Critical Assessment of Clean-Up Techniques Employed in Simultaneous Analysis of Persistent Organic Pollutants and Polycyclic Aromatic Hydrocarbons in Fatty Samples

. 2022 Jan 01 ; 10 (1) : . [epub] 20220101

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35051054

Grantová podpora
MEYS Grant No: LM2018100 METROFOOD-CZ

Interference of residual lipids is a very common problem in ultratrace analysis of contaminants in fatty matrices. Therefore, quick and effective clean-up techniques applicable to multiple groups of analytes are much needed. Cartridge and dispersive solid-phase extraction (SPE and dSPE) are often used for this purpose. In this context, we evaluated the lipid clean-up efficiency and performance of four commonly used sorbents-silica, C18, Z-Sep, and EMR-lipid-for the determination of organic pollutants in fatty fish samples (10%) extracted using ethyl acetate or the QuEChERS method. Namely, 17 polychlorinated biphenyls (PCBs), 22 organochlorine pesticides (OCPs), 13 brominated flame retardants (BFRs), 19 per- and polyfluoroalkyl substances (PFAS), and 16 polycyclic aromatic hydrocarbons (PAHs) were determined in this study. The clean-up efficiency was evaluated by direct analysis in real time coupled with time-of-flight mass spectrometry (DART-HRMS). The triacylglycerols (TAGs) content in the purified extracts were significantly reduced. The EMR-lipid sorbent was the most efficient of the dSPE sorbents used for the determination of POPs and PAHs in this study. The recoveries of the POPs and PAHs obtained by the validated QuEChERS method followed by the dSPE EMR-lipid sorbent ranged between 59 and 120%, with repeatabilities ranging between 2 and 23% and LOQs ranging between 0.02 and 1.50 µg·kg-1.

Zobrazit více v PubMed

Guo W., Pan B., Sakkiah S., Yavas G., Ge W., Zou W., Tong W., Hong H. Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods. Int. J. Environ. Res. Public Health. 2019;16:4361. doi: 10.3390/ijerph16224361. PubMed DOI PMC

Hernández Á.R., Boada L.D., Mendoza Z., Ruiz-Suárez N., Valerón P.F., Camacho M., Zumbado M., Almeida-González M., Henríquez-Hernández L.A., Luzardo O.P. Consumption of organic meat does not diminish the carcinogenic potential associated with the intake of persistent organic pollutants (POPs) Environ. Sci. Pollut. Res. 2017;24:4261–4273. doi: 10.1007/s11356-015-4477-8. PubMed DOI

Lebelo K., Malebo N., Mochane M.J., Masinde M. Chemical Contamination Pathways and the Food Safety Implications along the Various Stages of Food Production: A Review. Int. J. Environ. Res. Public Health. 2021;18:5795. doi: 10.3390/ijerph18115795. PubMed DOI PMC

Weber R., Bell L., Watson A., Petrlik J., Paun M.C., Vijgen J. Assessment of pops contaminated sites and the need for stringent soil standards for food safety for the protection of human health. Environ. Pollut. 2019;249:703–715. doi: 10.1016/j.envpol.2019.03.066. PubMed DOI

Hayward D.G., Traag W. New approach for removing co-extracted lipids before mass spectrometry measurement of persistent of organic pollutants (POPs) in foods. Chemosphere. 2020;256:127023. PubMed

Ashraf M.A. Persistent organic pollutants (POPs): A global issue, a global challenge. Environ. Sci. Pollut. Res. 2017;24:4223–4227. PubMed

Megson D., Reiner E.J., Jobst K.J., Dorman F.L., Robson M., Focant J.F. A review of the determination of persistent organic pollutants for environmental forensics investigations. Anal. Chim. Acta. 2016;941:10–25. doi: 10.1016/j.aca.2016.08.027. PubMed DOI

Lorenzo M., Campo J., Picó Y. Analytical challenges to determine emerging persistent organic pollutants in aquatic ecosystems. Trends Anal. Chem. 2018;103:137–155. doi: 10.1016/j.trac.2018.04.003. DOI

Haedrich J., Stumpf C., Denison M.S. Rapid extraction of total lipids and lipophilic POPs from all EU-regulated foods of animal origin: Smedes’ method revisited and enhanced. Environ. Sci. Eur. 2020;32:118. doi: 10.1186/s12302-020-00396-5. PubMed DOI PMC

Chung S.W.C., Chen B.L.S. Determination of organochlorine pesticide residues in fatty foods: A critical review on the analytical methods and their testing capabilities. J. Chromatogr. A. 2011;1218:5555–5567. doi: 10.1016/j.chroma.2011.06.066. PubMed DOI

Xu W., Wang X., Cai Z. Analytical chemistry of the persistent organic pollutants identified in the Stockholm Convention: A review. Anal. Chim. Acta. 2013;790:1–13. doi: 10.1016/j.aca.2013.04.026. PubMed DOI

Beyer A., Biziuk M. Applications of sample preparation techniques in the analysis of pesticides and PCBs in food. Food Chem. 2008;108:669–680. doi: 10.1016/j.foodchem.2007.11.024. PubMed DOI

Berton P., Lana N.B., Ríos J.M., García-Reyes J.F., Altamirano J.C. State of the art of environmentally friendly sample preparation approaches for determination of PBDEs and metabolites in environmental and biological samples: A critical review. Anal. Chim. Acta. 2016;905:24–41. doi: 10.1016/j.aca.2015.11.009. PubMed DOI

Purcaro G., Moret S., Conte L.S. Overview on polycyclic aromatic hydrocarbons: Occurrence, legislation and innovative determination in foods. Talanta. 2013;105:292–305. doi: 10.1016/j.talanta.2012.10.041. PubMed DOI

Kim L., Lee D., Cho H.K., Choi S.D. Review of the QuEChERS method for the analysis of organic pollutants: Persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals. Trends Environ. Anal. Chem. 2019;22:e00063. doi: 10.1016/j.teac.2019.e00063. DOI

Madej K., Kalenik T.K., Piekoszewski W. Sample preparation and determination of pesticides in fat-containing foods. Food Chem. 2018;269:527–541. doi: 10.1016/j.foodchem.2018.07.007. PubMed DOI

Kalachova K., Pulkrabova J., Drabova L., Cajka T., Kocourek V., Hajslova J. Simplified and rapid determination of polychlorinated biphenyls, polybrominated diphenyl ethers, and polycyclic aromatic hydrocarbons in fish and shrimps integrated into a single method. Anal. Chim. Acta. 2011;707:84–91. doi: 10.1016/j.aca.2011.09.016. PubMed DOI

Amin M.A., Sobhani Z., Liu Y., Dharmaraja R., Chadalavada S., Naidu R., Chalker J.M., Fang C. Recent advances in the analysis of per- and polyfluoroalkyl substances (PFAS)—A review. Environ. Technol. Innov. 2020;19:100879. doi: 10.1016/j.eti.2020.100879. DOI

Gao K., Chen Y., Xue Q., Fu J., Fu K., Fu J., Zhang A., Cai Z., Jiang G. Trends and perspectives in per-and polyfluorinated alkyl substances (PFASs) determination: Faster and broader. Trends Environ. Anal. Chem. 2020;133:116114. doi: 10.1016/j.trac.2020.116114. DOI

Płotka-Wasylka J., Rutkowska M., Owczarek K., Tobiszewski M., Namieśnik J. Extraction with environmentally friendly solvents. TrAC Trends Anal. Chem. 2017;91:12–25. doi: 10.1016/j.trac.2017.03.006. DOI

Tobiszewski M., Namieśnik J. Scoring of solvents used in analytical laboratories by their toxicologicaland exposure hazards. Ecotoxicol. Environ. Saf. 2015;120:169–173. doi: 10.1016/j.ecoenv.2015.05.043. PubMed DOI

Forsberg N.D., Wilson G.R., Anderson K.A. Determination of Parent and Substituted Polycyclic Aromatic Hydrocarbons in High-Fat Salmon Using a Modified QuEChERS Extraction, Dispersive SPE and GC–MS. J. Agric. Food Chem. 2011;59:8108–8116. doi: 10.1021/jf201745a. PubMed DOI PMC

Cloutier P.L., Fortin F., Groleau P.E., Brousseau P., Fournier M., Desrosiers M. QuEChERS extraction for multi-residue analysis of PCBs, PAHs, PBDEs and PCDD/Fs in biological samples. Talanta. 2017;165:332–338. doi: 10.1016/j.talanta.2016.12.080. PubMed DOI

Urban M., Lesueur C. Comparing d-SPE Sorbents of the QuEChERS Extraction Method and EMR-Lipid for the Determination of Polycyclic Aromatic Hydrocarbons (PAH4) in Food of Animal and Plant Origin. Food Anal. Methods. 2017;10:2111–2124. doi: 10.1007/s12161-016-0750-9. DOI

Slámová T., Sadowska-Rociek A., Fraňková A., Surma M., Banout J. Application of QuEChERS-EMR-Lipid-DLLME method for the determination of polycyclic aromatic hydrocarbons in smoked food of animal origin. J Food Compost. Anal. 2020;87:103420. doi: 10.1016/j.jfca.2020.103420. DOI

Cruz R., Marques A., Casal S., Cunha S.C. Fast and environmental-friendly methods for the determination of polybrominated diphenyl ethers and their metabolites in fish tissues and feed. Sci. Total Environ. 2019;646:1503–1515. doi: 10.1016/j.scitotenv.2018.07.342. PubMed DOI

Okšová L., Tölgyessy P. Determination of Hexabromocyclododecanes in Fish Using Modified QuEChERS Method with Efficient Extract Clean-Up Prior to Liquid Chromatography–Tandem Mass Spectrometry. Separations. 2020;7:44. doi: 10.3390/separations7030044. DOI

Bansal V., Kumar P., Kwon E.E., Kim K.H. Review of the quantification techniques for polycyclic aromatic hydrocarbons (PAHs) in food products. Crit. Rev. Food Sci. Nutr. 2017;57:3297–3312. doi: 10.1080/10408398.2015.1116970. PubMed DOI

Solaesa A.G., Fernandes J.O., Sanz M.T., Benito-Román Ó., Cunha S.C. Green determination of brominated flame retardants and organochloride pollutants in fish oils by vortex assisted liquid-liquid microextraction and gas chromatography-tandem mass spectrometry. Talanta. 2019;195:251–257. doi: 10.1016/j.talanta.2018.11.048. PubMed DOI

Fang J., Zhao H., Zhang Y., Lu M., Cai Z. Atmospheric pressure chemical ionization in gas chromatography-mass spectrometry for the analysis of persistent organic pollutants. Trends Environ. Anal. Chem. 2020;25:e00076. doi: 10.1016/j.teac.2019.e00076. DOI

Ayala-Cabrera J.F., Santos F.J., Moyano E. Recent advances in analytical methodologies based on mass spectrometry for the environmental analysis of halogenated organic contaminants. Trends Environ. Anal. Chem. 2021;30:e00122. doi: 10.1016/j.teac.2021.e00122. DOI

Cortese M., Gigliobianco M.R., Magnoni F., Censi R., Di Martino P.D. Compensate for or Minimize Matrix Effects? Strategies for Overcoming Matrix Effects in Liquid Chromatography-Mass Spectrometry Technique: A Tutorial Review. Molecules. 2020;25:3047. doi: 10.3390/molecules25133047. PubMed DOI PMC

Kalachova K., Pulkrabova J., Cajka T., Drabova L., Stupak M., Hajslova J. Gas chromatography-triple quadrupole tandem mass spectrometry: A powerful tool for the (ultra)trace analysis of multiclass environmental contaminants in fish and fish feed. Anal. Bioanal. Chem. 2013;405:7803–7815. doi: 10.1007/s00216-013-7000-4. PubMed DOI

Li F., Zhao Z., Shen C., Zeng Q., Liu S. Elimination of matrix effects during analysis of perfluorinated acids in solid samples by liquid chromatography tandem mass spectrometry. J. Cent. South Univ. 2012;19:2886–2894. doi: 10.1007/s11771-012-1355-0. DOI

Lucas D., Zhao L. PAH Analysis in Salmon with Enhanced Matrix Removal Application Note. Agilent Technologies; Palo Alto, CA, USA: 2015. no. 5991–6088EN.

Hrbek V., Vaclavik L., Elich O., Hajslova J. Authentication of milk and milk-based foods by direct analysis in real time ionization–high resolution mass spectrometry (DART–HRMS) technique: A critical assessment. Food Control. 2014;36:138–145. doi: 10.1016/j.foodcont.2013.08.003. DOI

Lankova D., Lacina O., Pulkrabova J., Hajslova J. The determination of perfluoroalkyl substances, brominated flame retardants and their metabolites in human breast milk and infant formula. Talanta. 2013;117:318–325. doi: 10.1016/j.talanta.2013.08.040. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...