Critical Assessment of Clean-Up Techniques Employed in Simultaneous Analysis of Persistent Organic Pollutants and Polycyclic Aromatic Hydrocarbons in Fatty Samples
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MEYS Grant No: LM2018100
METROFOOD-CZ
PubMed
35051054
PubMed Central
PMC8781265
DOI
10.3390/toxics10010012
PII: toxics10010012
Knihovny.cz E-zdroje
- Klíčová slova
- EMR-lipid, GC-MS/MS, LC-MS/MS, PAHs, POPs, clean-up, fish,
- Publikační typ
- časopisecké články MeSH
Interference of residual lipids is a very common problem in ultratrace analysis of contaminants in fatty matrices. Therefore, quick and effective clean-up techniques applicable to multiple groups of analytes are much needed. Cartridge and dispersive solid-phase extraction (SPE and dSPE) are often used for this purpose. In this context, we evaluated the lipid clean-up efficiency and performance of four commonly used sorbents-silica, C18, Z-Sep, and EMR-lipid-for the determination of organic pollutants in fatty fish samples (10%) extracted using ethyl acetate or the QuEChERS method. Namely, 17 polychlorinated biphenyls (PCBs), 22 organochlorine pesticides (OCPs), 13 brominated flame retardants (BFRs), 19 per- and polyfluoroalkyl substances (PFAS), and 16 polycyclic aromatic hydrocarbons (PAHs) were determined in this study. The clean-up efficiency was evaluated by direct analysis in real time coupled with time-of-flight mass spectrometry (DART-HRMS). The triacylglycerols (TAGs) content in the purified extracts were significantly reduced. The EMR-lipid sorbent was the most efficient of the dSPE sorbents used for the determination of POPs and PAHs in this study. The recoveries of the POPs and PAHs obtained by the validated QuEChERS method followed by the dSPE EMR-lipid sorbent ranged between 59 and 120%, with repeatabilities ranging between 2 and 23% and LOQs ranging between 0.02 and 1.50 µg·kg-1.
Zobrazit více v PubMed
Guo W., Pan B., Sakkiah S., Yavas G., Ge W., Zou W., Tong W., Hong H. Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods. Int. J. Environ. Res. Public Health. 2019;16:4361. doi: 10.3390/ijerph16224361. PubMed DOI PMC
Hernández Á.R., Boada L.D., Mendoza Z., Ruiz-Suárez N., Valerón P.F., Camacho M., Zumbado M., Almeida-González M., Henríquez-Hernández L.A., Luzardo O.P. Consumption of organic meat does not diminish the carcinogenic potential associated with the intake of persistent organic pollutants (POPs) Environ. Sci. Pollut. Res. 2017;24:4261–4273. doi: 10.1007/s11356-015-4477-8. PubMed DOI
Lebelo K., Malebo N., Mochane M.J., Masinde M. Chemical Contamination Pathways and the Food Safety Implications along the Various Stages of Food Production: A Review. Int. J. Environ. Res. Public Health. 2021;18:5795. doi: 10.3390/ijerph18115795. PubMed DOI PMC
Weber R., Bell L., Watson A., Petrlik J., Paun M.C., Vijgen J. Assessment of pops contaminated sites and the need for stringent soil standards for food safety for the protection of human health. Environ. Pollut. 2019;249:703–715. doi: 10.1016/j.envpol.2019.03.066. PubMed DOI
Hayward D.G., Traag W. New approach for removing co-extracted lipids before mass spectrometry measurement of persistent of organic pollutants (POPs) in foods. Chemosphere. 2020;256:127023. PubMed
Ashraf M.A. Persistent organic pollutants (POPs): A global issue, a global challenge. Environ. Sci. Pollut. Res. 2017;24:4223–4227. PubMed
Megson D., Reiner E.J., Jobst K.J., Dorman F.L., Robson M., Focant J.F. A review of the determination of persistent organic pollutants for environmental forensics investigations. Anal. Chim. Acta. 2016;941:10–25. doi: 10.1016/j.aca.2016.08.027. PubMed DOI
Lorenzo M., Campo J., Picó Y. Analytical challenges to determine emerging persistent organic pollutants in aquatic ecosystems. Trends Anal. Chem. 2018;103:137–155. doi: 10.1016/j.trac.2018.04.003. DOI
Haedrich J., Stumpf C., Denison M.S. Rapid extraction of total lipids and lipophilic POPs from all EU-regulated foods of animal origin: Smedes’ method revisited and enhanced. Environ. Sci. Eur. 2020;32:118. doi: 10.1186/s12302-020-00396-5. PubMed DOI PMC
Chung S.W.C., Chen B.L.S. Determination of organochlorine pesticide residues in fatty foods: A critical review on the analytical methods and their testing capabilities. J. Chromatogr. A. 2011;1218:5555–5567. doi: 10.1016/j.chroma.2011.06.066. PubMed DOI
Xu W., Wang X., Cai Z. Analytical chemistry of the persistent organic pollutants identified in the Stockholm Convention: A review. Anal. Chim. Acta. 2013;790:1–13. doi: 10.1016/j.aca.2013.04.026. PubMed DOI
Beyer A., Biziuk M. Applications of sample preparation techniques in the analysis of pesticides and PCBs in food. Food Chem. 2008;108:669–680. doi: 10.1016/j.foodchem.2007.11.024. PubMed DOI
Berton P., Lana N.B., Ríos J.M., García-Reyes J.F., Altamirano J.C. State of the art of environmentally friendly sample preparation approaches for determination of PBDEs and metabolites in environmental and biological samples: A critical review. Anal. Chim. Acta. 2016;905:24–41. doi: 10.1016/j.aca.2015.11.009. PubMed DOI
Purcaro G., Moret S., Conte L.S. Overview on polycyclic aromatic hydrocarbons: Occurrence, legislation and innovative determination in foods. Talanta. 2013;105:292–305. doi: 10.1016/j.talanta.2012.10.041. PubMed DOI
Kim L., Lee D., Cho H.K., Choi S.D. Review of the QuEChERS method for the analysis of organic pollutants: Persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals. Trends Environ. Anal. Chem. 2019;22:e00063. doi: 10.1016/j.teac.2019.e00063. DOI
Madej K., Kalenik T.K., Piekoszewski W. Sample preparation and determination of pesticides in fat-containing foods. Food Chem. 2018;269:527–541. doi: 10.1016/j.foodchem.2018.07.007. PubMed DOI
Kalachova K., Pulkrabova J., Drabova L., Cajka T., Kocourek V., Hajslova J. Simplified and rapid determination of polychlorinated biphenyls, polybrominated diphenyl ethers, and polycyclic aromatic hydrocarbons in fish and shrimps integrated into a single method. Anal. Chim. Acta. 2011;707:84–91. doi: 10.1016/j.aca.2011.09.016. PubMed DOI
Amin M.A., Sobhani Z., Liu Y., Dharmaraja R., Chadalavada S., Naidu R., Chalker J.M., Fang C. Recent advances in the analysis of per- and polyfluoroalkyl substances (PFAS)—A review. Environ. Technol. Innov. 2020;19:100879. doi: 10.1016/j.eti.2020.100879. DOI
Gao K., Chen Y., Xue Q., Fu J., Fu K., Fu J., Zhang A., Cai Z., Jiang G. Trends and perspectives in per-and polyfluorinated alkyl substances (PFASs) determination: Faster and broader. Trends Environ. Anal. Chem. 2020;133:116114. doi: 10.1016/j.trac.2020.116114. DOI
Płotka-Wasylka J., Rutkowska M., Owczarek K., Tobiszewski M., Namieśnik J. Extraction with environmentally friendly solvents. TrAC Trends Anal. Chem. 2017;91:12–25. doi: 10.1016/j.trac.2017.03.006. DOI
Tobiszewski M., Namieśnik J. Scoring of solvents used in analytical laboratories by their toxicologicaland exposure hazards. Ecotoxicol. Environ. Saf. 2015;120:169–173. doi: 10.1016/j.ecoenv.2015.05.043. PubMed DOI
Forsberg N.D., Wilson G.R., Anderson K.A. Determination of Parent and Substituted Polycyclic Aromatic Hydrocarbons in High-Fat Salmon Using a Modified QuEChERS Extraction, Dispersive SPE and GC–MS. J. Agric. Food Chem. 2011;59:8108–8116. doi: 10.1021/jf201745a. PubMed DOI PMC
Cloutier P.L., Fortin F., Groleau P.E., Brousseau P., Fournier M., Desrosiers M. QuEChERS extraction for multi-residue analysis of PCBs, PAHs, PBDEs and PCDD/Fs in biological samples. Talanta. 2017;165:332–338. doi: 10.1016/j.talanta.2016.12.080. PubMed DOI
Urban M., Lesueur C. Comparing d-SPE Sorbents of the QuEChERS Extraction Method and EMR-Lipid for the Determination of Polycyclic Aromatic Hydrocarbons (PAH4) in Food of Animal and Plant Origin. Food Anal. Methods. 2017;10:2111–2124. doi: 10.1007/s12161-016-0750-9. DOI
Slámová T., Sadowska-Rociek A., Fraňková A., Surma M., Banout J. Application of QuEChERS-EMR-Lipid-DLLME method for the determination of polycyclic aromatic hydrocarbons in smoked food of animal origin. J Food Compost. Anal. 2020;87:103420. doi: 10.1016/j.jfca.2020.103420. DOI
Cruz R., Marques A., Casal S., Cunha S.C. Fast and environmental-friendly methods for the determination of polybrominated diphenyl ethers and their metabolites in fish tissues and feed. Sci. Total Environ. 2019;646:1503–1515. doi: 10.1016/j.scitotenv.2018.07.342. PubMed DOI
Okšová L., Tölgyessy P. Determination of Hexabromocyclododecanes in Fish Using Modified QuEChERS Method with Efficient Extract Clean-Up Prior to Liquid Chromatography–Tandem Mass Spectrometry. Separations. 2020;7:44. doi: 10.3390/separations7030044. DOI
Bansal V., Kumar P., Kwon E.E., Kim K.H. Review of the quantification techniques for polycyclic aromatic hydrocarbons (PAHs) in food products. Crit. Rev. Food Sci. Nutr. 2017;57:3297–3312. doi: 10.1080/10408398.2015.1116970. PubMed DOI
Solaesa A.G., Fernandes J.O., Sanz M.T., Benito-Román Ó., Cunha S.C. Green determination of brominated flame retardants and organochloride pollutants in fish oils by vortex assisted liquid-liquid microextraction and gas chromatography-tandem mass spectrometry. Talanta. 2019;195:251–257. doi: 10.1016/j.talanta.2018.11.048. PubMed DOI
Fang J., Zhao H., Zhang Y., Lu M., Cai Z. Atmospheric pressure chemical ionization in gas chromatography-mass spectrometry for the analysis of persistent organic pollutants. Trends Environ. Anal. Chem. 2020;25:e00076. doi: 10.1016/j.teac.2019.e00076. DOI
Ayala-Cabrera J.F., Santos F.J., Moyano E. Recent advances in analytical methodologies based on mass spectrometry for the environmental analysis of halogenated organic contaminants. Trends Environ. Anal. Chem. 2021;30:e00122. doi: 10.1016/j.teac.2021.e00122. DOI
Cortese M., Gigliobianco M.R., Magnoni F., Censi R., Di Martino P.D. Compensate for or Minimize Matrix Effects? Strategies for Overcoming Matrix Effects in Liquid Chromatography-Mass Spectrometry Technique: A Tutorial Review. Molecules. 2020;25:3047. doi: 10.3390/molecules25133047. PubMed DOI PMC
Kalachova K., Pulkrabova J., Cajka T., Drabova L., Stupak M., Hajslova J. Gas chromatography-triple quadrupole tandem mass spectrometry: A powerful tool for the (ultra)trace analysis of multiclass environmental contaminants in fish and fish feed. Anal. Bioanal. Chem. 2013;405:7803–7815. doi: 10.1007/s00216-013-7000-4. PubMed DOI
Li F., Zhao Z., Shen C., Zeng Q., Liu S. Elimination of matrix effects during analysis of perfluorinated acids in solid samples by liquid chromatography tandem mass spectrometry. J. Cent. South Univ. 2012;19:2886–2894. doi: 10.1007/s11771-012-1355-0. DOI
Lucas D., Zhao L. PAH Analysis in Salmon with Enhanced Matrix Removal Application Note. Agilent Technologies; Palo Alto, CA, USA: 2015. no. 5991–6088EN.
Hrbek V., Vaclavik L., Elich O., Hajslova J. Authentication of milk and milk-based foods by direct analysis in real time ionization–high resolution mass spectrometry (DART–HRMS) technique: A critical assessment. Food Control. 2014;36:138–145. doi: 10.1016/j.foodcont.2013.08.003. DOI
Lankova D., Lacina O., Pulkrabova J., Hajslova J. The determination of perfluoroalkyl substances, brominated flame retardants and their metabolites in human breast milk and infant formula. Talanta. 2013;117:318–325. doi: 10.1016/j.talanta.2013.08.040. PubMed DOI