Visual mismatch negativity in the dorsal stream is independent of concurrent visual task difficulty

. 2013 ; 7 () : 411. [epub] 20130730

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid23908621

The manipulation of attention can produce mismatch negativity-like components that are not necessarily connected to the unintentional sensory registration of the violation of probability-based regularity. For clinical purposes, attentional bias should be quantified because it can vary substantially among subjects and can decrease the specificity of the examination. This experiment targets the role of attention in the generation of visual mismatch negativity (vMMN). The visual regularity was generated by a sequence of two radial motions while subjects focused on visual tasks in the central part of the display. Attentional load was systematically varied and had three levels, no-load, easy, and difficult. Rare, deviant, and frequent standard motions were presented with a 10/60 ratio in oddball sequences. Data from 12 subjects was recorded from 64 channels and processed. vMMN was identified within the interval of 142-198 ms. The mean amplitude was evaluated during the aforementioned interval in the parietal and fronto-central regions. A general linear model for repeated measures was applied to the mean amplitude with a three-factor design and showed a significant difference [F (1, 11) = 17.40, p = 0.002] between standard and deviant stimuli and between regions [F (1, 11) = 8.40, p = 0.01]; however, no significant effect of the task [F (2, 22) = 1.26, p = 0.30] was observed. The unintentional detection of irregularity during the processing of the visual motion was independent of the attentional load associated with handling the central visual task. The experiment did not demonstrate an effect of attentional load manipulation on mismatch negativity (MMN) induced by the motion-sequence, which supports the clinical utility of this examination. However, used stimulation paradigm should be further optimized to generate mismatch negativity that is stable enough to be usable not only for group comparisons but also for a single subject assessment.

Zobrazit více v PubMed

Abrams R. A., Christ S. E. (2003). Motion onset captures attention. Psychol. Sci. 14, 427–432 10.1111/1467-9280.01458 PubMed DOI

Arakawa K., Tobimatsu S., Kato M., Kira J. (1999). Parvocellular and magnocellular visual processing in spinocerebellar degeneration and Parkinson's disease: an event-related potential study. Clin. Neurophysiol. 110, 1048–1057 10.1016/S1388-2457(99)00049-8 PubMed DOI

Brainard D. H. (1997). The Psychophysics Toolbox. Spat. Vis. 10, 433–436 10.1163/156856897X00357 PubMed DOI

Chang Y., Xu J., Shi N., Pang X., Zhang B., Cai Z. (2011). Dysfunction of preattentive visual information processing among patients with major depressive disorder. Biol. Psychiatry 69, 742–747 10.1016/j.biopsych.2010.12.024 PubMed DOI

Cléry H., Bonnet-Brilhault F., Lenoir P., Barthelemy C., Bruneau N., Gomot M. (2013). Atypical visual change processing in children with autism: an electrophysiological study. Psychophysiology 50, 240–252 10.1111/psyp.12006 PubMed DOI

Czigler I. (2007). Visual mismatch negativity. J. Psychophysiol. 21, 224–230 10.1027/0269-8803.21.34.224 PubMed DOI

Czigler I., Sulykos I. (2010). Visual mismatch negativity to irrelevant changes is sensitive to task-relevant changes. Neuropsychologia 48, 1277–1282 10.1016/j.neuropsychologia.2009.12.029 PubMed DOI

Czigler I., Weisz J., Winkler I. (2007). Backward masking and visual mismatch negativity: electrophysiological evidence for memory-based detection of deviant stimuli. Psychophysiology 44, 610–619 10.1111/j.1469-8986.2007.00530.x PubMed DOI

Czigler I., Winkler I., Pató L., Várnagy A., Weisz J., Balazs L. (2006). Visual temporal window of integration as revealed by the visual mismatch negativity event-related potential to stimulus omissions. Brain Res. 1104, 129–140 10.1016/j.brainres.2006.05.034 PubMed DOI

Delorme A., Mullen K. T., Kothe C., Acar A. Z., Bigdely-Shamlo N., Vankov A., et al. (2011). EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced EEG processing. Comput. Intell. Neurosci. 2011, 1–12 10.1155/2011/130714 PubMed DOI PMC

Garrido M. I., Kilner J. M., Stephan K. E., Friston K. J. (2009). The mismatch negativity: a review of underlying mechanisms. Clin. Neurophysiol. 120, 453–463 10.1016/j.clinph.2008.11.029 PubMed DOI PMC

Heslenfeld D. (2003). Visual mismatch negativity, in Detection of Change: Event-Related Potential and fMRI Findings, ed Polich J. (New York, NY: Springer; ), 41–60

Heslenfeld D. J., Kenemans J. L., Kok A., Molenaar P. C. (1997). Feature processing and attention in the human visual system: an overview. Biol. Psychol. 45, 183–215 10.1016/S0301-0511(96)05228-3 PubMed DOI

Hosak L., Kremlacek J., Kuba M., Libiger J., Cizek J. (2008). Mismatch negativity in methamphetamine dependence: a pilot study. Acta Neurobiol. Exp. Biol. Psychiatry 68, 97–102 PubMed

Kimura M. (2012). Visual mismatch negativity and unintentional temporal-context-based prediction in vision. Int. J. Psychophysiol. 83, 144–155 10.1016/j.ijpsycho.2011.11.010 PubMed DOI

Kimura M., Katayama J., Murohashi H., Motohiro Kimura J. K. H. M. (2008). Underlying mechanisms of the P3a task-difficulty effect. Psychophysiology 45, 731–741 10.1111/j.1469-8986.2008.00684.x PubMed DOI

Kremlacek J., Hosak L., Kuba M., Libiger J., Cizek J. (2008). Visual information processing in recently abstaining methamphetamine-dependent individuals: evoked potentials study. Doc. Ophthalmol. 117, 245–255 10.1007/s10633-008-9135-8 PubMed DOI

Kremlacek J., Kuba M., Kubova Z., Chlubnova J. (2004). Motion-onset VEPs to translating, radial, rotating and spiral stimuli. Doc. Ophthalmol. 109, 169–175 10.1007/s10633-004-4048-7 PubMed DOI

Kremlacek J., Kuba M., Kubová Z., Langrová J., Kubova Z., Langrova J. (2006). Visual mismatch negativity elicited by magnocellular system activation. Vision Res. 46, 485–490 10.1016/j.visres.2005.10.001 PubMed DOI

Kuba M., Kremlacek J., Langrova J., Kubova Z., Szanyi J., Vit F. (2012). Aging effect in pattern, motion and cognitive visual evoked potentials. Vision Res. 62, 9–16 10.1016/j.visres.2012.03.014 PubMed DOI

Kuba M., Kubova Z., Kremlacek J., Langrova J. (2007). Motion-onset VEPs: characteristics, methods, and diagnostic use. Vision Res. 47, 189–202 10.1016/j.visres.2006.09.020 PubMed DOI

Kubova Z., Kuba M., Juran J., Blakemore C. (1996). Is the motion system relatively spared in amblyopia. Evidence from cortical evoked responses. Vision Res. 36, 181–190 10.1016/0042-6989(95)00055-5 PubMed DOI

Lavie N., Hirst A., de Fockert J. W., Viding E. (2004). Load theory of selective attention and cognitive control. J. Exp. Psychol. Gen. 133, 339–354 10.1037/0096-3445.133.3.339 PubMed DOI

Laycock R., Crewther D. P., Crewther S. G. (2008). The advantage in being magnocellular: a few more remarks on attention and the magnocellular system. Neurosci. Biobehav. Rev. 32, 1409–1415 10.1016/j.neubiorev.2008.04.008 PubMed DOI

Livingstone M., Hubel D. (1988). Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240, 740–749 10.1126/science.3283936 PubMed DOI

Luck S. J., Woodman G. F., Vogel E. K. (2000). Event-related potential studies of attention. Trends Cogn. Sci. 4, 432–440 10.1016/S1364-6613(00)01545-X PubMed DOI

Naatanen R., Gaillard A. W., Mantysalo S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychol. (Amst.) 42, 313–329 10.1016/0001-6918(78)90006-9 PubMed DOI

Näätänen R., Kujala T., Escera C., Baldeweg T., Kreegipuu K., Carlson S., et al. (2011). The mismatch negativity (MMN) – A unique window to disturbed central auditory processing in ageing and different clinical conditions. Clin. Neurophysiol. 123, 424–458 10.1016/j.clinph.2011.09.020 PubMed DOI

Naatanen R., Tervaniemi M., Sussman E., Paavilainen P., Winkler I. (2001). “Primitive intelligence” in the auditory cortex. Trends Neurosci. 24, 283–288 10.1016/S0166-2236(00)01790-2 PubMed DOI

Pazo-Alvarez P., Amenedo E., Cadaveira F. (2004). Automatic detection of motion direction changes in the human brain. Eur. J. Neurosci. 19, 1978–1986 10.1111/j.1460-9568.2004.03273.x PubMed DOI

Pazo-Alvarez P., Cadaveira F., Amenedo E. (2003). MMN in the visual modality: a review. Biol. Psychol. 63, 199–236 10.1016/S0301-0511(03)00049-8 PubMed DOI

Rees G., Frith C. D., Lavie N. (1997). Modulating irrelevant motion perception by varying attentional load in an unrelated task. Science 278, 1616–1619 10.1126/science.278.5343.1616 PubMed DOI

Ries A. J., Hopfinger J. B. (2011). Magnocellular and parvocellular influences on reflexive attention. Vision Res. 51, 1820–1828 10.1016/j.visres.2011.06.012 PubMed DOI PMC

Squires N. K., Squires K. C., Hillyard S. A. (1975). Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogr. Clin. Neurophysiol. 38, 387–401 10.1016/0013-4694(75)90263-1 PubMed DOI

Steinman B. A., Steinman S. B., Lehmkuhle S. (1997). Transient visual attention is dominated by the magnocellular stream. Vision Res. 37, 17–23 10.1016/S0042-6989(96)00151-4 PubMed DOI

Sussman E. S. (2007). A new view on the MMN and attention debate the role of context in processing auditory events. J. Psychophysiol. 21, 164–175 10.1027/0269-8803.21.34.164 DOI

Sussman E., Winkler I., Huotilainen M., Ritter W., Näätänen R. (2002). Top-down effects can modify the initially stimulus-driven auditory organization. Brain Res. Cogn. Brain Res. 13, 393–405 10.1016/S0926-6410(01)00131-8 PubMed DOI

Szanyi J., Kubová Z., Kremláček J., Langrová J., Vít F., Kuba M., et al. (2012). Pattern and motion-related visual-evoked potentials in neuroborreliosis: follow-up study. J. Clin. Neurophysiol. 29, 174–180 10.1097/WNP.0b013e31824e1013 PubMed DOI

Tales A., Butler S. (2006). Visual mismatch negativity highlights abnormal preattentive visual processing in Alzheimer's disease. Neuroreport 17, 887–890 10.1097/01.wnr.0000223383.42295.fa PubMed DOI

Tales A., Haworth J., Wilcock G., Newton P., Butler S. (2008). Visual mismatch negativity highlights abnormal pre-attentive visual processing in mild cognitive impairment and Alzheimer's disease. Neuropsychologia 46, 1224–1232 10.1016/j.neuropsychologia.2007.11.017 PubMed DOI

Ungerleider L. G., Mishkin M. (1982). Two cortical systems, in Analysis of Visual Behavior, eds Ingle D. J., Goodale M. A., Mansfield R. J. W. (Cambridge, MA: MIT Press; ), 586–594

Urban A., Kremlacek J., Masopust J., Libiger J. (2008). Visual mismatch negativity among patients with schizophrenia. Schizophr. Res. 102, 320–328 10.1016/j.schres.2008.03.014 PubMed DOI

World Medical Association. (2004). Ethical Principles for Medical Research Involving Human Subjects. Available online at: http://www.wma.net/en/30publications/10policies/b3/

Yucel G., McCarthy G., Belger A. (2007). fMRI reveals that involuntary visual deviance processing is resource limited. Neuroimage 34, 1245–1252 10.1016/j.neuroimage.2006.08.050 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Visual mismatch negativity: a predictive coding view

. 2014 ; 8 () : 666. [epub] 20140916

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...