Visual mismatch negativity: a predictive coding view

. 2014 ; 8 () : 666. [epub] 20140916

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid25278859

An increasing number of studies investigate the visual mismatch negativity (vMMN) or use the vMMN as a tool to probe various aspects of human cognition. This paper reviews the theoretical underpinnings of vMMN in the light of methodological considerations and provides recommendations for measuring and interpreting the vMMN. The following key issues are discussed from the experimentalist's point of view in a predictive coding framework: (1) experimental protocols and procedures to control "refractoriness" effects; (2) methods to control attention; (3) vMMN and veridical perception.

Zobrazit více v PubMed

Adams R. A., Stephan K. E., Brown H. R., Frith C. D., Friston K. J. (2013). The computational anatomy of psychosis. Front. Psychiatry 4:47 10.3389/fpsyt.2013.00047 PubMed DOI PMC

Amenedo E., Escera C. (2000). The accuracy of sound duration representation in the human brain determines the accuracy of behavioral perception. Eur. J. Neurosci. 12, 2570–2574 10.1046/j.1460-9568.2000.00114.x PubMed DOI

Amenedo E., Pazo-Alvarez P., Cadaveira F. (2007). Vertical asymmetries in pre-attentive detection of changes in motion direction. Int. J. Psychphysiol. 64, 184–189 10.1016/j.ijpsycho.2007.02.001 PubMed DOI

Arnal L. H., Giraud A. L. (2012). Cortical oscillations and sensory predictions. Trends Cogn Sci. 16, 390–398 10.1016/j.tics.2012.05.003 PubMed DOI

Astikainen P., Cong F., Ristaniemi T., Hietanen J. K. (2013). Event-related potentials to unattended changes in facial expressions: detection of regularity violations or encoding of emotions? Front. Hum. Neurosci. 7:557 10.3389/fnhum.2013.00557 PubMed DOI PMC

Astikainen P., Hietanen J. K. (2009). Event-related potentials to task-irrelevant changes in facial expressions. Behav. Brain Funct. 5:30 10.1186/1744-9081-5-30 PubMed DOI PMC

Astikainen P., Lillstarng E., Ruusvirta T. (2008). Visual mismatch negativity for changes in orientation – a sensory memory-dependent response. Eur. J. Neurosci. 21, 2319–2324 10.1111/j.1460-9568.2008.06510.x PubMed DOI

Astikainen P., Ruusuvirta T., Wikgen J., Korjonen T. (2004). The human brain processes visual changes that are not cued by attended auditory stimulation. Neurosci. Lett. 368, 231–234 10.1016/j.neulet.2004.07.025 PubMed DOI

Athanasopoulos P., Dering B., Wiggett A., Kuipers J.-R., Thierry G. (2010). Perceptual shift in bilingualism: brain potentials reveal plasticity in pre-attentive colour perception. Cognition 116, 437–443 10.1016/j.cognition.2010.05.016 PubMed DOI

Atienza M., Cantero J. L. (2001). Complex sound processing during human REM sleep by recovering information from long-term memory as revealed by the mismatch negativity (MMN). Brain Res. 901, 151–160 10.1016/S0006-8993(01)02340-X PubMed DOI

Baldeweg T. (2006). Repetition effects to sounds: evidence for predictive coding in the auditory system. Trends Cogn. Sci. 10, 93–94 10.1016/j.tics.2006.01.010 PubMed DOI

Baldeweg T. (2007). ERP repetition effects and mismatch negativity generation - A predictive coding perspective. J. Psychophysiol. 21, 204–213 10.1027/0269-8803.21.34.204 DOI

Baldeweg T., Richardson A., Watkins S., Foale C., Gruzelier J. (1999). Impaired auditory frequency discrimination in dyslexia detected with mismatch evoked potentials. Ann. Neurol. 45, 495–503 PubMed

Bastos A. M., Usrey W. M., Adams R. A., Mangun G. R., Fries P., Friston K. J. (2012). Canonical microcircuits for predictive coding. Neuron 76, 695–711 10.1016/j.neuron.2012.10.038 PubMed DOI PMC

Berti S. (2009). Position but not color deviants result in visual mismatch negativity in an active oddball task. Neuroreport 20, 702–707 10.1097/WNR.0b013e32832a6e8d PubMed DOI

Berti S. (2011). The attentional blink demonstrates automatic deviance processing in vision. Neuroreport 22, 664–667 10.1097/WNR.0b013e32834a8990 PubMed DOI

Berti S., Schröger E. (2006). Visual distraction: a behavioral and event-related brian potential study in humans. Neuroreport 17, 151–155 10.1097/01.wnr.0000195669.07467.e1 PubMed DOI

Besle J., Caclin A., Mayet R., Giard M.-H., Morlet D. (2007). Audiovisual events in sensory memory. J. Psychophysiol. 21, 231–238 10.1027/0269-8803.21.34.231 DOI

Besle J., Fort A., Giard M.-H. (2005). Is auditory memory sensitive to visual information? Exp. Brain Res. 166, 337–344 10.1007/s00221-005-2375-x PubMed DOI PMC

Boutros N. N., Gjini K., Urbach H., Pflieger M. E. (2011). Mapping repetition suppression of the N100 evoked response to the human cerebral cortex. Biol. Psychiatry 69, 883–889 10.1016/j.biopsych.2010.12.011 PubMed DOI PMC

Bowman H., Filetti M., Wyble B., Olivers C. (2013). Attention is more than prediction precision. Behav. Brain Sci. 36, 206–208 10.1017/S0140525X12002324 PubMed DOI

Budd T. W., Barry R. J., Gordon E., Rennie C., Michie P. T. (1998). Decrement of the N1 auditory event-related potential with stimulus repetition: habituation vs. refractoriness. Int. J. Psychophysiol. 31, 51–68 10.1016/S0167-8760(98)00040-3 PubMed DOI

Bullock T. H., Karamürsel S., Achimowicz J. Z., McClune M. C., Başar-Eroglu C. (1994). Dynamic properties of human visual evoked and omitted stimulus potentials. Electroencephalogr. Clin. Neurophysiol. 91, 42–53 PubMed

Chang Y., Xu J., Shi N., Pang X., Zhang B., Cai Z. (2011). Dysfunction of preattentive visual information processing among patients with major depressive disorder. Biol. Psychiatry 69, 742–747 10.1016/j.biopsych.2010.12.024 PubMed DOI

Chang Y., Xu J., Shi N., Zang B., Zhao L. (2010). Dysfunction of processing task-irrelevant emotional faces in major depressive disorder patients revealed by expression-related visual MMN. Neurosci. Lett. 472, 33–37 10.1016/j.neulet.2010.01.050 PubMed DOI

Chen Q., Zhou X. (2013). Vision dominates at the preresponse level and audition dominates at the response level in cross-modal interaction: behavioral and neural evidence. J. Neurosci. 33, 7109–7121 10.1523/JNEUROSCI.1985-12.2013 PubMed DOI PMC

Chen Y., Huang X., Luo Y., Peng C., Liu C. (2010). Differences in the neural basis of automatic auditory and visual time perception: ERP evidence from an across-modal delayed response oddball task. Brain Res. 1325, 100–111 10.1016/j.brainres.2010.02.040 PubMed DOI

Clark A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36, 181–204 10.1017/S0140525X12000477 PubMed DOI

Cleary K. M., Donkers F. C., Evans A. M., Belger A. (2013). Investigating developmental changes in sensory processing: visual mismatch response in healthy children. Front. Hum. Neurosci. 7:922 10.3389/fnhum.2013.00922 PubMed DOI PMC

Cléry H., Bonnet-Brilhaut F., Lenoir P., Barthelemy C., Bruneau N., Gomot M. (2013b). Atypical visual change detection in children with autism: an electrophysiological study. Psychophysiology 50, 240–252 10.1111/psyp.12006 PubMed DOI

Cléry H., Roux S., Houy-Durand E., Bonnet-Brilhault F., Bruneau N., Gomot M. (2013a). Electrophysiological evidence of atypical visual change detection in adults with autism. Front. Hum. Neurosci. 7:62 10.3389/fnhum.2013.00062 PubMed DOI PMC

Clifford A., Holmes A., Davies I. R. L., Franklin A. (2010). Color categories affect pre-attentive color perception. Biol. Psychol. 85, 275–282 10.1016/j.biopsycho.2010.07.014 PubMed DOI

Coch D., Skendzel W., Neville H. J. (2005). Auditory and visual refractory period effects in children and adults: an ERP study. Clin. Neurophysiol. 116, 2184–2203 10.1016/j.clinph.2005.06.005 PubMed DOI

Costa-Faidella J., Grimm S., Slabu L., Diaz-Santaella F., Escera C. (2011). Multiple time scales of adaptation in the auditory system as revealed by human evoked potentials. Psychophysiology 48, 774–783 10.1111/j.1469-8986.2010.01144.x PubMed DOI

Cowan N., Winkler I., Teder W., Näätänen R. (1993). Memory prerequisites of the mismatch negativity in the auditory event-related potential (ERP). J. Exp. Psychol. Human Percept. Perform. 19, 909–921 PubMed

Coyle J. T. (2006). Glutamate and Schizophrenia: beyond the dopamine hypothesis. Cell. Mol. Neurobiol. 26, 363–382 10.1007/s10571-006-9062-8 PubMed DOI

Csukly G., Stefanics G., Komlósi S., Czigler I., Bitter I., Czobor P. (2013). Emotion-related mismatch responses in schizophrenia: Impairments and correlations with emotion recognition. PLoS ONE 8:e75444 10.1371/journal.pone.0075444 PubMed DOI PMC

Czigler I. (2013). Visual mismatch negativity and categorization. Brain Topogr. 27, 590–598 10.1007/s10548-013-0316-8 PubMed DOI

Czigler I., Balázs L., Pató L. (2004). Visual change detection: event-related potentials are dependent on stimulus location in humans. Neurosci. Lett. 364, 149–153 10.1016/j.neulet.2004.04.048 PubMed DOI

Czigler I., Balázs L., Winkler I. (2002). Memory-based detection of task-irrelevant visual changes. Psychophysiology 39, 869–873 10.1111/1469-8986.3960869 PubMed DOI

Czigler I., Csibra G. (1990). Event-related potentials in a visual discrimination task: negative waves related to detection and attention. Psychophysiology 27, 669–676 10.1111/j.1469-8986.1990.tb03191.x PubMed DOI

Czigler I., Intraub H., Stefanics G. (2013). Prediction beyond the borders: ERP indices of boundary extension-related error. PLoS ONE 8:e74245 10.1371/journal.pone.0074245 PubMed DOI PMC

Czigler I., Pató L. (2009). Unnoticed regularity violation elicits change-related brain activity. Biol. Psychol. 80, 339–347 10.1016/j.biopsycho.2008.12.001 PubMed DOI

Czigler I., Sulykos I. (2010). Visual mismatch negativity to irrelevant changes is sensitive to task-relevant changes. Neuropsychologia 48, 1277–1282 10.1016/j.neuropsychologia.2009.12.029 PubMed DOI

Czigler I., Weisz J., Winkler I. (2006a). ERPs and deviance detection: visual mismatch negativity to repeated visual stimuli. Neurosci. Lett. 401, 78–182 10.1016/j.neulet.2006.03.018 PubMed DOI

Czigler I., Winkler I., Pató L., Várnagy A., Wiesz J., Balázs L. (2006b). Visual temporal window of interaction as revealed by the mismatch negativity event-related potential to stimulus omission. Brain Res. 1104, 129–140 10.1016/j.brainres.2006.05.034 PubMed DOI

de Gardelle V., Waszczuk M., Egner T., Summerfield C. (2013). Concurrent repetition enhancement and suppression responses in extrastriate visual cortex. Cereb. Cortex 23, 2235–2244 10.1093/cercor/bhs211 PubMed DOI PMC

den Ouden H. E., Kok P., de Lange F. P. (2012). How prediction errors shape perception, attention, and motivation. Front. Psychol. 3:548 10.3389/fpsyg.2012.00548 PubMed DOI PMC

Deouell L. Y. (2007). The frontal generator of the mismatch negativity revisited. J. Psychophysiol. 21, 188–203 10.1027/0269-8803.21.34.188 DOI

De Sanctis P., Molholm S., Shpaner M., Ritter W., Foxe J. J. (2009). Right hemispheric contributions to fine auditory temporal discriminations: high-density electrical mapping of the duration mismatch negativity (MMN). Front. Integr. Neurosci. 3:5 10.3389/neuro.07.005.2009 PubMed DOI PMC

Desimone R. (1996). Neural mechanisms for visual memory and their role in attention. Proc. Natl. Acad. Sci. U.S.A. 93, 13494–13499 10.1073/pnas.93.24.13494 PubMed DOI PMC

Desjardins R. N., Trainor L. J., Hevenor S. J., Polak C. P. (1999). Using mismatch negativity to measure auditory temporal resolution thresholds. Neuroreport 10, 2079–2082 10.1097/00001756-199907130-00016 PubMed DOI

Di Russo F., Martínez A., Hillyard S. A. (2003). Source analysis of event-related cortical activity during visuo-spatial attention. Cereb. Cortex 13, 486–499 10.1093/cercor/13.5.486 PubMed DOI

Di Russo F., Martínez A., Sereno M. I., Pitzalis S., Hillyard S. A. (2002). Cortical sources of the early components of visual evoked potential. Hum. Brain Map. 15, 95–111 10.1002/hbm.10010 PubMed DOI PMC

Donchin E., Ritter W., McCallum W. D. (1978). Cognitive psychophysiology: the endogenous components of the ERP, in Event-Related Brain Potentials in Man, eds Callaway E., Tueting P., Koslow S. H. (New York, NY: Academic Press; ), 349–411

Douglas R. J., Martin K. A. (2004). Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451 10.1146/annurev.neuro.27.070203.144152 PubMed DOI

Duncan J. (1984). Selective attention and the organization of visual information. J. Exp. Psychol. Gen. 113, 501–517 10.1037/0096-3445.113.4.501 PubMed DOI

Dux P. E., Marois R. (2009). The attentional blink: a review of data and theory. Atten. Percept. Psychophys. 71, 1683–1700 10.3758/APP.71.8.1683 PubMed DOI PMC

Eimer M. (2011). The face-sensitive N170 component of the event-related potentials, in The Oxford Handbook of Face Perception, eds Calder A. J., Rhoades G., Johnson M. N., Haxby J. V. (Oxford: Oxford University Press; ), 329–344

Eimer M., Kiss M., Nicholas S. (2010). Response profile of face-sensitive N170 component: a rapid adaptation study. Cereb Cortex 20, 2442–2452 10.1093/cercor/bhp312 PubMed DOI

Ekman P., Friesen W. V. (1976). Pictures of Facial Affect. Palo Alto, CA: Consulting Psychologists Press

Escera C., Malmierca M. S. (2014). The auditory novelty system: an attempt to integrate human and animal research. Psychophysiology 51, 111–123 10.1111/psyp.12156 PubMed DOI

Feldman H., Friston K. J. (2010). Attention, uncertainty, and free-energy. Front. Hum. Neurosci. 4:215 10.3389/fnhum.2010.00215 PubMed DOI PMC

Files B. T., Auer E. T., Bernstein L. E. (2013). The visual mismatch negativity elicited with visual speech stimuli. Front. Hum. Neurosci. 7:371 10.3389/fnhum.2013.00371 PubMed DOI PMC

Fischer C., Morlet D., Bouchet P., Luaute J., Jourdan C., Salord F. (1999). Mismatch negativity and late auditory evoked potentials in comatose patients. Clin. Neurophysiol. 110, 1601–1610 10.1016/S1388-2457(99)00131-5 PubMed DOI

Fisher D. J., Scott T. L., Shah D. K., Prise S., Thompson M., Knott V. J. (2010). Light up and see: enhancement of the visual mismatch negativity (vMMN) by nicotine. Brain Res. 1313, 162–171 10.1016/j.brainres.2009.12.002 PubMed DOI

Flynn M., Liasis A., Gardner M., Boyd S., Towell T. (2009). Can illusory deviant stimulus need as attentional distracters to record vMMN in a passive three stimulus oddball paradigm? Exp. Brain Res. 197, 153–161 10.1007/s00221-009-1901-7 PubMed DOI

Folk C. L., Remington R. W., Johnson J. C. (1992). Involuntary covert orienting is contingent on attentional control setting. J. Exp. Psychol. Hum. Percet. Perf. 18, 1030–1044 PubMed

Fonteneau E., Davidoff J. (2007). Neural correlates of color categories. Neuroreport 18, 1223–1327 10.1097/WNR.0b013e3282c48c33 PubMed DOI

Friston K. (2005). A theory of cortical responses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 815–836 10.1098/rstb.2005.1622 PubMed DOI PMC

Friston K. (2008). Hierarchical models in the brain. PLoS Comput. Biol. 4:e1000211 10.1371/journal.pcbi.1000211 PubMed DOI PMC

Friston K. (2010). The free-energy principle: a unified brain theory. Nat. Rev. Neurosci. 11, 127–138 10.1038/nrn2787 PubMed DOI

Froyen D., van Atteveldt N., Blomert L. (2010). Exploring the role of low level visual processing in letter-speech sound integration: a visual MMN study. Front. Int. Neurosci. 4:9 10.3389/fnint.2010.00009 PubMed DOI PMC

Fu S., Fan S., Chen L. (2003). Event-related potentials reveal involuntary processing of orientation changes in the visual modality. Psychophysiology 40, 770–775 10.1111/1469-8986.00077 PubMed DOI

Fujimura T., Okanoya K. (2013). Event-related potentials elicited by pre-attentive emotional changes in temporal context. PLoS ONE. 8:e63703 10.1371/journal.pone.0063703 PubMed DOI PMC

Garrido M. I., Friston K. J., Kiebel S. J., Stephan K. E., Baldeweg T., Kilner J. M. (2008). The functional anatomy of the MMN: A DCM study of the roving paradigm. Neuroimage 42, 936–944 10.1016/j.neuroimage.2008.05.018 PubMed DOI PMC

Garrido M. I., Sahani M., Dolan R. J. (2013). Outlier responses reflect sensitivity to statistical structure in the human brain. PLoS Comput. Biol. 9:e1002999 10.1371/journal.pcbi.1002999 PubMed DOI PMC

Garrido M., Kilner J. M., Kiebel S. J., Stephan K. E., Baldeweg T., Friston K. J. (2009). Repetition suppression and plasticity in the human brain. Neuroimage 48, 269–279 10.1016/j.neuroimage.2009.06.034 PubMed DOI PMC

Gayle L. C., Gal D., Kieffaber P. D. (2012). Measuring affective reactivity in individuals with autism spectrum personality traits using the visual mismatch negativity event-related brain potential. Front. Hum. Neurosci. 6:334 10.3389/fnhum.2012.00334 PubMed DOI PMC

Grill-Spector K., Henson R., Martin A. (2006). Repetition and the brain: neural models of stimulus-specifoc effects. Trends. Cogn. Sci. 10, 14–23 10.1016/j.tics.2005.11.006 PubMed DOI

Grimm S., Bendixen A., Deouell L. Y., Schröger E. (2009). Distraction in a visual multi-deviant paradigm: behavioral and event-related potential effects. Int. J. Psychophysiol. 72, 260–266 10.1016/j.ijpsycho.2009.01.005 PubMed DOI

Grimm S., Escera C. (2012). Auditory deviance detection revisited: evidence for a hierarchical novelty system. Int. J. Psychophysiol. 85, 88–92 10.1016/j.ijpsycho.2011.05.012 PubMed DOI

Háden G., Stefanics G., Huotilainen M., Balázs L., Sziller I., Beke A., et al. (2009). Timbre-independent extraction of pitch in newborn infants. Psychophysiology 46, 69–74 10.1111/j.1469-8986.2008.00749.x PubMed DOI PMC

Haenschel C., Vernon D. J., Dwirendi P., Gruzelier J. H., Baldeweg T. (2005). Event-related brain potential correlates of human auditory sensory trace formation. J. Neurophysiol. 25, 10494–10501 10.1523/JNEUROSCI.1227-05.2005 PubMed DOI PMC

Harter M. R., Guido W. (1980). Attention to pattern orientation: negative cortical potentials, reaction time, and the selection process. Electroencephalogr. Clin. Neurophysiol. 49, 461–475 10.1016/0013-4694(80)90389-2 PubMed DOI

Henson R. N. (2003). Neuroimaging studies of priming. Prog. Neurobiol. 70, 53–81 10.1016/S0301-0082(03)00086-8 PubMed DOI

Heslenfeld D. I. (2003). Visual mismatch negativity, in Detection of Change: Event-Related Potential and fMRI Findings, ed Polich J. (Boston, MA: Kluver Academic Press; ), 41–59

Horimoto R., Inagaki M., Yano T., Sata Y., Kaga M. (2002). Mismatch negativity of the color modality during a selective attention task to auditory stimuli in children with mental retardation. Brain Dev. 24, 703–709 10.1016/S0387-7604(02)00086-4 PubMed DOI

Hosák L., Kremlacek J., Kuba M., Libiger J., Čižek J. (2008). Mismatch negativity in methamphetamine: a pilot study. Acta Neurobiol. Exp. 68, 97–102 PubMed

Jacobsen T., Schröger E. (2001). Is there pre-attentive memory-based comparison of pitch? Psychophysiology 38, 723–727 10.1111/1469-8986.3840723 PubMed DOI

Javitt D. C. (2009). When doors of perception close: bottom-up models of disrupted cognition in schizophrenia. Annu. Rev. Clin. Psychol. 5, 249–275 10.1146/annurev.clinpsy.032408.153502 PubMed DOI PMC

Jeffreys D. A., Axford J. G. (1972). Source location of pattern-specific components of human visual evoked potentials II. Component of extrastriate cortical origin. Exp. Brain Res. 16, 16–40 PubMed

Kahneman D. (2011). Thinking, Fast and Slow. New York, NY: Macmillan

Kane N. M., Curry S. H., Butler S. R., Cummins B. H. (1993). Electrophysiological indicator of awakening from coma. Lancet 341, 688 10.1016/0140-6736(93)90453-N PubMed DOI

Kane N. M., Curry S. H., Rowlands C. A., Manara A. R., Lewis T., Moss T., et al. (1996). Event-related potentials—neurophysiological tools for predicting emergence and early outcome from traumatic coma. Intensive Care Med. 22, 39–46 10.1007/BF01728329 PubMed DOI

Katayama J., Polich J. (1998). Stimulus context determines P3a and P3b. Psychophysiology 35, 23–33 10.1111/1469-8986.3510023 PubMed DOI

Katayama J., Polich J. (1999). Auditory and visual P300 topography from a 3 stimulus paradigm. Clin. Neurophysiol. 110, 463–468 10.1016/S1388-2457(98)00035-2 PubMed DOI

Kecskés-Kovács K., Sulykos I., Czigler I. (2013a). Visual mismatch negativity is sensitive to symmetry as a perceptual category. Eur. J. Neurosci. 37, 662–667 10.1111/ejn.12061 PubMed DOI

Kecskés-Kovács K., Sulykos I., Czigler I. (2013b). Is it a face of a woman or a man? Visual mismatch negativity is sensitive to gender category. Front. Hum. Neurosci. 7:532 10.3389/fnhum.2013.00532 PubMed DOI PMC

Kenemans J. L., Hebly W., van der Heuvel E. H. M., Grent-t'-Jong T. (2010). Moderate alcohol disrupts a mechanism for detection of rare events in human visual cortex. J. Psychopharmacol. 24, 839–845 10.1177/0269881108098868 PubMed DOI

Kenemans J. L., Jong T. G., Verbaten M. N. (2003). Detection of visual change: mismatch or rareness? Neuroreport 14, 1239–1242 10.1097/00001756-200307010-00010 PubMed DOI

Kenemans J. L., Kok A., Smulders F. T. Y. (1993). Event-related potentials to conjunction of spatial frequency and orientation as a function of stimulus parameters and response requirements. EEG Clin. Neurophysiol. 88, 51–63 PubMed

Khodanovich M. Y., Esipenko M. V., Svetlik M. V., Krutenkova E. P. (2010). A visual analog of mismatch negativity when stimuli differ in duration. Neurosci. Behav. Physiol. 40, 653–661 10.1007/s11055-010-9308-2 PubMed DOI

Kiebel S. J., Daunizeau J., Friston K. J. (2008). A hierarchy of time-scales and the brain. PLoS Comput. Biol. 4:e1000209 10.1371/journal.pcbi.1000209 PubMed DOI PMC

Kimura M. (2012). Visual mismatch negativity and unintentional temporal-context-based prediction in vision. Int. J. Psychophysiol. 83, 144–155 10.1016/j.ijpsycho.2011.11.010 PubMed DOI

Kimura M., Katayama J., Murohashi H. (2006a). Independent processing of visual stimulus changes in ventral and dorsal stream features indexed by an early positive difference in event-related brain potentials. Int. J. Psychophysiol. 59, 141–150 10.1016/j.ijpsycho.2005.03.023 PubMed DOI

Kimura M., Katayama J., Murohashi H. (2006b). Probability-independent and -dependent ERPs reflecting visual change detection. Psychophysiology 43, 180–189 10.1111/j.1469-8986.2006.00388.x PubMed DOI

Kimura M., Katayama J., Murohashi H. (2008a). Involvement of memory-comparison-based change detection in visual distraction. Psychphysiology 45, 445–457 10.1111/j.1469-8986.2007.00640.x PubMed DOI

Kimura M., Katayama J., Murohashi H. (2008b). Attention switching function of memory-comparison-based change detection system in the visual modality. Int. J. Psychophysiol. 67, 101–113 10.1016/j.ijpsycho.2007.10.009 PubMed DOI

Kimura M., Katayama J., Ohira H., Schröger E. (2009). Visual mismatch negativity: new evidence from the equiprobable paradigm. Psychophysiology 46, 402–409 10.1111/j.1469-8986.2008.00767.x PubMed DOI

Kimura M., Kondo H., Ohira H., Schröger E. (2012). Unintentional temporal context-based prediction of emotional faces: an electrophysiological study. Cereb. Cortex 22, 1774–1785 10.1093/cercor/bhr244 PubMed DOI

Kimura M., Ohira H., Schröger E. (2010c). Localizing sensory and cognitive systems for pre-attentive visual deviance detection: an sLORETA analysis of the data of Kimura et al. (2009). Neurosci. Lett. 485, 198–203 10.1016/j.neulet.2010.09.011 PubMed DOI

Kimura M., Schröger E., Czigler I. (2011). Visual mismatch negativity and its importance in visual cognitive sciences. Neuroreport 22, 669–673 10.1097/WNR.0b013e32834973ba PubMed DOI

Kimura M., Schröger E., Czigler I., Ohira H. (2010d). Human visual system automatically encodes sequential regularities of discrete events. J. Cogn. Neurosci. 22, 1124–1139 10.1162/jocn.2009.21299 PubMed DOI

Kimura M., Takeda Y. (2013). Task difficulty affects the predictive process indexed by visual mismatch negativity. Front. Hum. Neurosci. 7:267 10.3389/fnhum.2013.00267 PubMed DOI PMC

Kimura M., Widmann A., Schröger E. (2010a). Human visual system automatically represents large-scale sequential regularities. Brain Res. 1317, 165–179 10.1016/j.brainres.2009.12.076 PubMed DOI

Kimura M., Widmann A., Schröger E. (2010b). Top-down attention affects sequential regularity representation in human visual system. Int. J. Psychophysiol. 77, 126–134 10.1016/j.ijpsycho.2010.05.003 PubMed DOI

Kloth N., Schweinberger S. R., Kovács G. (2010). Neural orrelates of generic versus gender-specific face adaptation. J. Cogn. Neurosci. 22, 2345–2356 10.1162/jocn.2009.21329 PubMed DOI

Koelsch S. (2012). Brain and Music. Chichester: Wiley-Blackwell

Kogai T., Aoyama A., Amano K., Takeda T. (2011). Visual mismatch response evoked by perceptually indistinguishable oddball. Neuroreport 22, 535–538 10.1097/WNR.0b013e328348ab76 PubMed DOI

Kohn A. (2007). Visual adaptation: physiology, mechanisms, and functional benefits. J. Neurophysiol. 97, 3155–3164 10.1152/jn.00086.2007 PubMed DOI

Kok P., Rahnev D., Jehee J. F., Lau H. C., de Lange F. P. (2012). Attention reverses the effect of prediction in silencing sensory signals. Cereb. Cortex. 22, 2197–2206 10.1093/cercor/bhr310 PubMed DOI

Kovács G., Kaiser D., Kaliukhovich D. A., Vidnyánszky Z., Vogels R. (2013). Repetition probability does not affect fMRI repetition suppression for objects. J. Neurosci. 33, 9805–9812 10.1523/JNEUROSCI.3423-12.2013 PubMed DOI PMC

Kovács-Bálint Z., Stefanics G., Trunk A., Hernádi I. (2014). Automatic detection of trustworthiness of the face: a visual mismatch negativity study. Acta Biol. Hung. 65, 1–12 10.1556/ABiol.65.2014.1.1 PubMed DOI

Kreegipuu K., Kuldkepp N., Sibolt O., Toom M., Allik J., Näätänen R. (2013). vMMN for schematic faces: automatic detection of change in emotional expression. Front. Hum. Neurosci. 7:714 10.3389/fnhum.2013.00714 PubMed DOI PMC

Kremláček J., Kuba M., Kubová Z., Langrová J. (2006). Visual mismatch negativity elicited by magnocellular system activation. Vision Res. 46, 485–490 10.1016/j.visres.2005.10.001 PubMed DOI

Kremláček J., Kuba M., Kubová Z., Langrová J., Szanyi J., Vít F., et al. (2013). Visual mismatch negativity in the dorsal stream is independent of concurrent visual task difficulty. Front. Hum. Neurosci. 7:411 10.3389/fnhum.2013.00411 PubMed DOI PMC

Kujala T., Kallio J., Tervaniemi M., Näätänen R. (2001). The mismatch negativity as an index of temporal processing in audition. Clin. Neurophysiol. 112, 1712–1719 10.1016/S1388-2457(01)00625-3 PubMed DOI

Kujala T., Näätänen R. (2001). The mismatch negativity in evaluating central auditory dysfunction in dyslexia. Neurosci. Biobehav. Rev. 25, 535–543 10.1016/S0149-7634(01)00032-X PubMed DOI

Kujala T., Näätänen R. (2010). The adaptive brain: a neurophysiological perspective. Prog. Neurobiol. 91, 55–67 10.1016/j.pneurobio.2010.01.006 PubMed DOI

Kujala T., Tervaniemi M., Schröger E. (2007). The mismatch negativity in cognitive and clinical neuroscience: theoretical and methodological considerations. Biol. Psychol. 74, 1–19 10.1016/j.biopsycho.2006.06.001 PubMed DOI

Kuldkepp N., Kreegipuu K., Raidvee A., Näätänen R., Allik J. (2013). Unattended and attended visual change detection of motion as indexed by event-related potentials and its behavioral correlates. Front. Hum. Neurosci. 7:476 10.3389/fnhum.2013.00476 PubMed DOI PMC

Lang H. A., Nyrke T., Ek M., Aaltonen O., Raimo I., Näätänen R. (1990). Pitch discrimination performance and auditory event-related potentials, Psychophysiological Brain Research, Vol. 1, eds Brunia C. H. M., Gaillard A. W. K., Kok A., Mulder G., Verbaten M. N. (Tilburg: Tilburg University Press; ), 294–298

Li X., Lu Y., Sun G., Gao L., Zhao L. (2012). Visual mismatch negativity elicited by facial expressions: new evidence from the equiprobable paradigm. Behav. Brain Funct. 8:7 10.1186/1744-9081-8-7 PubMed DOI PMC

Lieder F., Daunizeau J., Garrido M. I., Friston K. J., Stephan K. E. (2013b). Modelling trial-by-trial changes in the mismatch negativity. PLoS Comput. Biol. 9:e1002911 10.1371/journal.pcbi.1002911 PubMed DOI PMC

Lieder F., Stephan K. E., Daunizeau J., Garrido M. I., Friston K. J. (2013a). A neurocomputational model of the mismatch negativity. PLoS Comput. Biol. 9:e1003288 10.1371/journal.pcbi.1003288 PubMed DOI PMC

Light G. A., Swerdlow N. R., Braff D. L. (2007). Preattentive sensory processing as indexed by the MMN and P3a brain responses is associated with cognitive and psychosocial functioning in healthy adults. J. Cogn. Neurosci. 19, 1624–1632 10.1162/jocn.2007.19.10.1624 PubMed DOI PMC

Liu T., Shi J. (2008). Event-related potentials during preattentional processing of color stimuli. Neuroreport 19, 1221–1225 10.1097/WNR.0b013e328309a0dd PubMed DOI

Lorenzo-López L., Amenedo E., Pazo-Alvarez P., Cadaveira F. (2004). Pre-attentive detection of motion direction changes in normal aging. Neuroreport 15, 2633–2636 10.1097/00001756-200412030-00015 PubMed DOI

Lyyra P., Wikgren J., Astikainen P. (2010). Event-related potentials reveal rapid registration of features of infrequent changes during change blindness. Behav. Brain Funct. 6:12 10.1186/1744-9081-6-12 PubMed DOI PMC

Maekawa T., Goto Y., Kinukawa N., Taniwaki T., Hanbu S., Tobimatsu S. (2005). Functional characterization of mismatch negativity to visual stimulus. Clin. Neurophysiol. 116, 2392–2402 10.1016/j.clinph.2005.07.006 PubMed DOI

Maekawa T., Hirano S., Onitsuka T. (2012). Auditory and visual mismatch negativity in psychiatric disorders: a review. Curr. Psychiatry Res. 8, 97–105 10.2174/1573400511208020097 DOI

Maekawa T., Katsuki S., Kishimoto J., Onitsuka T., Ogata K., Yamasaki T., et al. (2013). Altered visual information processing systems in bipolar disorder: evidence from visual MMN and P3. Front. Hum. Neurosci. 7:403 10.3389/fnhum.2013.00403 PubMed DOI PMC

Maekawa T., Tobimatsu S., Inada N., Oribe N., Onitsuka T., Kanba S., et al. (2011). Top-down and bottom-up visual information processing of non-social stimuli in high-functioning autism spectrum disorder. Res. Autism Spect. Disord. 5, 201–209 10.1016/j.rasd.2010.03.012 DOI

Maekawa T., Tobimatsu S., Ogata K., Onitsuka T., Kanba S. (2009). Preattentive visual change detection as reflected by the mismatch negativity (MMN)–evidence for a memory-based process. Neurosci. Res. 65, 107–112 10.1016/j.neures.2009.06.005 PubMed DOI

Maess B., Jacobsen T., Schröger E., Friederici A. D. (2007). Localizing pre-attentive auditory memory-based comparison: magnetic mismatch negativity to pitch change. Neuroimage 37, 561–571 10.1016/j.neuroimage.2007.05.040 PubMed DOI

Mäntysalo S., Näätänen R. (1987). The duration of a neuronal trace of an auditory stimulus as indicated by event-related potentials. Biol. Psychol. 24, 183–195 10.1016/0301-0511(87)90001-9 PubMed DOI

May P. J. C., Tiitinen H. (2010). Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology 47, 66–122 10.1111/j.1469-8986.2009.00856.x PubMed DOI

Mazza V., Turatto M., Sarlo M. (2005). Rare stimuli or rare changes: What really matters for the brain? Neuroreport 16, 1061–1064 10.1097/00001756-200507130-00006 PubMed DOI

Mo L., Xu G., Kay P., Tan L. H. (2011). Electrophysiological evidence for the left-lateralized effect of language on preattentive categorical perception of color. Proc. Natl. Acad. Sci. U.S.A. 108, 14026–14030 10.1073/pnas.1111860108 PubMed DOI PMC

Muckli L. (2010). What are we missing here? Brain imaging evidence for higher cognitive functions in primary visual cortex V1. Int. J. Imaging Syst. Technol. 20, 131–139 10.1002/ima.20236 DOI

Müller D., Roeber U., Winkler I., Trujillo-Barreto N., Czigler I., Schröger E. (2012). Impact of lower- vs. upper-hemifield presentation on automatic colour-deviance detection: a visual mismatch negativity study. Brain Res. 1472, 89–98 10.1016/j.brainres.2012.07.016 PubMed DOI

Müller D., Widmann A., Schröger E. (2013). Object-related regularities are processed automatically: evidence from the visual mismatch negativity. Front. Hum. Neurosci. 7:259 10.3389/fnhum.2013.00259 PubMed DOI PMC

Müller D., Winkler I., Roeber U., Schaffer S., Czigler I., Schröger E. (2010). Visual object representations can be formed outside the focus of voluntary attention: evidence from event-related brain potentials. J. Cogn. Neurosci. 22, 1179–1188 10.1162/jocn.2009.21271 PubMed DOI

Müller H. J., Heller D., Ziegler J. (1995). Visual search for singleton feature targets within and across feature dimensions. Percept. Psychophys. 57, 1–17 10.3758/BF03211845 PubMed DOI

Näätänen R. (1992). Attention and Brain Function. Hillsdale: Erlbaum

Näätänen R., Astikainen P., Ruusuvirta T., Huotilainen M. (2010). Automatic auditory intelligence: an expression of the sensory-cognitive core of cognitive processes. Brain Res. Rev. 64, 123–136 10.1016/j.brainresrev.2010.03.001 PubMed DOI

Näätänen R., Jacobsen T., Winkler I. (2005). Memory-based of afferent processes in mismatch negativity (MMN). A review of evidence. Psychophysiology 42, 25–32 10.1111/j.1469-8986.2005.00256.x PubMed DOI

Näätänen R., Kujala T., Kreegipuu K., Carlson S., Escera C., Baldeweg T., et al. (2011). The mismatch negativity: an index of cognitive decline in neuropsychiatric and neurological diseases and in ageing. Brain 134, 3435–3453 10.1093/brain/awr064 PubMed DOI

Näätänen R., Paavilainen P., Rinne T., Alho K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin. Neurophysiol. 118, 2544–2590 10.1016/j.clinph.2007.04.026 PubMed DOI

Näätänen R., Picton T. (1987). The N1 wave of the human electric and magnetic response of sounds: a review and an analysis of the component structure. Psychophysiol. 24, 375–424 10.1111/j.1469-8986.1987.tb00311.x PubMed DOI

Näätänen R., Schröger E., Karakas S., Tervaniemi M., Paavilainen P. (1993). Development of a memory trace for a complex sound in the human brain. Neuroreport 4, 503–506 10.1097/00001756-199305000-00010 PubMed DOI

Näätänen R., Tervaniemi M., Sussman E., Paavilainen P., Winkler I. (2001). “Primitive intelligence” in the auditory cortex. Trends Neurosci. 24, 283–288 10.1016/S0166-2236(00)01790-2 PubMed DOI

Nashida T., Yabe H., Sato Y., Hiruma T., Sutoh T., Shinozaki N., et al. (2000). Automatic auditory information processing in sleep. Sleep 23, 821–828 PubMed

Nelken I. (2012). Predictive information processing in the brain: the neural perspective. Int. J. Psychophysiol. 83, 253–255 10.1016/j.ijpsycho.2012.01.003 PubMed DOI

Nelken I., Ulanovsky N. (2007). Mismatch negativity and stimulus-specific adaptation in animal models. J. Psychophysiol. 21, 214–223 10.1027/0269-8803.21.34.214 DOI

Nelken I., Yaron A., Polterovich A., Hershenhoren I. (2013). Stimulus-specific adaptation beyond pure tones. Adv. Exp. Med. Biol. 787, 411–418 10.1007/978-1-4614-1590-9_45 PubMed DOI

Novitski N., Tervaniemi M., Huotilainen M., Näätänen R. (2004). Frequency discrimination at different frequency levels as indexed by electrophysiological and behavioral measures. Cog. Brain Res. 20, 26–36 10.1016/j.cogbrainres.2003.12.011 PubMed DOI

Nyman G., Alho K., Laurinen P., Paavilainen P., Radil T., Reinikainen K., et al. (1990). Mismatch negativity (MMN) for sequences of auditory and visual stimuli: evidence for a mechanism specific to the auditory modality. EEG Clin. Neurophysiol. 77, 436–444 PubMed

Park S., Intraub H., Yi D. J., Widders D., Chun M. M. (2007). Beyond the edges of a view: Boundary extension in human scene-selective visual cortex. Neuron 54, 335–342 10.1016/j.neuron.2007.04.006 PubMed DOI

Pazo-Alvarez P., Amenedo E., Cadaveira F. (2004a). Automatic detection of motion direction changes in the human brain. Eur. J. Neurosci. 19, 1978–1986 10.1111/j.1460-9568.2004.03273.x PubMed DOI

Pazo-Alvarez P., Amenedo E., Lorenzo-López L., Cadaveira F. (2004b). Effects of stimulus location on automatic detection of changes in motion direction in human brain. Neurosci. Lett. 371, 111–116 10.1016/j.neulet.2004.08.073 PubMed DOI

Ponton C. W., Bernstein L. E., Auer E. T., Jr. (2009). Mismatch negativity with visual-only and audiovisual speech. Brain Topogr. 21, 207–215 10.1007/s10548-009-0094-5 PubMed DOI PMC

Qiu X., Yang X., Qiao Z., Wang L., Ning N., Shi J., et al. (2011). Impairment in processing visual information at the pre-attentive stage in patients with a major depressive disorder: a visual mismatch negativity study. Neurosci. Lett. 491, 53–57 10.1016/j.neulet.2011.01.006 PubMed DOI

Rensink R. A. (2002). Change detection. Annu. Rev. Psychol. 53, 245–277 10.1146/annurev.psych.53.100901.135125 PubMed DOI

Ringo J. L. (1996). Stimulus specific adaptation in inferior temporal and medial temporal cortex of the monkey. Behav. Brain Res. 76, 191–197 10.1016/0166-4328(95)00197-2 PubMed DOI

Rissling A. J., Park S. H., Young J. W., Rissling M. B., Sugar C. A., Sprock J., et al. (2013). Demand and modality of directed attention modulate ″pre-attentive″ sensory processes in schizophrenia patients and nonpsychiatric controls. Schizophr Res. 146, 326–335 10.1016/j.schres.2013.01.035 PubMed DOI PMC

Ruhnau P., Herrmann B., Schröger E. (2012). Finding the right control: the mismatch negativity under investigation. Clin. Neurophysiol. 123, 507–512 10.1016/j.clinph.2011.07.035 PubMed DOI

Schröger E. (1997). Higher-order processes in auditory-change detection: a response to Näätänen and Alho. Trends Cogn. Sci. 1, 45–46 10.1016/S1364-6613(97)01012-7 PubMed DOI

Schröger E., Bendixen A., Denham S. L., Mill R. W., Bohm T. M., Winkler I. (2014). Predictive regularity representations in violation detection and auditory stream segregation: from conceptual to computational models. Brain Topogr. 27, 565–577 10.1007/s10548-013-0334-6 PubMed DOI

Schröger E., Wolff C. (1996). Mismatch response of the human brain to changes in sound localization. Neuroreport 7, 3005–3008 10.1097/00001756-199611250-00041 PubMed DOI

Sculthorpe L. D., Ouellet D. R., Campbell K. B. (2009). MMN elicitation during natural sleep to violations of an auditory pattern. Brain Res. 1290, 52–62 10.1016/j.brainres.2009.06.013 PubMed DOI

Segaert K., Weber K., de Lange F. P., Petersson K. M., Hagoort P. (2013). The suppression of repetition enhancement: a review of fMRI studies. Neuropsychology 51, 59–66 10.1016/j.neuropsychologia.2012.11.006 PubMed DOI

Shi L., Wu J., Sun G., Dang L., Zhao L. (2013). Visual mismatch negativity in the “optimal” multi-feature paradigm. J. Integr. Neurosci. 12, 247–258 10.1142/S0219635213500179 PubMed DOI

Shtyrov Y., Goryainova G., Tugin S., Ossadtchi A., Shestakova A. (2013). Automatic processing of unattended lexical information in visual oddball presentation: neurophysiological evidence. Front. Hum. Neurosci. 7:421 10.3389/fnhum.2013.00421 PubMed DOI PMC

Si C., Ren C., Wang P., Bian H., Wang H., Yan Z. (2014). Impairment in preattentive processing among patients with hypertension revealed by visual mismatch negativity. Biomed. Res. Int. 2014:945121 10.1155/2014/945121 PubMed DOI PMC

Simons D. J., Rensink R. A. (2005). Change blindness: past, present, and future. Trends Cogn. Sci. 9, 16–20 10.1016/j.tics.2004.11.006 PubMed DOI

Stagg C., Hindley P., Tales A., Butler S. (2004). Visual mismatch negativity: the detection of stimulus change. Neuroreport 15, 659–663 10.1097/00001756-200403220-00017 PubMed DOI

Stefanics G., Csukly G., Komlósi S., Czobor P., Czigler I. (2012). Processing of unattended facial emotions: a visual mismatch negativity study. Neuroimage 59, 3042–3049 10.1016/j.neuroimage.2011.10.041 PubMed DOI

Stefanics G., Czigler I. (2012). Automatic prediction error response to hands with unexpected laterality: an electrophysiological study. Neuroimage 63, 253–261 10.1016/j.neuroimage.2012.06.068 PubMed DOI

Stefanics G., Háden G., Huotilainen M., Balázs L., Sziller I., Beke A., et al. (2007). Auditory temporal grouping in newborn infants. Psychophysiology 44, 697–702 10.1111/j.1469-8986.2007.00540.x PubMed DOI

Stefanics G., Háden G., Sziller I., Balázs L., Beke A., Winkler I. (2009). Newborn infants process pitch intervals. Clin. Neurophysiol. 120, 304–308 10.1016/j.clinph.2008.11.020 PubMed DOI

Stefanics G., Kimura M., Czigler I. (2011). Visual mismatch negativity reveals automatic detection of sequential regularity violation. Front. Hum. Neurosci. 5:46 10.3389/fnhum.2011.00046 PubMed DOI PMC

Stephan K. E., Baldeweg T., Friston K. J. (2006). Synaptic plasticity and dysconnection in schizophrenia. Biol. Psychiatry 59, 929–939 10.1016/j.biopsych.2005.10.005 PubMed DOI

Stothart G., Kazanina N. (2013). Oscillatory characteristics of the visual mismatch negativity: what evoked potentials aren't telling us. Front. Hum. Neurosci. 7:426 10.3389/fnhum.2013.00426 PubMed DOI PMC

Sulykos I., Czigler I. (2011). One plus one is less than two: visual features elicit non-additive mismatch-related brain activity. Brain Res. 1398, 64–71 10.1016/j.brainres.2011.05.009 PubMed DOI

Sulykos I., Czigler I. (2014). Visual mismatch negativity is sensitive to illusory brightness changes. Brain Res. 1561, 48–59 10.1016/j.brainres.2014.03.008 PubMed DOI

Sulykos I., Kecskés-Kovács K., Czigler I. (2013). Memory mismatch in vision: no reactivation. J. Psychophysiol. 27, 1–6 10.1027/0269-8803/a000085 DOI

Summerfield C., Wyart V., Johnen V. M., de Gardelle V. (2011). Human scalp electroencephalography reveals that repetition suppression varies with expectation. Front. Hum. Neurosci. 5:67 10.3389/fnhum.2011.00067 PubMed DOI PMC

Susac A., Ilmoniemi R. J., Pihko E., Ranken D., Supek S. (2010). Early cortical responses are sensitive to changes in face stimuli. Brain Res. 1346, 155–164 10.1016/j.brainres.2010.05.049 PubMed DOI

Susac A., Ilmoniemi R. J., Pihko E., Supek S. (2004). Neurodynamic studies on emotional and inverted faces in an oddball paradigm. Brain Topogr. 16, 265–268 10.1023/B:BRAT.0000032863.39907.cb PubMed DOI

Takács E., Balázs L., Czigler I. (2013). Oblique effects in visual mismatch negativity. Front. Hum. Neurosci. 7:591 10.3389/fnhum.2013.00591 PubMed DOI PMC

Tales A., Butler S. (2006). Visual mismatch negativity highlights abnormal pre-attentive visual processing in Alzheimer's disease. Neuroreport 17, 887–890 10.1097/01.wnr.0000223383.42295.fa PubMed DOI

Tales A., Haworth J., Wilcock G., Newton P., Butler S. (2008). Visual mismatch negativity highlights abnormal pre-attentive visual processing in mild cognitive impairment and Alzheimer's disease. Neuropsychologia 46, 1224–1232 10.1016/j.neuropsychologia.2007.11.017 PubMed DOI

Tales A., Newton P., Troscianko T., Butler S. (1999). Mismatch negativity in the visual modality. Neuroreport 10, 3363–3367 10.1097/00001756-199911080-00020 PubMed DOI

Tales A., Porter G., Butler S. (2009). Automatic change detection durig the performance of a continuous visual task. Neuroreport 20, 1638–1642 10.1097/WNR.0b013e3283339fa8 PubMed DOI

Tales A., Troscianko T., Wilcox G. K., Newton P., Butler S. R. (2002). Age-related changes in the preattentional detection of visual change. Neuroreport 13, 969–972 10.1097/00001756-200205240-00014 PubMed DOI

Tang D., Xu J., Chang Y., Zheng Y., Shi N., Pang X., et al. (2013). Visual mismatch negativity in the detection of facial emotions in patients with panic disorder. Neuroreport 24, 207–211 10.1097/WNR.0b013e32835eb63a PubMed DOI

Thierry G., Athanasopoulos P., Wiggett A., Dering B., Kuipers J.-R. (2009). Unconscious effects of language-specific terminology on pre-attentive colour perception. Proc. Natl. Acad. Sci. U.S.A. 106, 4567–4570 10.1073/pnas.0811155106 PubMed DOI PMC

Todd J., Michie P. T., Schall U., Ward P. B., Catts S. V. (2012). Mismatch negativity (MMN) reduction in schizophrenia-impaired prediction–error generation, estimation or salience? Int. J. Psychophysiol. 83, 222–231 10.1016/j.ijpsycho.2011.10.003 PubMed DOI

Todorovic A., de Lange F. P. (2012). Repetition suppression and expectation suppression are dissociable in time in early auditory evoked fields. J. Neurosci. 32, 13389–13395 10.1523/JNEUROSCI.2227-12.2012 PubMed DOI PMC

Tomio N., Fuchigami T., Fujita Y., Okubo O., Mugishima H. (2012). Developmental changes of visual mismatch negativity. Neurophysiology 44, 138–143 10.1007/s11062-012-9280-2 DOI

Torriente I., Valdes-Sosa M., Ramirez D., Bobes M. A. (1999). Visual evoked potentials related to motion-onset are modulated by attention. Vision Res 39, 4122–4139 10.1016/S0042-6989(99)00113-3 PubMed DOI

Ulanovsky N., Las L., Farkas D., Nelken I. (2004). Multiple time scales of adaptation in auditory cortex neurons. J. Neurosci. 24, 10440–10453 10.1523/JNEUROSCI.1905-04.2004 PubMed DOI PMC

Ulanovsky N., Las L., Nelken I. (2003). Processing of low-probability sounds by cortical neurons. Nat. Neurosci. 6, 391–398 10.1038/nn1032 PubMed DOI

Umbricht D., Krljes S. (2005). Mismatch negativity in schizophrenia: a meta-analysis. Schizophr. Res. 76, 1–23 10.1016/j.schres.2004.12.002 PubMed DOI

Urakawa T., Inui K., Yamashiro K., Kakigi R. (2010b). Cortical dynamics of visual change detection process. Psychophysiology 47, 905–912 10.1111/j.1469-8986.2010.00987.x PubMed DOI

Urakawa T., Inui K., Yamashiro K., Tanaka E., Kakigi R. (2010a). Cortical dynamics of visual change detection based on sensory memory. Neuroimage 52, 302–308 10.1016/j.neuroimage.2010.03.071 PubMed DOI

Urban A., Kremlacek J., Masopust J., Libiger J. (2008). Visual mismatch negativity among patients with schizophrenia. Schizophr. Res. 102, 320–328 10.1016/j.schres.2008.03.014 PubMed DOI

van Rhijn M., Roeber U., O'Shea P. (2013). Can eye of origin serve as a deviant? Visual mismatch negativity from binocular rivalry. Front. Hum. Neurosci. 7:190 10.3389/fnhum.2013.00190 PubMed DOI PMC

Velmans M. (1991). Is human information processing conscious? Behav. Brain Sci. 14, 651–726

Wacongne C., Changeux J. P., Dehaene S. (2012). A neuronal model of predictive coding accounting for the mismatch negativity. J. Neurosci. 32, 3665–3678 10.1523/JNEUROSCI.5003-11.2012 PubMed DOI PMC

Wacongne C., Labyt E., van Wassenhove V., Bekinschtein T., Naccache L., Dehaene S. (2011). Evidence for a hierarchy of predictions and prediction errors in human cortex. Proc. Natl. Acad. Sci. U.S.A. 108, 20754–20759 10.1073/pnas.1117807108 PubMed DOI PMC

Wang J. J., Bi H. Y., Gao L. Q., Wydell T. N. (2010). The visual magnocellular pathway in Chinese-speaking children with developmental dyslexia. Neuropsychologia 48, 3627–3633 10.1016/j.neuropsychologia.2010.08.015 PubMed DOI

Wang X.-D., Liu A.-P., Wu Y.-Y., Wang P. (2013). Rapid extraction of lexical tone phonology in Chinese characters: a visual mismatch negativity study. PLoS ONE 8:e56778 10.1371/journal.pone.0056778 PubMed DOI PMC

Wang X. J. (2010). Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 90, 1195–1268 10.1152/physrev.00035.2008 PubMed DOI PMC

Webster M. A., MacLin O. H. (1999). Figural aftereffects in the perception of faces. Psychon. Bull. Rev. 6, 647–653 10.3758/BF03212974 PubMed DOI

Wei J.-H., Chan T.-C., Luo Y.-J. (2002). A modified oddball paradigm “cross-modal delayed response” and the research on mismatch negativity. Brain Res. Bull. 57, 221–230 10.1016/S0361-9230(01)00742-0 PubMed DOI

Willenbockel V., Sadr J., Fiset D., Horne G. O., Gosselin F., Tanaka J. W. (2010). Controlling low-level image properties: the SHINE toolbox. Behav. Res. Methods. 42, 671–684 10.3758/BRM.42.3.671 PubMed DOI

Winkler I. (2007). Interpreting mismatch negativity. J. Psychophysiol. 21, 147–163 10.1027/0269-8803.21.34.147 DOI

Winkler I., Czigler I. (2012). Evidence from auditory and visual event-related potential (ERP) studies of deviance detection (MMN and vMMN) link predictive coding theories to perceptual object representations. Int. J. Psychophysiol. 83, 132–143 10.1016/j.ijpsycho.2011.10.001 PubMed DOI

Winkler I., Czigler I., Sussman E., Horváth J., Balázs L. (2005). Preattentive binding of auditory and visual stimulus features. J. Cogn. Neurosci. 17, 320–339 10.1162/0898929053124866 PubMed DOI

Yucel G., McCarthy G., Belger A. (2007). fMRI reveals that involuntary visual deviance processing is resource limited. Neuroimage 34, 1245–1252 10.1016/j.neuroimage.2006.08.050 PubMed DOI

Zeki S., Shipp S. (1988). The functional logic of cortical connections. Nature 335, 311–317 10.1038/335311a0 PubMed DOI

Zhao L., Li J. (2006). Visual mismatch negativity elicited by facial expressions under non-attentional condition. Neurosci. Lett. 401, 126–131 10.1016/j.neulet.2006.09.081 PubMed DOI

Zimmer M., Kovács G. (2011). Electrophysiological correlates of face distortion aftereffects. Quart. J. Exp. Psychol. 64, 533–544 10.1080/17470218.2010.501964 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace