., Altindag B.C. Thermal tolerance and preferred temperature range of juvenile meagre acclimated to four temperatures. J. Therm. Biol. 2017;65:125–129. doi: 10.1016/j.jtherbio.2017.02.018. PubMed DOI
Antonopoulou E., Chatzigiannidou I., Feidantsis K., Kounna C., Chatzifotis S. Effect of water temperature on cellular stress responses in meagre (Argyrosomus regius) Fish. Physiol. Biochem. 2020;46:1075–1091. doi: 10.1007/s10695-020-00773-0. PubMed DOI
Vargas-Chacoff L., Arjona F.J., Ruiz-Jarabo I., Páscoa I., Gonçalves O., Martín del Río M.P., Mancera J.M. Seasonal variation in osmoregulatory and metabolic parameters in earthen pond-cultured gilthead sea bream Sparus auratus. Aquac. Res. 2009;40:1279–1290. doi: 10.1111/j.1365-2109.2009.02226.x. DOI
Samaras A., Papandroulakis N., Costari M., Pavlidis M. Stress and metabolic indicators in a relatively high (European sea bass, Dicentrarchus labrax) and a low (meagre, Argyrosomus regius) cortisol responsive species, in different water temperatures. Aquac. Res. 2016;47:3501–3515. doi: 10.1111/are.12800. DOI
Pascoli F., Lanzano G.S., Negrato E., Poltronieri C., Trocino A., Radaelli G., Bertotto D. Seasonal effects on hematological and innate immune parameters in sea bass Dicentrarchus labrax. Fish Shellfish Immunol. 2011;31:1081–1087. doi: 10.1016/j.fsi.2011.09.014. PubMed DOI
Planas J., Gutierrez J., Fernandez J., Carrillo M., Canals P. Annual and daily variations of plasma cortisol in sea bass, Dicentrarchus labrax L. Aquaculture. 1990;91:171–178. doi: 10.1016/0044-8486(90)90186-Q. DOI
Fanouraki E., Mylonas C.C., Papandroulakis N., Pavlidis M. Species specificity in the magnitude and duration of the acute stress response in Mediterranean marine fish in culture. Gen. Comp. Endocrinol. 2011;173:313–322. doi: 10.1016/j.ygcen.2011.06.004. PubMed DOI
Pickering A.D., Pottinger T.G. Stress responses and disease resistance in salmonid fish: Effects of chronic elevation of plasma cortisol. Fish. Physiol. Biochem. 1989;7:253–258. doi: 10.1007/BF00004714. PubMed DOI
Pulsford A.L., Lemaire-Gony S., Tomlinson M., Collingwood N., Glynn P.J. Effects of acute stress on the immune system of the dab, Limanda limanda. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 1994;109:129–139. doi: 10.1016/0742-8413(94)00053-D. DOI
Espelid S., Løkken G.B., Steiro K., Bøgwald J. Effects of cortisol and stress on the immune system in Atlantic Salmon (Salmo salar L.) Fish Shellfish Immunol. 1996;6:95–110. doi: 10.1006/fsim.1996.0011. DOI
Wendelaar Bonga S.E. The stress response in fish. Physiol. Rev. 1997;77:591–625. doi: 10.1152/physrev.1997.77.3.591. PubMed DOI
Bly J.E., Clem L.W. Temperature and teleost immune functions. Fish Shellfish Immunol. 1992;2:159–171. doi: 10.1016/S1050-4648(05)80056-7. DOI
Magnadóttir B. Innate immunity of fish (overview) Fish Shellfish Immunol. 2006;20:137–151. doi: 10.1016/j.fsi.2004.09.006. PubMed DOI
Magnadottir B. Immunological control of fish diseases. Mar. Biotechnol. 2010;12:361–379. doi: 10.1007/s10126-010-9279-x. PubMed DOI
Abram Q.H., Dixon B., Katzenback B.A. Impacts of low temperature on the teleost immune system. Biology. 2017;6:39. doi: 10.3390/biology6040039. PubMed DOI PMC
Larsen A.K., Nymo I.H., Sørensen K.K., Seppola M., Rødven R., Jiménez de Bagüés M.P., Al Dahouk S., Godfroid J. Concomitant temperature stress and immune activation may increase mortality despite efficient clearance of an intracellular bacterial infection in Atlantic cod. Front. Microbiol. 2018;9:2963. doi: 10.3389/fmicb.2018.02963. PubMed DOI PMC
Zanuzzo F.S., Beemelmanns A., Hall J.R., Rise M.L., Gamperl A.K. The innate immune response of Atlantic salmon (Salmo salar) is not negatively affected by high temperature and moderate hypoxia. Front. Immunol. 2020;11:1009. doi: 10.3389/fimmu.2020.01009. PubMed DOI PMC
Ellis A.E. Innate host defense mechanisms of fish against viruses and bacteria. Dev. Comp. Immunol. 2001;25:827–839. doi: 10.1016/S0145-305X(01)00038-6. PubMed DOI
Beck B.H., Peatman E. Mucosal Health in Aquaculture. Academic Press; Cambridge, MA, USA: 2015.
Wang B., Yao M., Lv L., Ling Z., Li L. The human microbiota in health and disease. Engineering. 2017;3:71–82. doi: 10.1016/J.ENG.2017.01.008. DOI
Gosalbes M.J., Durbán A., Pignatelli M., Abellan J.J., Jiménez-Hernández N., Pérez-Cobas A.E., Latorre A., Moya A. Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS ONE. 2011;6:e17447. doi: 10.1371/journal.pone.0017447. PubMed DOI PMC
Franzosa E.A., Morgan X.C., Segata N., Waldron L., Reyes J., Earl A.M., Giannoukos G., Boylan M.R., Ciulla D., Gevers D. Relating the metatranscriptome and metagenome of the human gut. Proc. Natl. Acad. Sci. USA. 2014;111:E2329–E2338. doi: 10.1073/pnas.1319284111. PubMed DOI PMC
Egerton S., Culloty S., Whooley J., Stanton C., Ross R.P. The gut microbiota of marine fish. Front. Microbiol. 2018;9:873. doi: 10.3389/fmicb.2018.00873. PubMed DOI PMC
Kelly C., Salinas I. Under pressure: Interactions between commensal microbiota and the teleost immune system. Front. Immunol. 2017;8:559. doi: 10.3389/fimmu.2017.00559. PubMed DOI PMC
Magarinos B., Pazos F., Santos Y., Romalde J.L., Toranzo A.E. Response of Pasteurella piscicida and Flexibacter maritimus to skin mucus of marine fish. Dis. Aquat. Organ. 1995;21:103–108. doi: 10.3354/dao021103. DOI
Sundh H., Sundell K.S. Mucosal Health in Aquaculture. Academic Press; Cambridge, MA, USA: 2015. Environmental impacts on fish mucosa.
Harvell C.D., Kim K., Burkholder J.M., Colwell R.R., Epstein P.R., Grimes D.J., Hofmann E.E., Lipp E.K., Osterhaus A., Overstreet R.M. Emerging marine diseases—Climate links and anthropogenic factors. Science. 1999;285:1505–1510. doi: 10.1126/science.285.5433.1505. PubMed DOI
Svendsen Y.S., Bogwald J. Influence of artificial wound and non-intact mucus layer on mortality of Atlantic salmon (Salmo salar L.) following a bath challenge with Vibrio anguillarum and Aeromonas salmonicida. Fish Shellfish Immunol. 1997;7:317–325. doi: 10.1006/fsim.1997.0087. DOI
Kiron V. Fish immune system and its nutritional modulation for preventive health care. Anim. Feed Sci. Technol. 2012;173:111–133. doi: 10.1016/j.anifeedsci.2011.12.015. DOI
Bouck G.R., Smith S.D. Mortality of experimentally descaled smolts of coho salmon (Oncorhynchus kisutch) in fresh and salt water. Trans. Am. Fish. Soc. 1979;108:67–69. doi: 10.1577/1548-8659(1979)108<67:MOEDSO>2.0.CO;2. DOI
Stien L.H., Bracke M.B.M., Folkedal O., Nilsson J., Oppedal F., Torgersen T., Kittilsen S., Midtlyng P.J., Vindas M.A., Øverli Ø. Salmon Welfare Index Model (SWIM 1.0): A semantic model for overall welfare assessment of caged Atlantic salmon: Review of the selected welfare indicators and model presentation. Rev. Aquac. 2013;5:33–57. doi: 10.1111/j.1753-5131.2012.01083.x. DOI
Sunyer J.O., Tort L. Natural hemolytic and bactericidal activities of sea bream Sparus aurata serum are effected by the alternative complement pathway. Vet. Immunol. Immunopathol. 1995;45:333–345. doi: 10.1016/0165-2427(94)05430-Z. PubMed DOI
Angelidis P., Baudin-Laurencin F., Youinou P. Effects of temperature on chemiluminescence of phagocytes from sea bass, Dicentrarchus labrax L. J. Fish Dis. 1988;11:281–288. doi: 10.1111/j.1365-2761.1988.tb01223.x. DOI
Tort L., Padros F., Rotllant J., Crespo S. Winter syndrome in the gilthead sea bream Sparus aurata. Immunological and histopathological features. Fish Shellfish Immunol. 1998;8:37–47. doi: 10.1006/fsim.1997.0120. DOI
Ibarz A., Padrós F., Gallardo M.Á., Fernández-Borràs J., Blasco J., Tort L. Low-Temperature challenges to gilthead sea bream culture: Review of cold-induced alterations and ‘Winter Syndrome’. Rev. fish Biol. Fish. 2010;20:539–556. doi: 10.1007/s11160-010-9159-5. DOI
Rotllant J., Balm P.H.M., Wendelaar-Bonga S.E., Pérez-Sánchez J., Tort L. A drop in ambient temperature results in a transient reduction of interrenal ACTH responsiveness in the gilthead sea bream (Sparus aurata, L.) Fish. Physiol. Biochem. 2000;23:265–273. doi: 10.1023/A:1007873811975. DOI
Tort L., Rotllant J., Rovira L. Immunological suppression in gilthead sea bream Sparus aurata of the North-West Mediterranean at low temperatures. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 1998;120:175–179. doi: 10.1016/S1095-6433(98)10027-2. DOI
Hardie L.J., Fletcher T.C., Secombes C.J. Effect of temperature on macrophage activation and the production of macrophage activating factor by rainbow trout (Oncorhynchus mykiss) leucocytes. Dev. Comp. Immunol. 1994;18:57–66. doi: 10.1016/0145-305X(94)90252-6. PubMed DOI
Scott A.L., Rogers W.A., Klesius P.H. Chemiluminescence by peripheral blood phagocytes from channel catfish: Function of opson in and temperature. Dev. Comp. Immunol. 1985;9:241–250. doi: 10.1016/0145-305X(85)90115-6. PubMed DOI
Ainsworth A.J., Dexiang C., Waterstrat P.R., Greenway T. Effect of temperature on the immune system of channel catfish (Ictalurus punctatus)—I. Leucocyte distribution and phagocyte function in the anterior kidney at 10 °C. Comp. Biochem. Physiol. A Physiol. 1991;100:907–912. doi: 10.1016/0300-9629(91)90313-2. PubMed DOI
Bowden T.J. Modulation of the immune system of fish by their environment. Fish Shellfish Immunol. 2008;25:373–383. doi: 10.1016/j.fsi.2008.03.017. PubMed DOI
Nikoskelainen S., Kjellsen O., Lilius E.-M., Schrøder M.B. Respiratory burst activity of Atlantic cod (Gadus morhua L.) blood phagocytes differs markedly from that of rainbow trout. Fish Shellfish Immunol. 2006;21:199–208. doi: 10.1016/j.fsi.2005.11.008. PubMed DOI
Hrubec T.C., Robertson J.L., Smith S.A., Tinker M.K. The effect of temperature and water quality on antibody response to Aeromonas salmonicida in sunshine bass (Morone chrysops × Morone saxatilis) Vet. Immunol. Immunopathol. 1996;50:157–166. doi: 10.1016/0165-2427(95)05491-X. PubMed DOI
Eggset G., Mikkelsen H., Killie J.-E.A. Immunocompetence and duration of immunity against Vibrio salmonicida and Aeromonas salmonicida after vaccination of Atlantic salmon (Salmo salar L.) at low and high temperatures. Fish Shellfish Immunol. 1997;7:247–260. doi: 10.1006/fsim.1997.0080. DOI
Steinhagen D. Temperature modulation of the response of Ig-positive cells to Goussia carpelli (Protozoa: Apicomplexa) infections in carp, Cyprinus Carpio L. J. Parasitol. 1997;83:434–439. doi: 10.2307/3284406. PubMed DOI
Avtalion R.R. Temperature effect on antibody production and immunological memory, in carp (Cyprinus carpio) immunized against bovine serum albumin (BSA) Immunology. 1969;17:927. PubMed PMC
Avtalion R.R., Wojdani A., Duczyminer M. Antibody production in carp (Cyprinus carpio), temperature effect and mechanism; Proceedings of the Colloquium Organized by the French Society of Immunol (INSERM); Paris, France. 12–14 October 1972; pp. 75–86.
Rijkers G.T., Frederix-Wolters E.M., Van Muiswinkel W.B. The immune system of cyprinid fish. Kinetics and temperature dependence of antibody-producing cells in carp (Cyprinus carpio) Immunology. 1980;41:91. PubMed PMC
Cone R.E., Marchalonis J.J. Cellular and humoral aspects of the influence of environmental temperature on the immune response of poikilothermic vertebrates. J. Immunol. 1972;108:952–957. PubMed
Avtalion R.R., Wojdani A., Malik Z., Shahrabani R., Duczyminer M. Current Topics in Microbiology and Immunology/Ergebnisse der Mikrobiologie und Immunitätsforschung. Springer; Berlin/Heidelberg, Germany: 1973. Influence of environmental temperature on the immune response in fish; pp. 1–35. PubMed
Cecchini S., Saroglia M. Antibody response in sea bass (Dicentrarchus labrax L.) in relation to water temperature and oxygenation. Aquac. Res. 2002;33:607–613. doi: 10.1046/j.1365-2109.2002.00698.x. DOI
Boltana S., Rey S., Roher N., Vargas R., Huerta M., Huntingford F.A., Goetz F.W., Moore J., Garcia-Valtanen P., Estepa A. Behavioural fever is a synergic signal amplifying the innate immune response. Proc. R. Soc. B Biol. Sci. 2013;280:20131381. doi: 10.1098/rspb.2013.1381. PubMed DOI PMC
Rakus K., Ronsmans M., Vanderplasschen A. Behavioral fever in ectothermic vertebrates. Dev. Comp. Immunol. 2017;66:84–91. doi: 10.1016/j.dci.2016.06.027. PubMed DOI
Evans S.S., Repasky E.A., Fisher D.T. Fever and the thermal regulation of immunity: The immune system feels the heat. Nat. Rev. Immunol. 2015;15:335–349. doi: 10.1038/nri3843. PubMed DOI PMC
Gräns A., Rosengren M., Niklasson L., Axelsson M. Behavioural fever boosts the inflammatory response in rainbow trout Oncorhynchus mykiss. J. Fish. Biol. 2012;81:1111–1117. doi: 10.1111/j.1095-8649.2012.03333.x. PubMed DOI
Soares M.P., Teixeira L., Moita L.F. Disease tolerance and immunity in host protection against infection. Nat. Rev. Immunol. 2017;17:83. doi: 10.1038/nri.2016.136. PubMed DOI
Lochmiller R.L., Deerenberg C. Trade-offs in evolutionary immunology: Just what is the cost of immunity? Oikos. 2000;88:87–98. doi: 10.1034/j.1600-0706.2000.880110.x. DOI
Colorni A. A systemic mycobacteriosis in the European sea bass Dicentrarchus labrax cultured in Eilat (Red Sea) Isr. J. Aquac. 1992;44:75–81.
Burge C.A., Mark Eakin C., Friedman C.S., Froelich B., Hershberger P.K., Hofmann E.E., Petes L.E., Prager K.C., Weil E., Willis B.L. Climate change influences on marine infectious diseases: Implications for management and society. Ann. Rev. Mar. Sci. 2014;6:249–277. doi: 10.1146/annurev-marine-010213-135029. PubMed DOI
Karvonen A., Rintamäki P., Jokela J., Valtonen E.T. Increasing water temperature and disease risks in aquatic systems: Climate change increases the risk of some, but not all, diseases. Int. J. Parasitol. 2010;40:1483–1488. doi: 10.1016/j.ijpara.2010.04.015. PubMed DOI
Lafferty K.D., Harvell C.D., Conrad J.M., Friedman C.S., Kent M.L., Kuris A.M., Powell E.N., Rondeau D., Saksida S.M. Infectious diseases affect marine fisheries and aquaculture economics. Ann. Rev. Mar. Sci. 2015;7:471–496. doi: 10.1146/annurev-marine-010814-015646. PubMed DOI
Maynard J., Van Hooidonk R., Eakin C.M., Puotinen M., Garren M., Williams G., Heron S.F., Lamb J., Weil E., Willis B. Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nat. Clim. Chang. 2015;5:688. doi: 10.1038/nclimate2625. DOI
Groner M.L., Maynard J., Breyta R., Carnegie R.B., Dobson A., Friedman C.S., Froelich B., Garren M., Gulland F.M.D., Heron S.F. Managing marine disease emergencies in an era of rapid change. Philos. Trans. R. Soc. B Biol. Sci. 2016;371:20150364. doi: 10.1098/rstb.2015.0364. PubMed DOI PMC
Palm H.W. Progress in Parasitology. Springer; Berlin/Heidelberg, Germany: 2011. Fish parasites as biological indicators in a changing world: Can we monitor environmental impact and climate change? pp. 223–250.
Rigos G., Katharios P. Pathological obstacles of newly-introduced fish species in Mediterranean mariculture: A review. Rev. Fish Biol. Fish. 2010;20:47–70. doi: 10.1007/s11160-009-9120-7. DOI
Pasternak Z., Diamant A., Abelson A. Co-Invasion of a Red Sea fish and its ectoparasitic monogenean, Polylabris cf. mamaevi into the Mediterranean: Observations on oncomiracidium behavior and infection levels in both seas. Parasitol. Res. 2007;100:721–727. doi: 10.1007/s00436-006-0330-9. PubMed DOI
Lokmer A., Wegner K.M. Hemolymph microbiome of Pacific oysters in response to temperature, temperature stress and infection. ISME J. 2015;9:670–682. doi: 10.1038/ismej.2014.160. PubMed DOI PMC
Matanza X.M., Osorio C.R. Exposure of the opportunistic marine pathogen Photobacterium damselae subsp. damselae to human body temperature is a stressful condition that shapes the transcriptome, viability, cell morphology, and virulence. Front. Microbiol. 2020;11:1771. doi: 10.3389/fmicb.2020.01771. PubMed DOI PMC
Matanza X.M., Osorio C.R. Transcriptome changes in response to temperature in the fish pathogen Photobacterium damselae subsp. damselae: Clues to understand the emergence of disease outbreaks at increased seawater temperatures. PLoS ONE. 2018;13:e0210118. doi: 10.1371/journal.pone.0210118. PubMed DOI PMC
Oliveira R.V., Peixoto P.G., Ribeiro D.D., Araujo M.C., do Santos C.T.B., Hayashi C., Pedreira M.M., Pelli A. Klebsiella pneumoniae as a main cause of infection in Nishikigoi Cyprinus carpio (carp) by inadequate handling. Braz. J. Vet. Pathol. 2014;7:86–88.
Tripathy S., Sen R., Padhi S.K., Mohanty S., Maiti N.K. Upregulation of transcripts for metabolism in diverse environments is a shared response associated with survival and adaptation of Klebsiella pneumoniae in response to temperature extremes. Funct. Integr. Genom. 2014;14:591–601. doi: 10.1007/s10142-014-0382-3. PubMed DOI
Evans T.G. Considerations for the use of transcriptomics in identifying the ‘genes that matter’ for environmental adaptation. J. Exp. Biol. 2015;218:1925–1935. doi: 10.1242/jeb.114306. PubMed DOI
Wakabayashi H., Hikida M., Masumura K. Flexibacter maritimus sp. nov., a pathogen of marine fishes. Int. J. Syst. Evol. Microbiol. 1986;36:396–398. doi: 10.1099/00207713-36-3-396. DOI
Casadevall A., Pirofski L. Host-Pathogen interactions: The attributes of virulence. J. Infect. Dis. 2001;184:337–344. doi: 10.1086/322044. PubMed DOI
Woo P.T.K., Bruno D.W. Fish, Diseases and Disorders. Viral, Bacterial and Fungal Infections. Volume 3 CABI; Wallingford, CT, USA: 1999.
Smyrli M., Triga A., Dourala N., Varvarigos P., Pavlidis M., Quoc V.H., Katharios P. Comparative Study on A Novel Pathogen of European Seabass. Diversity of Aeromonas veronii in the Aegean Sea. Microorganisms. 2019;7:504. PubMed PMC
Smyrli M., Prapas A., Rigos G., Kokkari C., Pavlidis M., Katharios P. Aeromonas veronii infection associated with high morbidity and mortality in farmed European seabass Dicentrarchus labrax in the Aegean Sea, Greece. Fish Pathol. 2017;52:68–81. doi: 10.3147/jsfp.52.68. DOI
Crespo S., Zarza C., Padrós F. Short communication Epitheliocystis hyperinfection in sea bass, Dicentrarchus labrax (L.): Light and electron microscope observations. J. Fish Dis. 2001;24:557–560. doi: 10.1046/j.1365-2761.2001.00323.x. DOI
Paperna I., Laurencin F.B. Parasitic infections of sea bass, Dicentrarchus labrax, and gilt head sea bream, Sparus aurata, in mariculture facilities in France. Aquaculture. 1979;16:173–175. doi: 10.1016/0044-8486(79)90148-0. DOI
Paperna I. Epitheliocystis infection in wild and cultured sea bream (Sparus aurata, Sparidae) and grey mullets (Liza ramada, Mugilidae) Aquaculture. 1977;10:169–176. doi: 10.1016/0044-8486(77)90018-7. DOI
Alvarez-Pellitero P., Crespo S. New disease problems in Mediterranean aquaculture; Proceedings of the Actas del 5 Congreso Nacional de Acuicultura; Barcelona, Spain. 10–13 May 1995; pp. 86–97.
Padrós F., Crespo S. Proliferative epitheliocystis associated with monogenean infection in juvenile seabream Sparus aurata in the north east of Spain. Bull. Eur. Assoc. Fish Pathol. 1995;15:42–44.
Korun J., Olgac V., Akgun-Dars K., Colorni A., Diamant A. Mycobacteriosis in European sea bass, Dicentrarchus labrax L., cultured in Turkey. Isr. J. Aquac. 2005;57:215–222.
Timur G., Ürkü Ç, Çanak Ö., G Genç E., Erturan Z. Systemic mycobacteriosis caused by mycobacterium marinum in farmed meagre (Argyrosomus regius), in Turkey. Isr. J. Aquac Bamidgeh. 2015;67:1–8.
Avsever M.L., Çavuşoğlu C., Günen M.Z., Yazıcıoğlu Ö., Eskiizmirliler S., Didinen B.I., Tunalıgil S., Erdal G., Özden M. The first report of Mycobacterium marinum isolated from cultured meagre, Argyrosomus regius. Bull. Eur. Ass. Fish. Pathol. 2014;34:4.
Mugetti D., Varello K., Gustinelli A., Pastorino P., Menconi V., Florio D., Fioravanti M.L., Bozzetta E., Zoppi S., Dondo A. Mycobacterium pseudoshottsii in mediterranean fish farms: New trouble for European aquaculture? Pathogens. 2020;9:610. doi: 10.3390/pathogens9080610. PubMed DOI PMC
Elkesh A., Kantham K.P.L., Shinn A.P., Crumlish M., Richards R.H. Systemic nocardiosis in a Mediterranean population of cultured meagre, Argyrosomus regius Asso (Perciformes: Sciaenidae) J. Fish Dis. 2013;36:141–149. doi: 10.1111/jfd.12015. PubMed DOI
Labella A., Manchado M., Alonso M.C., Castro D., Romalde J.L., Borrego J.J. Molecular intraspecific characterization of Photobacterium damselae ssp. damselae strains affecting cultured marine fish. J. Appl. Microbiol. 2010;108:2122–2132. PubMed
Labella A., Berbel C., Castro D., Borrego J.J., Manchado M. Photobacterium damselae subsp. damselae, an Emerging Pathogen Affecting New Cultured Marine Fish Species in Southern Spain. IntechOpen; London, UK: 2011.
Korun J., Timur G. The first pasteurellosis case in cultured sea bass (Dicentrarchus labrax L.) at low marine water temperatures in Turkey. Isr. J. Aquac. 2005;57:197–206.
Romalde J.L. Photobacterium damselae subsp. piscicida: An integrated view of a bacterial fish pathogen. Int. Microbiol. 2002;5:3–9. doi: 10.1007/s10123-002-0051-6. PubMed DOI
Magariños B., Couso N., Noya M., Merino P., Toranzo A.E., Lamas J. Effect of temperature on the development of pasteurellosis in carrier gilthead seabream (Sparus aurata) Aquaculture. 2001;195:17–21. doi: 10.1016/S0044-8486(00)00547-0. DOI
Austin B., Austin D.A., Munn C.B. Bacterial Fish Pathogens. Springer; Berlin/Heidelberg, Germany: 2012.
Berthe F.C.J., Michel C., Bernardet J.-F. Identification of Pseudomonas anguilliseptica isolated from several fish species in France. Dis. Aquat. Organ. 1995;21:151–155. doi: 10.3354/dao021151. DOI
Doménech A., Fernández-Garayzábal J.F., Lawson P., García J.A., Cutuli M.T., Blanco M., Gibello A., Moreno M.A., Collins M.D., Domínguez L. Winter disease outbreak in sea-bream (Sparus aurata) associated with Pseudomonas anguilliseptica infection. Aquaculture. 1997;156:317–326. doi: 10.1016/S0044-8486(97)00069-0. DOI
Doménech A., Fernández-Garayzábal J.F., García J.A., Cutuli M.T., Blanco M., Gibello A., Moreno M.A., Domínguez L. Association of Pseudomonas anguilliseptica infection with ‘winter disease’ in sea bream, Sparus aurata L. J. Fish Dis. 1999;22:69–71. doi: 10.1046/j.1365-2761.1999.00124.x. DOI
Wakabayashi H., Egusa S. Characteristics of a Pseudomonas sp. from an epizootic of pond-cultured eels (Anguilla japonica) Bull. Jpn. Soc. Sci. Fish. 1972;38:577–587. doi: 10.2331/suisan.38.577. DOI
Avendaño-Herrera R., Toranzo A.E., Magariños B. Tenacibaculosis infection in marine fish caused by Tenacibaculum maritimum: A review. Dis. Aquat. Organ. 2006;71:255–266. doi: 10.3354/dao071255. PubMed DOI
Bernardet J.-F., Kerouault B., Michel C. Comparative study on Flexibacter maritimus strains isolated from farmed sea bass (Dicentrarchus labrax) in France. Fish Pathol. 1994;29:105–111. doi: 10.3147/jsfp.29.105. DOI
Yardımcı R., Timur G. Isolation and identification of Tenacibaculum maritimum, the causative agent of Tenacibaculosis in farmed sea bass (Dicentrarchus labrax) on the Aegean Sea coast of Turkey. Isr. J. Aquac. Bamidgeh. 2015;67:1172.
Bordas M.A., Balebona M.C., Rodriguez-Maroto J.M., Borrego J.J., Moriñigo M.A. Chemotaxis of pathogenic vibrio strains towards mucus surfaces of Gilt-Head Sea Bream (Sparus aurata L.) Appl. Environ. Microbiol. 1998;64:1573–1575. doi: 10.1128/AEM.64.4.1573-1575.1998. PubMed DOI PMC
Colorni A., Paperna I., Gordin H. Bacterial infections in gilt-head sea bream Sparus aurata cultured at Elat. Aquaculture. 1981;23:257–267. doi: 10.1016/0044-8486(81)90019-3. DOI
Bellos G., Angelidis P., Miliou H. Effect of temperature and seasonality principal epizootiological risk factor on vibriosis and photobacteriosis outbreaks for European sea bass in Greece (1998–2013) J. Aquac. Res. Dev. 2015;6:5.
García-Rosado E., Cano I., Martín-Antonio B., Labella A., Manchado M., Alonso M.C., Castro D., Borrego J.J. Co-Occurrence of viral and bacterial pathogens in disease outbreaks affecting newly cultured sparid fish. Int. Microbiol. 2007;10:193. PubMed
Ulitzur S. Effect of temperature, salts, pH and other factors on the development of peritrichous flagella in Vibrio alginolyticus. Arch. Microbiol. 1975;104:285–288. doi: 10.1007/BF00447338. PubMed DOI
Du M., Chen J., Zhang X., Li A., Li Y. Characterization and resuscitation of viable but nonculturable Vibrio alginolyticus VIB283. Arch. Microbiol. 2007;188:283–288. doi: 10.1007/s00203-007-0246-5. PubMed DOI
Larsen J.L. Vibrio anguillarum: Influence of temperature, pH, NaCl concentration and incubation time on growth. J. Appl. Bacteriol. 1984;57:237–246. doi: 10.1111/j.1365-2672.1984.tb01388.x. PubMed DOI
Larsen M.H., Blackburn N., Larsen J.L., Olsen J.E. Influences of temperature, salinity and starvation on the motility and chemotactic response of Vibrio anguillarum. Microbiology. 2004;150:1283–1290. doi: 10.1099/mic.0.26379-0. PubMed DOI
Bordas M.A., Balebona M.C., Zorrilla I., Borrego J.J., Morinigo M.A. Kinetics of adhesion of selected fish-pathogenic Vibrio strains of skin mucus of gilt-head sea bream (Sparus aurata L.) Appl. Environ. Microbiol. 1996;62:3650–3654. doi: 10.1128/aem.62.10.3650-3654.1996. PubMed DOI PMC
Nigrelli R.F. Enzootics in the New York Aquarium caused by Cryptocaryon irritans Brown, 1951 (= Ichthyophthirius marinus Sikama, 1961), a histophagous ciliate in the skin, eyes and gills of marine fishes. Zoologica. 1966;51:97–102.
Cheung P.J., Nigrelli R.F., Ruggieri G.D. Studies on cryptocaryoniasis in marine fi, 5 h: Effect of temperature and salinity on the reproductive cycle of Cryptocaryon irritans Brown, 1951. J. Fish Dis. 1979;2:93–97. doi: 10.1111/j.1365-2761.1979.tb00146.x. DOI
Wilkie D.W. Outbreak of cryptocaryoniasis in marine aquaria at Scripps Institute of Oceanography. Calif. Fish. Game. 1969;55:227–236.
Iglesias R., Paramá A., Alvarez M.F., Leiro J., Aja C., Sanmartın M.L. In vitro growth requirements for the fish pathogen Philasterides dicentrarchi (Ciliophora, Scuticociliatida) Vet. Parasitol. 2003;111:19–30. doi: 10.1016/S0304-4017(02)00350-3. PubMed DOI
Paperna I. Reproduction cycle and tolerance to temperature and salinity of Amyloodinium ocellatum (Brown, 1931) (Dinoflagellida) Ann. Parasitol. Hum. Comp. 1984;59:7–30. doi: 10.1051/parasite/1984591007. PubMed DOI
Alvarez-Pellitero P., Sitjà-Bobadilla A., Franco-Sierra A., Palenzuela O. Protozoan parasites of gilthead sea bream, Sparus aurata L., from different culture systems in Spain. J. Fish Dis. 1995;18:105–115. doi: 10.1111/j.1365-2761.1995.tb00268.x. DOI
Sitjà-Bobadilla A., Alvarez-Pellitero P. Experimental transmission of Cryptosporidium molnari (Apicomplexa: Coccidia) to gilthead sea bream (Sparus aurata L.) and European sea bass (Dicentrarchus labrax L.) Parasitol. Res. 2003;91:209–214. doi: 10.1007/s00436-003-0945-z. PubMed DOI
Sitjà-Bobadilla A., Padrós F., Aguilera C., Alvarez-Pellitero P. Epidemiology of Cryptosporidium molnari in Spanish gilthead sea bream (Sparus aurata L.) and European sea bass (Dicentrarchus labrax L.) cultures: From hatchery to market size. Appl. Environ. Microbiol. 2005;71:131–139. doi: 10.1128/AEM.71.1.131-139.2005. PubMed DOI PMC
Gjurčević E., Kužir S., Baždarić B., Matanović K., Debelić I., Marino F., Drašner K., Rosenthal B.M. New data on Eimeria dicentrarchi (Apicomplexa: Eimeriidae), a common parasite of farmed European sea bass (Dicentrarchus labrax) from the mid-eastern Adriatic. Vet. Arh. 2017;87:77–86.
Spanggaard B. Ichthyophonus hoferi Epidemiology, Life Cycle, Taxonomy and Significance in Fish Products. Danmarks Fiskeriundersøgelser, Afdeling for Fiskeindustriel Forskning; Lingby, Denmark: 1996.
Spanggaard B., Huss H.H. Growth of the fish parasite Ichthyophonus hoferi under food relevant conditions. Int. J. Food Sci. Technol. 1996;31:427–432. doi: 10.1046/j.1365-2621.1996.00356.x. DOI
Alvarez-Pellitero P., Sitjà-Bobadilla A. Ceratomyxa spp. (Protozoa: Myxosporea) infections in wild and cultured sea bass, Dicentrarchus labrax, from the Spanish Mediterranean area. J. Fish. Biol. 1993;42:889–901. doi: 10.1111/j.1095-8649.1993.tb00398.x. DOI
Katharios P., Garaffo M., Sarter K., Athanassopoulou F., Mylonas C.C. A case of high mortality due to heavy infestation of Ceratomyxa diplodae in sharpsnout sea bream (Diplodus puntazzo) treated with reproductive steroids. Bull. Eur. Assoc. Fish Pathol. 2007;27:43.
Palenzuela O., Sitjà-Bobadilla A., Álvarez-Pellitero P. Ceratomyxa sparusaurati (Protozoa: Myxosporea) infections in cultured gilthead sea bream Sparus aurata (Pisces: Teleostei) from Spain: Aspects of the host-parasite relationship. Parasitol. Res. 1997;83:539–548. doi: 10.1007/s004360050295. PubMed DOI
Alama-Bermejo G., Šíma R., Raga J.A., Holzer A.S. Understanding myxozoan infection dynamics in the sea: Seasonality and transmission of Ceratomyxa puntazzi. Int. J. Parasitol. 2013;43:771–780. doi: 10.1016/j.ijpara.2013.05.003. PubMed DOI
Picard-Sánchez A., Estensoro I., Del Pozo R., Palenzuela O.R., Piazzon M.C., Sitjà-Bobadilla A. Water temperature, time of exposure and population density are key parameters in Enteromyxum leei fish-to-fish experimental transmission. J. Fish Dis. 2020;43:491–502. doi: 10.1111/jfd.13147. PubMed DOI
Le Breton A., Marques A. Occurrence of an histozoic Myxidium infection in two marine cultured species: Puntazzo puntazzo C. and Pagrus major. Bull. Eur. Assoc. Fish. Pathol. 1995;15:210.
Rigos G., Christophilogiannis P., Yiagnisi M., Andriopoulou A., Koutsodimou M., Nengas I., Alexis M. Myxosporean infections in Greek mariculture. Aquac. Int. 1999;7:361–364. doi: 10.1023/A:1009200732200. DOI
Yanagida T., Sameshima M., Nasu H., Yokoyama H., Ogawa K. Temperature effects on the development of Enteromyxum spp. (Myxozoa) in experimentally infected tiger puffer, Takifugu rubripes (Temminck & Schlegel) J. Fish Dis. 2006;29:561–567. PubMed
Estensoro I., Redondo M.J., Alvarez-Pellitero P., Sitjà-Bobadilla A. Novel horizontal transmission route for Enteromyxum leei (Myxozoa) by anal intubation of gilthead sea bream Sparus aurata. Dis. Aquat. Organ. 2010;92:51–58. doi: 10.3354/dao02267. PubMed DOI
Sitja-Bobadilla A., Alvarez-Pellitero P. Population dynamics of Sphaerospora dicentrarchi Sitja-Bobadilla et Alvarez-Pellitero, 1992 and S. testicularis Sitja-Bobadilla et Alvarez-Pellitero, 1990 (Myxosporea: Bivalvulida) infections in wild and cultured Mediterranean sea bass (Dicentrarchus labrax) Parasitology. 1993;106:39–45. PubMed
Fioravanti M.L., Caffara M., Florio D., Gustinelli A., Marcer F. Sphaerospora dicentrarchi and S. testicularis (Myxozoa: Sphaerosporidae) in farmed European seabass (Dicentrarchus labrax) from Italy. Folia Parasitologica. 2004;51:208. doi: 10.14411/fp.2004.024. PubMed DOI
Sitjà-Bobadilla A., Alvarez-Pellitero P. Light and electron microscopic description of Polysporoplasma n.g. (Myxosporea: Bivalvulida), polysporoplasma sparis n. sp. from Sparus aurata (L), and Polysporoplasma mugilis n. sp. from Liza aurata L. Eur. J. Protistol. 1995;31:77–89. doi: 10.1016/S0932-4739(11)80360-3. DOI
Mladineo I. Myxosporidean infections in Adriatic cage-reared fish. Bull. Eur. Assoc. Fish Pathol. 2003;23:113–122.
Colorni A., Diamant A. Hyperparasitism of trichodinid ciliates on monogenean gill flukes of two marine fish. Dis. Aquat. Organ. 2005;65:177–180. doi: 10.3354/dao065177. PubMed DOI
González-Lanza C., Alvarez-Pellitero P., Sitjà-Bobadilla A. Diplectanidae (Monogenea) infestations of sea bass, Dicentrarchus labrax (L.), from the Spanish Mediterranean area. Parasitol. Res. 1991;77:307–314. doi: 10.1007/BF00930906. PubMed DOI
Cecchini S., Saroglia M., Berni P., Cognetti-Varriale A.M. Influence of temperature on the life cycle of Diplectanum aequans (Monogenea, Diplectanidae), parasitic on sea bass, Dicentrarchus labrax (L.) J. Fish Dis. 1998;21:73–75. doi: 10.1046/j.1365-2761.1998.00068.x. PubMed DOI
Cecchini S. Influence of temperature on the hatching of eggs of Diplectanum aequans, a parasite of sea bass. Aquac. Int. 1994;2:249–253.
Cecchini S., Saroglia M., Cognetti-Varriale A.M., Terova G., Sabino G. Effect of Low Environmental Temperature on Embryonic Development and Egg Hatching of Diplectanum aequans (Monogenea, Diplectanidae) Infecting European Sea Bass, Dicentrarchus Iabrax. Fish Pathol. 2001;36:33–34. doi: 10.3147/jsfp.36.33. DOI
Mladineo I. Monogenean parasites in Adriatic cage-reared fish. Acta Adriatica. 2004;45:65–73.
Sánchez-García N., Padrós F., Raga J.A., Montero F.E. Comparative study of the three attachment mechanisms of diplectanid monogeneans. Aquaculture. 2011;318:290–299. doi: 10.1016/j.aquaculture.2011.05.021. DOI
Cruz e Silva M., Freitas M., Orge M. Co-Infection by monogenetic trematodes of the genus Microcotyle V. Beneden and Hesse 1863, Lamellodiscus ignoratus Palombi, 1943, the protozoan Trichodina sp. Ehrenberg, 1838 and the presence of epitheliocystis, Vibrio algynoliticus and V. vulnificus in cultured seabream (Sparus aurata L.) in Portugal. Bull. Eur. Assoc. Fish Pathol. 1997;17:40–42.
Vagianou S., Athanassopoulou F., Ragias V., Di Cave D., Leontides L., Golomazou E. Prevalence and pathology of ectoparasites of Mediterranean Sea bream and sea bass reared under different environmental and aquaculture conditions. Isr. J. Aquac. 2006;58:78–88.
Antonelli L., Quilichini Y., Marchand B. Biological study of Furnestinia echeneis Euzet and Audouin 1959 (Monogenea: Monopisthocotylea: Diplectanidae), parasite of cultured gilthead sea bream Sparus aurata (Linnaeus 1758) (Pisces: Teleostei) from Corsica. Aquaculture. 2010;307:179–186. doi: 10.1016/j.aquaculture.2010.07.028. DOI
Silan P., Cabral P., Maillard C. Enlargement of the host range of Polylabris tubicirrus (Monogenea, Polyopisthocotylea) under fish-farming conditions. Aquaculture. 1985;47:267–270. doi: 10.1016/0044-8486(85)90074-2. DOI
Merella P., Cherchi S., Garippa G., Fioravanti M.L., Gustinelli A., Salati F. Outbreak of Sciaenacotyle panceri (Monogenea) on cage-reared meagre Argyrosomus regius (Osteichthyes) from the western Mediterranean Sea. Dis. Aquat. Organ. 2009;86:169–173. doi: 10.3354/dao02115. PubMed DOI
Ternengo S., Agostini S., Quilichini Y., Euzet L., Marchand B. Intensive infestations of Sciaenocotyle pancerii (Monogenea, Microcotylidae) on Argyrosomus regius (Asso) under fish-farming conditions. J. Fish Dis. 2010;33:89–92. doi: 10.1111/j.1365-2761.2009.01094.x. PubMed DOI
Antonelli L., Quilichini Y., Marchand B. Sparicotyle chrysophrii (Van Beneden and Hesse 1863) (Monogenea: Polyopisthocotylea) parasite of cultured Gilthead sea bream Sparus aurata (Linnaeus 1758) (Pisces: Teleostei) from Corsica: Ecological and morphological study. Parasitol. Res. 2010;107:389–398. doi: 10.1007/s00436-010-1876-0. PubMed DOI
Sanz F. Mortality of cultured seabream (Sparus aurata) caused by an infection with a trematode of the genus Microcotyle. Bull. Eur. Assoc. Fish Pathol. 1992;12:186.
Faisal M., Imam E.A. Microcotyle chrysophrii (Monogenea, Polyopisthocotylea), a pathogen for cultured and wild gilthead seabream, Sparus aurata. Pathol. Mar. Sci. 1990:283–290.
Villar-Torres M., Montero F.E., Raga J.A., Repullés-Albelda A. Come rain or come shine: Environmental effects on the infective stages of Sparicotyle chrysophrii, a key pathogen in Mediterranean aquaculture. Parasit. Vectors. 2018;11:558. doi: 10.1186/s13071-018-3139-3. PubMed DOI PMC
Sitjà-Bobadilla A., de Felipe M.C., Alvarez-Pellitero P. In vivo and in vitro treatments against Sparicotyle chrysophrii (Monogenea: Microcotylidae) parasitizing the gills of gilthead sea bream (Sparus aurata L.) Aquaculture. 2006;261:856–864. doi: 10.1016/j.aquaculture.2006.09.012. DOI
Repullés-Albelda A., Holzer A.S., Raga J.A., Montero F.E. Oncomiracidial development, survival and swimming behaviour of the monogenean Sparicotyle chrysophrii (Van Beneden and Hesse, 1863) Aquaculture. 2012;338–341:47–55. doi: 10.1016/j.aquaculture.2012.02.003. DOI
Euzet L., Noisy D. Microcotyle Chrysophrii van Beneden et Hesse 1863 (Monogenea, Microcotylidae), Parasite du Teleosteen Sparus Aurata: Precisions Morpho-Anatomiques sur L’adulte et L’oncomiracidium. 1978. [(accessed on 10 July 2021)]. Available online: https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8852564.
Bier J.W. Experimental anisakiasis: Cultivation and temperature tolerance determinations. J. Milk Food Technol. 1976;39:132–137. doi: 10.4315/0022-2747-39.2.132. DOI
Højgaard D.P. Impact of temperature, salinity and light on hatching of eggs of Anisakis simplex (Nematoda, Anisakidae), isolated by a new method, and some remarks on survival of larvae. Sarsia. 1998;83:21–28. doi: 10.1080/00364827.1998.10413666. DOI
Kuhn T., Cunze S., Kochmann J., Klimpel S. Environmental variables and definitive host distribution: A habitat suitability modelling for endohelminth parasites in the marine realm. Sci. Rep. 2016;6:30246. doi: 10.1038/srep30246. PubMed DOI PMC
Kalay M., Dönmez A.E., Koyuncu C.E., Genc E., Şahin G. Seasonal variation of Hysterothylacium aduncum (Nematoda: Raphidascarididae) infestation in sparid fishes in the Northeast Mediterranean Sea. Turk. J. Vet. Anim. Sci. 2009;33:517–523.
Manera M., Dezfuli B.S. Lernanthropus kroyeri infections in farmed sea bass Dicentrarchus labrax: Pathological features. Dis. Aquat. Organ. 2003;57:177–180. doi: 10.3354/dao057177. PubMed DOI
Toksen E. Lernanthropus kroyeri van Beneden, 1851 (Crustacea: Copepoda) infections of cultured sea bass (Dicentrarchus labrax L.) Bull. Assoc. Fish Pathol. 2007;27:49.
Paperna I. Study of Caligus minimus (Otto, 1821), (Caligidae Copepoda) infections of the sea Bass Dicentrarcbus labrax (L.) in, Bardawil lagoon. Ann. Parasitol. Hum. Comp. 1980;55:687–706. doi: 10.1051/parasite/1980556687. PubMed DOI
Ragias V., Tontis D., Athanassopoulou F. Incidence of an intense Caligus minimus Otto 1821, C. pageti Russel, 1925, C. mugilis Brian, 1935 and C. apodus Brian, 1924 infection in lagoon cultured sea bass (Dicentrarchus labrax L.) in Greece. Aquaculture. 2004;242:727–733. doi: 10.1016/j.aquaculture.2004.08.019. DOI
Papapanagiotou E.P., Trilles J.P. Cymothoid parasite Ceratothoa parallela inflicts great losses on cultured gilthead sea bream Sparus aurata in Greece. Dis. Aquat. Organ. 2001;45:237–239. doi: 10.3354/dao045237. PubMed DOI
Horton T., Okamura B. Cymothoid isopod parasites in aquaculture: A review and case study of a Turkish sea bass (Dicentrarchus labrax) and sea bream (Sparus auratus) farm. Dis. Aquat. Organ. 2001;46:181–188. doi: 10.3354/dao046181. PubMed DOI
Moate R.M., Harris J.E., McMahon S. Lymphocystis infections in cultured gilt-head sea bream (Sparus aurata) in the Aegean Sea. Bull. Eur. Assoc. Fish Pathol. 1992;12:134.
de Canales M.L.G., Muñoz-Cueto J.A., Arellano J., Garcia-Garcia A., Sarasquete C. Histological and histochemical characteristics of the lymphocystis disease in gilt-head sea bream, Sparus aurata L. from the South-Atlantic coast of Spain. Eur. J. Histochem. 1996;40:143–152. PubMed
Paperna I., Ilana Sabnai H., Colorni A. An outbreak of lymphocystis in Sparus aurata L. in the Gulf of Aqaba, Red Sea. J. Fish Dis. 1982;5:433–437. doi: 10.1111/j.1365-2761.1982.tb00500.x. DOI
Le Breton A., Grisez L., Sweetman J., Ollevier F. Viral nervous necrosis (VNN) associated with mass mortalities in cage-reared sea bass, Dicentrarchus labrax (L.) J. Fish Dis. 1997;20:145–151. doi: 10.1046/j.1365-2761.1997.00284.x. DOI
Arimoto M., Sato J., Maruyama K., Mimura G., Furusawa I. Effect of chemical and physical treatments on the inactivation of striped jack nervous necrosis virus (SJNNV) Aquaculture. 1996;143:15–22. doi: 10.1016/0044-8486(96)01261-6. DOI
Amigo J.M., Gracia M.-P., Rius M., Salvadó H., Maillo P.A., Vivarés C.P. Longevity and effects of temperature on the viability and polar-tube extrusion of spores of Glugea stephani, a microsporidian parasite of commercial flatfish. Parasitol. Res. 1996;82:211–214. doi: 10.1007/s004360050097. PubMed DOI
Athanassopoulou F. A case report of Pleistophora sp. infection in cultured sea bream (Sparus aurata L.) in Greece. Bull. Eur. Assoc. Fish Pathol. 1998;18:19–21.
Sengupta P., Garrity P. Sensing temperature. Curr. Biol. 2013;23:R304–R307. doi: 10.1016/j.cub.2013.03.009. PubMed DOI PMC
Konkel M.E., Tilly K. Temperature-regulated expression of bacterial virulence genes. Microbes Infect. 2000;2:157–166. doi: 10.1016/S1286-4579(00)00272-0. PubMed DOI
Shapiro R.S., Cowen L.E. Thermal control of microbial development and virulence: Molecular mechanisms of microbial temperature sensing. mBio. 2012;3:5. doi: 10.1128/mBio.00238-12. PubMed DOI PMC
Falconi M., Colonna B., Prosseda G., Micheli G., Gualerzi C.O. Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS. EMBO J. 1998;17:7033–7043. doi: 10.1093/emboj/17.23.7033. PubMed DOI PMC
Josenhans C., Suerbaum S. The role of motility as a virulence factor in bacteria. Int. J. Med. Microbiol. 2002;291:605–614. doi: 10.1078/1438-4221-00173. PubMed DOI
Kamp H.D., Higgins D.E. Transcriptional and post-transcriptional regulation of the GmaR antirepressor governs temperature-dependent control of flagellar motility in Listeria monocytogenes. Mol. Microbiol. 2009;74:421–435. doi: 10.1111/j.1365-2958.2009.06874.x. PubMed DOI PMC
Chavant P., Martinie B., Meylheuc T., Bellon-Fontaine M.-N., Hebraud M. Listeria monocytogenes LO28: Surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. Appl. Environ. Microbiol. 2002;68:728–737. doi: 10.1128/AEM.68.2.728-737.2002. PubMed DOI PMC
Herald P.J., Zottola E.A. Attachment of Listeria monocytogenes to stainless steel surfaces at various temperatures and pH values. J. Food Sci. 1988;53:1549–1562. doi: 10.1111/j.1365-2621.1988.tb09321.x. DOI
Garrett T.R., Bhakoo M., Zhang Z. Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci. 2008;18:1049–1056. doi: 10.1016/j.pnsc.2008.04.001. DOI
Hasegawa H., Chatterjee A., Cui Y., Chatterjee A.K. Elevated temperature enhances virulence of Erwinia carotovora subsp. carotovora strain EC153 to plants and stimulates production of the quorum sensing signal, N-acyl homoserine lactone, and extracellular proteins. Appl. Environ. Microbiol. 2005;71:4655–4663. doi: 10.1128/AEM.71.8.4655-4663.2005. PubMed DOI PMC
Fletcher M. The effects of culture concentration and age, time, and temperature on bacterial attachment to polystyrene. Can. J. Microbiol. 1977;23:1. doi: 10.1139/m77-001. DOI
Maurelli A.T., Blackmon B., Curtiss R. Temperature-Dependent expression of virulence genes in Shigella species. Infect. Immun. 1984;43:195–201. doi: 10.1128/iai.43.1.195-201.1984. PubMed DOI PMC
Mauchline W.S., James B.W., Fitzgeorge R.B., Dennis P.J., Keevil C.W. Growth temperature reversibly modulates the virulence of Legionella pneumophila. Infect. Immun. 1994;62:2995–2997. doi: 10.1128/iai.62.7.2995-2997.1994. PubMed DOI PMC
Bennett A.F., Dao K.M., Lenski R.E. Rapid evolution in response to high-temperature selection. Nature. 1990;346:79. doi: 10.1038/346079a0. PubMed DOI
Bennett A.F., Lenski R.E., Mittler J.E. Evolutionary adaptation to temperature. I. Fitness responses of Escherichia coli to changes in its thermal environment. Evolution. 1992;46:16–30. PubMed
Friman V.-P., Hiltunen T., Jalasvuori M., Lindstedt C., Laanto E., Örmälä A.-M., Laakso J., Mappes J., Bamford J.K.H. High temperature and bacteriophages can indirectly select for bacterial pathogenicity in environmental reservoirs. PLoS ONE. 2011;6:e17651. doi: 10.1371/journal.pone.0017651. PubMed DOI PMC
Yura T., Nagai H., Mori H. Regulation of the heat-shock response in bacteria. Annu. Rev. Microbiol. 1993;47:321–350. doi: 10.1146/annurev.mi.47.100193.001541. PubMed DOI
Brunn A.F., Heiberg B. Wietere Untersuchungen uber die Rotsenche des Aales in den Dunischen Gewassern. Zentralbl. Fisch. 1935;33:379–382.
Mahnken C.V.W. Status report on commercial salmon culture in Puget Sound. Commer. Fish Farmer Aquac. News. 1975;2:8–11.
Ormonde P., Hörstedt P., O’Toole R., Milton D.L. Role of motility in adherence to and invasion of a fish cell line by Vibrio anguillarum. J. Bacteriol. 2000;182:2326–2328. doi: 10.1128/JB.182.8.2326-2328.2000. PubMed DOI PMC
O’Toole R., Milton D.L., Wolf-Watz H. Chemotactic motility is required for invasion of the host by the fish pathogen Vibrio anguillarum. Mol. Microbiol. 1996;19:625–637. doi: 10.1046/j.1365-2958.1996.412927.x. PubMed DOI
Haldar S., Maharajan A., Chatterjee S., Hunter S.A., Chowdhury N., Hinenoya A., Asakura M., Yamasaki S. Identification of Vibrio harveyi as a causative bacterium for a tail rot disease of sea bream Sparus aurata from research hatchery in Malta. Microbiol. Res. 2010;165:639–648. doi: 10.1016/j.micres.2009.12.001. PubMed DOI
Pujalte M.J., Sitja-Bobadilla A., Macián M.C., Belloch C., Alvarez-Pellitero P., Perez-Sanchez J., Uruburu F., Garay E. Virulence and molecular typing of Vibrio harveyi strains isolated from cultured dentex, gilthead sea bream and European sea bass. Syst. Appl. Microbiol. 2003;26:284–292. doi: 10.1078/072320203322346146. PubMed DOI
Firmino J., Furones M.D., Andree K.B., Sarasquete C., Ortiz-Delgado J.B., Asencio-Alcudia G., Gisbert E. Contrasting outcomes of Vibrio harveyi pathogenicity in gilthead seabream, Sparus aurata and European seabass, Dicentrachus labrax. Aquaculture. 2019;511:734210. doi: 10.1016/j.aquaculture.2019.734210. DOI
Paperna I. Review of diseases affecting cultured Sparus aurata and Dicentrarchus labrax [sea bream, sea bass; Dinoflagellate, trichodines, bacterial diseases, metabolic disorders mainly]; Proceedings of the L’aquaculture du bar (loup) et des Sparides; Sete, France. 15–17 March 1983.
Balebona M.C., Zorrilla I., Moriñigo M.A., Borrego J.J. Survey of bacterial pathologies affecting farmed gilt-head sea bream (Sparus aurata L.) in southwestern Spain from 1990 to 1996. Aquaculture. 1998;166:19–35. doi: 10.1016/S0044-8486(98)00282-8. DOI
Zorrilla I., Chabrillón M., Arijo S., Dıaz-Rosales P., Martınez-Manzanares E., Balebona M.C., Morinigo M.A. Bacteria recovered from diseased cultured gilthead sea bream (Sparus aurata L.) in southwestern Spain. Aquaculture. 2003;218:11–20. doi: 10.1016/S0044-8486(02)00309-5. DOI
Balebona M.C., Andreu M.J., Bordas M.A., Zorrilla I., Moriñigo M.A., Borrego J.J. Pathogenicity of Vibrio alginolyticus for Cultured Gilt-Head Sea Bream (Sparus aurata L.) Appl. Environ. Microbiol. 1998;64:4269–4275. doi: 10.1128/AEM.64.11.4269-4275.1998. PubMed DOI PMC
Bakhrouf A., Ben Ouada H., Oueslati R. Essai de traitement des vibrioses du loup Dicentrarchus labrax dans une zone de pisciculture, à Monastir, Tunisie. Mar. Life. 1995;5:47–53.
Kahla-Nakbi A.B., Chaieb K., Besbes A., Zmantar T., Bakhrouf A. Virulence and enterobacterial repetitive intergenic consensus PCR of Vibrio alginolyticus strains isolated from Tunisian cultured gilthead sea bream and sea bass outbreaks. Vet. Microbiol. 2006;117:321–327. doi: 10.1016/j.vetmic.2006.06.012. PubMed DOI
Castillo D., D’Alvise P., Kalatzis P.G., Kokkari C., Middelboe M., Gram L., Liu S., Katharios P. Draft genome sequences of Vibrio alginolyticus strains V1 and V2, opportunistic marine pathogens. Genome Announc. 2015;3:4. doi: 10.1128/genomeA.00729-15. PubMed DOI PMC
Yan Q., Chen Q., Ma S., Zhuang Z., Wang X. Characteristics of adherence of pathogenic Vibrio alginolyticus to the intestinal mucus of large yellow croaker (Pseudosciaena crocea) Aquaculture. 2007;269:21–30. doi: 10.1016/j.aquaculture.2007.02.042. DOI
Gauthier G., Lafay B., Ruimy R., Breittmayer V., Nicolas J.-L., Gauthier M., Christen R. Small-Subunit rRNA Sequences and Whole DNA Relatedness Concur for the Reassignment of Pasteurella piscicida (Snieszko et al.) Janssen and Surgalla to the Genus Photobacterium as Photobacterium damsela subsp. piscicida comb. nov. Int. J. Syst. Evol. Microbiol. 1995;45:139–144. doi: 10.1099/00207713-45-1-139. PubMed DOI
Toranzo A.E., Casal J.F., Figueras A., Magarin B., Barja J.L. Pasteurellosis in cultured gilthead seabream (Sparus aurata): First report in Spain. Aquaculture. 1991;99:1–15. doi: 10.1016/0044-8486(91)90284-E. DOI
Baudin-Laurencin F., Pepin J.F., Raymond J.C. First observation of an epizootic of pasteurellosis in farmed and wild fish of the French Mediterranean coasts; Proceedings of the 5th International Conference of the European Association of Fish Pathology; Budapest, Hungary. 25–29 August 1991; p. 17.
Love M., Teebken-Fisher D., Hose J.E., Farmer J.J., Hickman F.W., Fanning G.R. Vibrio damsela, a marine bacterium, causes skin ulcers on the damselfish Chromis punctipinnis. Science. 1981;214:1139–1140. doi: 10.1126/science.214.4525.1139. PubMed DOI
Mahmoud S.A., El-Bouhy Z.M., Hassanin M.E., Fadel A.H. Vibrio alginolyticus and Photobacterium damselae subsp. damselae: Prevalence, histopathology and treatment in sea bass Dicentrarchus labrax. J. Pharm. Chem. Biol. Sci. 2017;5:354–364.
Essam H.M., Abdellrazeq G.S., Tayel S.I., Torky H.A., Fadel A.H. Pathogenesis of Photobacterium damselae subspecies infections in sea bass and sea bream. Microb. Pathog. 2016;99:41–50. doi: 10.1016/j.micpath.2016.08.003. PubMed DOI
Uzun E., Ogut H. The isolation frequency of bacterial pathogens from sea bass (Dicentrarchus labrax) in the Southeastern Black Sea. Aquaculture. 2015;437:30–37. doi: 10.1016/j.aquaculture.2014.11.017. DOI
Vera P., Navas J.I., Fouz B. First isolation of Vibrio damsela from seabream (Sparus aurata) Bull. Eur. Assoc. Fish Pathol. 1991;11:112.
Toranzo A.E., Magariños B., Romalde J.L. A review of the main bacterial fish diseases in mariculture systems. Aquaculture. 2005;246:37–61. doi: 10.1016/j.aquaculture.2005.01.002. DOI
Pepin J.-F., Emery E. Marine Cytophaga-like bacteria (CLB) isolated from diseased reared sea bass (Dicentrarchus labrax L.) from French Mediterranean coast. Bull. Eur. Assoc. Fish. Pathol. 1993;13:165.
Kolygas M.N., Gourzioti E., Vatsos I.N., Athanassopoulou F. Identification of Tenacibaculum maritimum strains from marine farmed fish in Greece. Vet. Rec. 2012;170:623. doi: 10.1136/vr.100778. PubMed DOI
Jacobs J.M., Stine C.B., Baya A.M., Kent M.L. A review of mycobacteriosis in marine fish. J. Fish Dis. 2009;32:119–130. doi: 10.1111/j.1365-2761.2008.01016.x. PubMed DOI
Ucko M., Colorni A., Kvitt H., Diamant A., Zlotkin A., Knibb W.R. Strain variation in Mycobacterium marinum fish isolates. Appl. Environ. Microbiol. 2002;68:5281–5287. doi: 10.1128/AEM.68.11.5281-5287.2002. PubMed DOI PMC
Batra P., Mathur P., Misra M.C. Aeromonas spp.: An Emerging Nosocomial Pathogen. J. Lab. Physicians. 2016;8:1–4. doi: 10.4103/0974-2727.176234. PubMed DOI PMC
Groberg W.J., Jr., McCoy R.H., Pilcher K.S., Fryer J.L. Relation of water temperature to infections of coho salmon (Oncorhynchus kisutch), chinook salmon (O. tshawytscha), and steelhead trout (Salmo gairdneri) with Aeromonas salmonicida and A. hydrophila. J. Fish. Board Can. 1978;35:1. doi: 10.1139/f78-001. DOI
Yiagnisis M., Athanassopoulou F. Recent Advances in Fish Farms. IntechOpen; London, UK: 2011. Bacteria isolated from diseased wild and farmed marine fish in Greece.
Blandford M.I., Taylor-Brown A., Schlacher T.A., Nowak B., Polkinghorne A. Epitheliocystis in fish: An emerging aquaculture disease with a global impact. Transbound. Emerg. Dis. 2018;65:1436–1446. doi: 10.1111/tbed.12908. PubMed DOI
Nowak B.F., LaPatra S.E. Epitheliocystis in fish. J. Fish Dis. 2006;29:573–588. doi: 10.1111/j.1365-2761.2006.00747.x. PubMed DOI
Paperna I., Sabnai I., Zachary A. Ultrastructural studies in piscine epitheliocystis: Evidence for a pleomorphic developmental cycle. J. Fish Dis. 1981;4:459–472. doi: 10.1111/j.1365-2761.1981.tb01159.x. DOI
Crespo S., Zarza C., Padros F., de Mateo M.M. Epitheliocystis agents in sea bream Sparus aurata: Morphological evidence for two distinct chlamydia-like developmental cycles. Dis. Aquat. Organ. 1999;37:61–72. doi: 10.3354/dao037061. PubMed DOI
Qi W., Vaughan L., Katharios P., Schlapbach R., Seth-Smith H.M.B. Host-Associated Genomic Features of the Novel Uncultured Intracellular Pathogen Ca. Ichthyocystis Revealed by Direct Sequencing of Epitheliocysts. Genome Biol. Evol. 2016;8:1672–1689. doi: 10.1093/gbe/evw111. PubMed DOI PMC
Tsertou M.I., Smyrli M., Kokkari C., Antonopoulou E., Katharios P. The aetiology of systemic granulomatosis in meagre (Argyrosomus regius): The “Nocardia” hypothesis. Aquac. Rep. 2018;12:5–11. doi: 10.1016/j.aqrep.2018.08.002. DOI
Cone D.K. Monogenea (Phylum Platyhelminthes) PTK Fish. Dis. Disord. 1995;1:289–327.
Silan P., Maillard C. Biologie comparée du développement et discrimination des Diplectanidae ectoparasites du Bar (Teleostei) Ann. Sci. Nat. Zool. Biol. Anim. 1989;10:31–45.
Kim K.H., Ahn K.J., Kim C.S. Seasonal abundances of Prosomicrocotyla gotoi (Monogenea) and Opecoelus sphaericus (Digenea) from greenlings Hexagrammos otakii in a southern coastal area in Korea. Aquaculture. 2001;192:147–153. doi: 10.1016/S0044-8486(00)00464-6. DOI
Gannicott A.M., Tinsley R.C. Larval survival characteristics and behaviour of the gill monogenean Discocotyle sagittata. Parasitology. 1998;117:491–498. doi: 10.1017/S0031182098003217. PubMed DOI
Antonelli L., Foata J., Quilichini Y., Marchand B. Influence of season and site location on European cultured sea bass parasites in Corsican fish farms using indicator species analysis (IndVal) Parasitol. Res. 2016;115:561–568. doi: 10.1007/s00436-015-4772-9. PubMed DOI
Hoffman G.L., Putz R.E. Host susceptibility and the effect of aging, freezing, heat, and chemicals on spores of Myxosoma cerebralis. Progress. Fish-Cult. 1969;31:35–37. doi: 10.1577/1548-8640(1969)31[35:HSATEO]2.0.CO;2. DOI
Byers J.E. Marine Parasites and Disease in the Era of Global Climate Change. Ann. Rev. Mar. Sci. 2021;13:397–470. doi: 10.1146/annurev-marine-031920-100429. PubMed DOI
Marcogliese D.J. The impact of climate change on the parasites and infectious diseases of aquatic animals. Rev. Sci. Tech. 2008;27:467–484. doi: 10.20506/rst.27.2.1820. PubMed DOI
Marcogliese D.J. The distribution and abundance of parasites in aquatic ecosystems in a changing climate: More than just temperature. Integr. Comp. Biol. 2016;56:611–619. doi: 10.1093/icb/icw036. PubMed DOI
Lõhmus M., Björklund M. Climate change: What will it do to fish-parasite interactions? Biol. J. Linn. Soc. 2015;116:397–411. doi: 10.1111/bij.12584. DOI
Marcogliese D.J. Implications of climate change for parasitism of animals in the aquatic environment. Can. J. Zool. 2001;79:1331–1352. doi: 10.1139/z01-067. DOI
Lafferty K.D., Holt R.D. How should environmental stress affect the population dynamics of disease? Ecol. Lett. 2003;6:654–664. doi: 10.1046/j.1461-0248.2003.00480.x. DOI
Studer A., Thieltges D.W., Poulin R. Parasites and global warming: Net effects of temperature on an intertidal host-parasite system. Mar. Ecol. Prog. 2010;415:11–22. doi: 10.3354/meps08742. DOI
Soares F., Roque A., Gavaia P.J. Review of the principal diseases affecting cultured meagre (Argyrosomus regius) Aquac. Res. 2018;49:1373–1382. doi: 10.1111/are.13613. DOI
Alvarez-Pellitero P. Report about Fish Parasitic Diseases. Options Méditerranéennes B Etudes et Recherches; Zaragoza, Spain: 2004. [(accessed on 20 July 2021)]. pp. 103–130. Available online: http://om.ciheam.org/article.php?IDPDF=4600222.
Reversat J., Silan P., Maillard C. Structure of monogenean populations, ectoparasites of the gilthead sea bream Sparus aurata. Mar. Biol. 1992;112:43–47. doi: 10.1007/BF00349726. DOI
Sitjà-Bobadilla A., Palenzuela O. Fish Parasites. Pathobiology and Protection. Volume 163. CABI; Wallingford, CT, USA: 2012. Enteromyxum species; p. 76.
Fioravanti M.L., Mladineo I., Palenzuela O., Beraldo P., Massimo M., Gustinelli A., Sitjà-Bobadilla A. In: Fish. Farmer’s Guide to Combating Parasitic Infections in European Sea Bass and Gilthead Sea Bream Aquaculture. Sitjà-Bobadilla A., Bello-Gómez E., editors. Consejo Superior de Investigaciones Científicas; Madrid, Spain: 2020. (A Series of ParaFishControl Guides to Combating Fish Parasite Infections in Aquaculture. Guide, 4). e-NIPO: 833-20-104-5.
Šarušic G. Preliminary report of infestation by isopod Ceratothoa oestroides (Risso, 1826), in marine cultured fish. Bull. Eur. Assoc. Fish Pathol. 1999;19:110–112.
Čolak S., Kolega M., Mejdandžić D., Župan I., Šarić T., Piplović E., Mustać B. Prevalence and effects of the cymothoid isopod (Ceratothoa oestroides, Risso 1816) on cultured meagre (Argyrosomus regius, Asso 1801) in the Eastern Adriatic Sea. Aquac. Res. 2018;49:1001–1007. doi: 10.1111/are.13547. DOI
Öktener A., Trilles J.-P. Report on cymothoids (Crustacea, Isopoda) collected from marine fishes in Turkey. Acta Adriatica. 2004;45:145–154.
Mladineo I. Life cycle of Ceratothoa oestroides, a cymothoid isopod parasite from sea bass Dicentrarchus labrax and sea bream Sparus aurata. Dis. Aquat. Organ. 2003;57:97–101. doi: 10.3354/dao057097. PubMed DOI
Mladineo I., Hrabar J., Vidjak O., Bočina I., Čolak S., Katharios P., Cascarano M.C., Keklikoglou K., Volpatti D., Beraldo P. Host-Parasite Interaction between Parasitic Cymothoid Ceratothoa oestroides and its Host, Farmed European Sea Bass (Dicentrarchus labrax) Pathogens. 2020;9:230. doi: 10.3390/pathogens9030230. PubMed DOI PMC
Arechavala-Lopez P., Sanchez-Jerez P., Bayle-Sempere J.T., Uglem I., Mladineo I. Reared fish, farmed escapees and wild fish stocks—A triangle of pathogen transmission of concern to Mediterranean aquaculture management. Aquac. Environ. Interact. 2013;3:153–161. doi: 10.3354/aei00060. DOI
Mladineo I., Hrabar J., Trumbić Ž., Manousaki T., Tsakogiannis A., Taggart J.B., Tsigenopoulos C.S. Community Parameters and Genome-Wide RAD-Seq Loci of Ceratothoa oestroides Imply its Transfer between Farmed European Sea Bass and Wild Farm-Aggregating Fish. Pathogens. 2021;10:100. doi: 10.3390/pathogens10020100. PubMed DOI PMC
Woo P.T.K. Fish, Diseases and Disorders. Protozoan and Metazoan infections. Volume 1. CABI; Wallingford, CT, USA: 1995.
Colorni A. Biology of Cryptocaryon irritans and strategies for its control. Aquaculture. 1987;67:236–237. doi: 10.1016/0044-8486(87)90041-X. DOI
Rigos G., Pavlidis M., Divanach P. Host susceptibility to Cryptocaryon sp. infection of Mediterranean marine broodfish held under intensive culture conditions: A case report. Bull. Assoc. Fish Pathol. 2001;21:33–36.
Colorni A., Burgess P. Cryptocaryon irritans Brown 1951, the cause of ‘white spot disease’ in marine fish: An update. Aquar. Sci. Conserv. 1997;1:217–238. doi: 10.1023/A:1018360323287. DOI
Paperna I. Amyloodinium ocellatum (Brown, 1931) (Dinoflagellida) infestations in cultured marine fish at Eilat, Red Sea: Epizootiology and pathology. J. Fish Dis. 1980;3:363–372. doi: 10.1111/j.1365-2761.1980.tb00421.x. DOI
Francis-Floyd R., Floyd M.R. Amyloodinium ocellatum, An Important Parasite of Cultured Marine Fish. Southern Regional Aquaculture Center; Stoneville, MS, USA: 2011.
Moreira M., Schrama D., Soares F., Wulff T., Pousão-Ferreira P., Rodrigues P. Physiological responses of reared sea bream (Sparus aurata Linnaeus, 1758) to an Amyloodinium ocellatum outbreak. J. Fish Dis. 2017;40:1545–1560. doi: 10.1111/jfd.12623. PubMed DOI
Soares F., Quental-Ferreira H., Moreira M., Cunha E., Ribeiro L., Pousão-Ferreira P. First report of Amyloodinium ocellatum in farmed meagre (Argyrosomus regius) Bull. Eur. Assoc. Fish Pathol. 2012;32:30–33.
Woo P.T., Bruno D.W., Lim L.H.S. Diseases and Disorders of Finfish in Cage Culture. CABI; Wallingford, CT, USA: 2002.
Fioravanti M.L., Caffara M., Florio D., Gustinelli A., Marcer F. A parasitological survey of European sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) cultured in Italy. Vet. Res. Commun. 2006;30:249–252. doi: 10.1007/s11259-006-0053-5. DOI
Alvárez-Pellitero P., Sitjà-Bobadilla A., Franco-Sierra A. Protozoan parasites of wild and cultured sea bass, Dicentrarchus labrax (L.), from the Mediterranean area. Aquac. Res. 1993;24:101–108. doi: 10.1111/j.1365-2109.1993.tb00832.x. DOI
Brazik D.C., Bullis R.A. The Effect of Temperature on the Relationship between a Ciliated Protozoan, Trichodina cottidarum, and the Longhorn Sculpin, Myoxocephalus octodecemspinosus. Biol. Bull. 1995;189:239. doi: 10.1086/BBLv189n2p239. PubMed DOI
Lom J., Laird M. Parasitic protozoa from marine and euryhaline fish of Newfoundland and New Brunswick. I. Peritrichous ciliates. Can. J. Zool. 1969;47:1367–1380. doi: 10.1139/z69-212. DOI
Dragesco A., Dragesco J., Coste F., Gasc C., Romestand B., Raymond J.-C., Bouix G. Philasterides dicentrarchi, n. sp.,(Ciliophora, Scuticociliatida), a histophagous opportunistic parasite of Dicentrarchus labrax (Linnaeus, 1758), a reared marine fish. Eur. J. Protistol. 1995;31:327–340. doi: 10.1016/S0932-4739(11)80097-0. DOI
Post G.W. Textbook of Fish Health. TFH Publications; Neptune City, NJ, USA: 1983.
Isaksen T.E. Ph. D. Thesis. University of Bergen; Bergen, Norway: 2013. Ichthyobodo Infections on Farmed and wild Fish—Methods for Detection and Identification of Ichthyobodo spp.
Schäperclaus W. Fish Diseases; CRC Press: Boca Raton, FL, USA, 1992; Volume 2. ISBN 906191. :9517.
Lom J., Dyková I. Protozoan Parasites of Fishes. Elsevier; Amsterdam, The Netherlands: 1992.
Santos M.J. Observations on the parasitofauna of wild sea bass (Dicentrarchus labrax L.) from Portugal. Bull. Assoc. Fish Pathol. 1996;16:77–79.
Yardimci B., Pekmezci G.Z., Behire I.D., Metin S. Ichthyobodo spp. Infection in Meagre (Argyrosomus regius) from Turkey: Parasitological and Pathological Findings. Türkiye Parazitolojii Derg. 2016;40:48. doi: 10.5152/tpd.2016.4577. PubMed DOI
Tokșen E. First detection of Ichthyobodo spp. infection and its treatment in a sea bream (Sparus aurata L.) farm in Izmir. Türkiye Parazitoloji Derg. 2000;24:321–325.
Sitjà-Bobadilla A., Palenzuela O., Alvarez-Pellitero P. Light microscopic description of Eimeria sparis sp. nov. and Goussia sparis sp. nov.(Protozoa: Apicomplexa) from Sparus aurata L.(Pisces: Teleostei) Parasitol. Res. 1996;82:323–332. doi: 10.1007/s004360050121. PubMed DOI
Merella P., Garippa G., Salati F. Parasites of cage cultured European seabass Dicentrarchus Labrax and gilthead seabream Sparus aurata from Sardinia (western Mediterranean): First results. Parrasitologia. 2006;48:290.
Alvarez-Pellitero P., Sitjà-Bobadilla A. Cryptosporidium molnari n. sp. (Apicomplexa: Cryptosporidiidae) infecting two marine fish species, Sparus aurata L. and Dicentrarchus labrax L. Int. J. Parasitol. 2002;32:1007–1021. doi: 10.1016/S0020-7519(02)00058-9. PubMed DOI
Athanassopoulou F. Ichthyophoniasis in sea bream, Sparus aurata (L.), and rainbow trout, Oncorhynchus mykiss (Walbaum), from Greece. J. Fish Dis. 1992;15:437–441. doi: 10.1111/j.1365-2761.1992.tb01244.x. DOI
Ragan M.A., Goggin C.L., Cawthorn R.J., Cerenius L., Jamieson A.V., Plourde S.M., Rand T.G., Söderhäll K., Gutell R.R. A novel clade of protistan parasites near the animal-fungal divergence. Proc. Natl. Acad. Sci. USA. 1996;93:11907–11912. doi: 10.1073/pnas.93.21.11907. PubMed DOI PMC
Spanggaard B., Huss H.H., Bresciani J. Morphology of Ichthyophonus hoferi assessed by light and scanning electron microscopy. J. Fish Dis. 1995;18:567–577. doi: 10.1111/j.1365-2761.1995.tb00361.x. DOI
Sitjà-Bobadilla A., Alvarez-Pellitero P. Light and electron microscopic description of Sphaerospora dicentrarchi n. sp.(Myxosporea: Sphaerosporidae) from wild and cultured sea bass, Dicentrarchus labrax L. J. Protozool. 1992;39:273–281. doi: 10.1111/j.1550-7408.1992.tb01314.x. DOI
Sitjà-Bobadilla A., Alvarez-Pellitero P. Sphaerospora testicularis sp. nov. (Myxosporea: Sphaerosporidae) in wild and cultured sea bass, Dicentrarchus labrax (L.), from the Spanish Mediterranean area. J. Fish Dis. 1990;13:193–203. doi: 10.1111/j.1365-2761.1990.tb00774.x. DOI
Sitjà-Bobadilla A., Alvarez-Pellitero P. Pathologic effects of Sphaerospora dicentrarchi Sitjà-Bobadilla and Alvarez-Pellitero, 1992 and S. testicularis Sitjà-Bobadilla and Alvarez-Pellitero, 1990 (Myxosporea: Bivalvulida) parasitic in the Mediterranean sea bass Dicentrarchus labrax L. (Teleostei: Serranidae) and the cell-mediated immune reaction: A light and electron microscopy study. Parasitol. Res. 1993;79:119–129. PubMed
Palenzuela O., Alvarez-Pellitero P., Sitjà-Bobadilla A. Glomerular disease associated with Polysporoplasma sparis (Myxozoa) infections in cultured gilthead sea bream, Sparus aurata L. (Pisces: Teleostei) Parasitology. 1999;118:245–256. doi: 10.1017/S0031182098003758. PubMed DOI
Paling J.E. The attachment of the monogenean Diplectanum aequans (Wagener) Diesing to the gills of Morone labrax L. Parasitology. 1966;56:493–503. doi: 10.1017/S0031182000068979. PubMed DOI
Oliver G. Effect pathogène de la fixation de Diplectanum aequans (Wagener, 1857) Diesing, 1858 (Monogenea, Monopisthocotylea, Diplectanidae) sur les branchies de Dicentrarchus labrax (Linnaeus, 1758), (Pisces, Serranidae) Zeitschrift für Parasitenkunde. 1977;53:7–11. doi: 10.1007/BF00383109. DOI
Dezfuli B., Giari L., Simoni E., Menegatti R., Shinn A., Manera M. Gill histopathology of cultured European sea bass, Dicentrarchus labrax (L.), infected with Diplectanum aequans (Wagener 1857) Diesing 1958 (Diplectanidae: Monogenea) Parasitol. Res. 2007;100:707–713. doi: 10.1007/s00436-006-0343-4. PubMed DOI
Andree K.B., Roque A., Duncan N., Gisbert E., Estevez A., Tsertou M.I., Katharios P. Diplectanum sciaenae (Van Beneden & Hesse, 1863) (Monogenea) infecting meagre, Argyrosomus regius (Asso, 1801) broodstock in Catalonia, Spain. A case report. Vet. Parasitol. Reg. Stud. Rep. 2015;1-2:75–79. doi: 10.1016/j.vprsr.2016.02.006. PubMed DOI
Mahmoud N.E., Mahmoud A.M., Fahmy M.M. Parasitological and Comparative Pathological Studies on Monogenean Infestation of Cultured Sea Bream (Sparus aurata, Spariidae) in Egypt. Oceanography. 2014;2:1000129.
Mladineo I., Maršić-Lučić J. Host switch of Lamellodiscus elegans (Monogenea: Monopisthocotylea) and Sparicotyle chrysophrii (Monogenea: Polyopisthocotylea) between cage-reared sparids. Vet. Res. Commun. 2007;31:153. doi: 10.1007/s11259-006-3184-9. PubMed DOI
Desdevises Y. The phylogenetic position of Furnestinia echeneis (Monogenea, Diplectanidae) based on molecular data: A case of morphological adaptation? Int. J. Parasitol. 2001;31:205–208. doi: 10.1016/S0020-7519(00)00163-6. PubMed DOI
Hayward C.J. Revision of the monogenean genus Polylabris (Microcotylidae) Invertebr. Syst. 1996;10:995–1039. doi: 10.1071/IT9960995. DOI
Athanassopoulou F., Ragias V., Vagianou S., Di Cave D., Rigos G., Papathanasiou G., Georgoulakis J. Report of Sparicotyle (Microcotyle) chrysophrii Van Beneden and Hesse 1863, Atrispinum seminalis Euzet and Maillard 1973 and Polylabris tubicirrus Paperna and Kohn 1964 (Monogenea) on captive sea bream (Sparus aurata) and sharp snout sea bream (Diplodus p.) Bull. Eur. Assoc. Fish Pathol. 2005;25:256–261.
Bernardi C. Preliminary study on prevalence of larvae of Anisakidae family in European sea bass (Dicentrarchus labrax) Food Control. 2009;20:433–434. doi: 10.1016/j.foodcont.2008.07.001. DOI
Peñalver J., Dolores E.M., Muñoz P. Absence of anisakid larvae in farmed European sea bass (Dicentrarchus labrax L.) and gilthead sea bream (Sparus aurata L.) in Southeast Spain. J. Food Prot. 2010;73:1332–1334. doi: 10.4315/0362-028X-73.7.1332. PubMed DOI
Fioravanti M.L., Gustinelli A., Rigos G., Buchmann K., Caffara M., Pascual S., Pardo M.Á. Negligible risk of zoonotic anisakid nematodes in farmed fish from European mariculture, 2016 to 2018. Eurosurveillance. 2021;26:1900717. doi: 10.2807/1560-7917.ES.2021.26.2.1900717. PubMed DOI PMC
Cammilleri G., Costa A., Graci S., Buscemi M.D., Collura R., Vella A., Pulvirenti A., Cicero A., Giangrosso G., Schembri P. Presence of Anisakis pegreffii in farmed sea bass (Dicentrarchus labrax L.) commercialized in Southern Italy: A first report. Vet. Parasitol. 2018;259:13–16. doi: 10.1016/j.vetpar.2018.06.021. PubMed DOI
Sakanari J.A., Mckerrow J.H. Anisakiasis. Clin. Microbiol. Rev. 1989;2:278–284. doi: 10.1128/CMR.2.3.278. PubMed DOI PMC
Mladineo I., Hrabar J. Anisakis pegreffii. Trends Parasitol. 2020;36:717–718. doi: 10.1016/j.pt.2020.03.004. PubMed DOI
Fiorenza E.A., Wendt C.A., Dobkowski K.A., King T.L., Pappaionou M., Rabinowitz P., Samhouri J.F., Wood C.L. It’s a wormy world: Meta-Analysis reveals several decades of change in the global abundance of the parasitic nematodes Anisakis spp. and Pseudoterranova spp. in marine fishes and invertebrates. Glob. Chang. Biol. 2020;26:2854–2866. doi: 10.1111/gcb.15048. PubMed DOI
Sterud E. Parasites of wild sea bass Dicentrarchus labrax from Norway. Dis. Aquat. Organ. 2002;48:209–212. doi: 10.3354/dao048209. PubMed DOI
Deardorff T.L., Overstreet R.M. Review of Hysterothylacium and Iheringascaris (both previously= Thynnascaris) (Nematoda: Anisakidae) from the northern Gulf of Mexico. Proc. Biol. Soc. Washingt. 1980;93:1035–1079.
González L. The life cycle of Hysterothylacium aduncum (Nematoda: Anisakidae) in Chilean marine farms. Aquaculture. 1998;162:173–186. doi: 10.1016/S0044-8486(97)00303-7. DOI
Samak O.A.A. Mode of attachment and histopathological impacts associated with the parasitic copepod Lernanthropus kroyeri infesting gills of the sea bass fish, Dicentrarchus labrax in Egypt. J. Egypt. Ger. Soc. Zool. 2005;48:1.
Horton T., Okamura B. Post-Haemorrhagic anaemia in sea bass, Dicentrarchus labrax (L.), caused by blood feeding of Ceratothoa oestroides (Isopoda: Cymothoidae) J. Fish Dis. 2003;26:401–406. doi: 10.1046/j.1365-2761.2003.00476.x. PubMed DOI
Lee C.-S., O’Bryen P.J., Marcus N.H. Copepods in Aquaculture. Blackwell Publishing; Hoboken, NJ, USA: 2008.
Breitbart M. Marine viruses: Truth or dare. Ann. Rev. Mar. Sci. 2012;4:425–448. doi: 10.1146/annurev-marine-120709-142805. PubMed DOI
Danovaro R., Corinaldesi C., Dell’Anno A., Fuhrman J.A., Middelburg J.J., Noble R.T., Suttle C.A. Marine viruses and global climate change. FEMS Microbiol. Rev. 2011;35:993–1034. doi: 10.1111/j.1574-6976.2010.00258.x. PubMed DOI
Rohwer F., Thurber R.V. Viruses manipulate the marine environment. Nature. 2009;459:207–212. doi: 10.1038/nature08060. PubMed DOI
Weiss L.M., Becnel J.J. Microsporidia: Pathogens of Opportunity. John Wiley & Sons; Hoboken, NJ, USA: 2014.
Munday B.L., Kwang J., Moody N. Betanodavirus infections of teleost fish: A review. J. Fish Dis. 2002;25:127–142. doi: 10.1046/j.1365-2761.2002.00350.x. DOI
Gomez D.K., Sato J., Mushiake K., Isshiki T., Okinaka Y., Nakai T. PCR-Based detection of betanodaviruses from cultured and wild marine fish with no clinical signs. J. Fish Dis. 2004;27:603–608. doi: 10.1111/j.1365-2761.2004.00577.x. PubMed DOI
Mori K., Nakai T., Nagahara M., Muroga K., Mekuchi T., Kanno T. A viral disease in hatchery-reared larvae and juveniles of redspotted grouper. Fish. Pathol. 1991;26:209–210. doi: 10.3147/jsfp.26.209. DOI
Frerichs G.N., Rodger H.D., Peric Z. Cell culture isolation of piscine neuropathy nodavirus from juvenile sea bass, Dicentrarchus labrax. J. Gen. Virol. 1996;77:2067–2071. doi: 10.1099/0022-1317-77-9-2067. PubMed DOI
Munday B.L., Nakai T. Nodaviruses as pathogens in larval and juvenile marine finfish. World J. Microbiol. Biotechnol. 1997;13:375–381. doi: 10.1023/A:1018516014782. DOI
Castri J., Thiéry R., Jeffroy J., de Kinkelin P., Raymond J.C. Sea bream Sparus aurata, an asymptomatic contagious fish host for nodavirus. Dis. Aquat. Organ. 2001;47:33–38. doi: 10.3354/dao047033. PubMed DOI
Lopez-Jimena B., Cherif N., Garcia-Rosado E., Infante C., Cano I., Castro D., Hammami S., Borrego J.J., Alonso M.D. A combined RT-PCR and dot-blot hybridization method reveals the coexistence of SJNNV and RGNNV betanodavirus genotypes in wild meagre (Argyrosomus regius) J. Appl. Microbiol. 2010;109:1361–1369. doi: 10.1111/j.1365-2672.2010.04759.x. PubMed DOI
Arimoto M., Maruyama K., Furusawa I. Epizootiology of viral nervous necrosis (VNN) in striped jack. Fish Pathol. 1994;29:19–24. doi: 10.3147/jsfp.29.19. DOI
Tanaka S., Aoki H., Nakai T. Pathogenicity of the nodavirus detected from diseased sevenband grouper Epinephelus septemfasciatus. Fish Pathol. 1998;33:31–36. doi: 10.3147/jsfp.33.31. DOI
Wolf K. Fish Viruses and Fish Viral Diseases. Cornell University Press; Ithaca, NY, USA: 1988.
Kanakoudis G., Vlemmas I., Papaioannou N., Fotis G., Pnevmatikos G. Study of Lymphocystis disease in Sparus auratus in Greece. Deltio Ellinikis Ktiniatrikis Etair. 1992;43:109–115.
Wolf K., Gravell M., Malsberger R.G. Lymphocystis virus: Isolation and propagation in centrarchid fish cell lines. Science. 1966;151:1004–1005. doi: 10.1126/science.151.3713.1004. PubMed DOI
Mathieu-Daude F., Faye N., Coste F., Manier J., Marques A., Bouix G. Occurence of a microsporidiosis in marine cultured gilt-head sea bream from the Languedoc coast: A problem of specificity in the genus Glugea (Protozoa, Microspora) Bull. Eur. Assoc. Fish Pathol. 1992;12:67–70.
Morsy K., Bashtar A.R., Abdel-Ghaffar F., Al-Quraishy S. Morphological and phylogenetic description of a new xenoma-inducing microsporidian, Microsporidium aurata nov. sp., parasite of the gilthead seabream Sparus aurata from the Red Sea. Parasitol. Res. 2013;112:3905–3915. doi: 10.1007/s00436-013-3580-3. PubMed DOI
Faye N., Toguebaye B.S., Bouix G. Ultrastructure and development of Pleistophora senegalensis sp. nov. (Protozoa, Microspora) from the gilt-head sea bream, Sparus aurata L. (Teleost, Sparidae) from the coast of Senegal. J. Fish Dis. 1990;13:179–192. doi: 10.1111/j.1365-2761.1990.tb00773.x. DOI
Kou G.-H., Wang C.-H., Hung H.-W., Jang Y.-S., Chou C.-M., Lo C.-F. A cell line (EP-1 cell line) derived from “Beko disease” affected Japanese eel elver (Anguilla japonica) persistently infected with Pleistophora anguillarum. Aquaculture. 1995;132:161–173. doi: 10.1016/0044-8486(94)00394-4. DOI
Katharios P., Kalatzis P.G., Kokkari C., Pavlidis M., Wang Q. Characterization of a highly virulent Edwardsiella anguillarum strain isolated from Greek aquaculture, and a spontaneously induced prophage therein. Front. Microbiol. 2019;10:1–12. doi: 10.3389/fmicb.2019.00141. PubMed DOI PMC
Katharios P., Kokkari C., Dourala N., Smyrli M. First report of Edwardsiellosis in cage-cultured sharpsnout sea bream, Diplodus puntazzo from the Mediterranean. BMC Vet. Res. 2015:11. doi: 10.1186/s12917-015-0482-x. PubMed DOI PMC
Shao S., Lai Q., Liu Q., Wu H., Xiao J., Shao Z., Wang Q., Zhang Y. Phylogenomics characterization of a highly virulent Edwardsiella strain ET080813T encoding two distinct T3SS and three T6SS gene clusters: Propose a novel species as Edwardsiella anguillarum sp. nov. Syst. Appl. Microbiol. 2015;38:36–47. doi: 10.1016/j.syapm.2014.10.008. PubMed DOI
Dolan P.T., Whitfield Z.J., Andino R. Mapping the evolutionary potential of RNA viruses. Cell Host Microbe. 2018;23:435–446. doi: 10.1016/j.chom.2018.03.012. PubMed DOI PMC
Janssen K., Chavanne H., Berentsen P., Komen H. Impact of selective breeding on European aquaculture. Aquaculture. 2017;472:8–16. doi: 10.1016/j.aquaculture.2016.03.012. DOI
Hammond J. Animal breeding in relation to nutrition and environmental conditions. Biol. Rev. 1947;22:195–213. doi: 10.1111/j.1469-185X.1947.tb00330.x. PubMed DOI
Sae-Lim P., Gjerde B., Nielsen H.M., Mulder H., Kause A. A review of genotype-by-environment interaction and micro-environmental sensitivity in aquaculture species. Rev. Aquac. 2016;8:369–393. doi: 10.1111/raq.12098. DOI