Identification of Clinically Relevant Subgroups of Chronic Lymphocytic Leukemia Through Discovery of Abnormal Molecular Pathways
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
34262590
PubMed Central
PMC8273263
DOI
10.3389/fgene.2021.627964
Knihovny.cz E-resources
- Keywords
- chronic lymphocytic leukemia, ensemble clustering, extreme gradient boosting, mutation subtypes, pathway mutation score,
- Publication type
- Journal Article MeSH
Chronic lymphocytic leukemia (CLL) is the most common form of adult leukemia in the Western world with a highly variable clinical course. Its striking genetic heterogeneity is not yet fully understood. Although the CLL genetic landscape has been well-described, patient stratification based on mutation profiles remains elusive mainly due to the heterogeneity of data. Here we attempted to decrease the heterogeneity of somatic mutation data by mapping mutated genes in the respective biological processes. From the sequencing data gathered by the International Cancer Genome Consortium for 506 CLL patients, we generated pathway mutation scores, applied ensemble clustering on them, and extracted abnormal molecular pathways with a machine learning approach. We identified four clusters differing in pathway mutational profiles and time to first treatment. Interestingly, common CLL drivers such as ATM or TP53 were associated with particular subtypes, while others like NOTCH1 or SF3B1 were not. This study provides an important step in understanding mutational patterns in CLL.
Central European Institute of Technology Masaryk University Brno Czechia
Department of Internal Medicine Hematology and Oncology University Hospital Brno Brno Czechia
See more in PubMed
Cancer Genome Atlas Research Network (2011). Integrated genomic analyses of ovarian carcinoma. Nature 474 609–615.10.1038/nature10166 PubMed DOI PMC
Chen T., Guestrin C. (2016). “XGBoost: a scalable tree boosting system,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (New York, NY: ACM; ).
Chiu D. S., Talhouk A. (2018). diceR: an R package for class discovery using an ensemble driven approach. BMC Bioinform 19:11. 10.1186/s12859-017-1996-y PubMed DOI PMC
Damle R. N., Wasil T., Fais F., Ghiotto F., Valetto A., Allen S. L., et al. (1999). Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94 1840–1847.10.1182/blood.v94.6.1840 PubMed DOI
Döhner H., Stilgenbauer S., Benner A., Leupolt E., Kröber A., Bullinger L., et al. (2000). Genomic aberrations and survival in chronic lymphocytic leukemia. N. Engl. J. Med. 343 1910–1916. PubMed
Hallek M. (2019). Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment. Am. J. Hematol. 94 1266–1287. 10.1002/ajh.25595 PubMed DOI
Hamblin T. J., Davis Z., Gardiner A., Oscier D. G., Stevenson F. K. (1999). Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94 1848–1854. 10.1182/blood.v94.6.1848 PubMed DOI
Hedegaard J., Lamy P., Nordentoft I., Algaba F., Høyer S., Ulhøi B. P., et al. (2016). Comprehensive transcriptional analysis of early-stage urothelial carcinoma. Cancer Cell 30 27–42. PubMed
Hofree M., Shen J. P., Carter H., Gross A., Ideker T. (2013). Network-based stratification of tumor mutations. Nat. Methods 10 1108–1115. 10.1038/nmeth.2651 PubMed DOI PMC
Kipps T. J., Stevenson F. K., Wu C. J., Croce C. M., Packham G., Wierda W. G., et al. (2017). Chronic lymphocytic leukaemia. Nat. Rev. Dis. Primer 3:16096. PubMed PMC
Kuijjer M. L., Paulson J. N., Salzman P., Ding W., Quackenbush J. (2018). Cancer subtype identification using somatic mutation data. Br. J. Cancer 118 1492–1501. 10.1038/s41416-018-0109-7 PubMed DOI PMC
Landau D. A., Carter S. L., Stojanov P., McKenna A., Stevenson K., Lawrence M. S., et al. (2013). Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152 714–726. PubMed PMC
Landau D. A., Tausch E., Taylor-Weiner A. N., Stewart C., Reiter J. G., Bahlo J., et al. (2015). Mutations driving CLL and their evolution in progression and relapse. Nature 526 525–530. 10.1038/nature15395 PubMed DOI PMC
Lawrence M. S., Stojanov P., Polak P., Kryukov G. V., Cibulskis K., Sivachenko A., et al. (2013). Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499 214–218. PubMed PMC
Lazarian G., Guièze R., Wu C. J. (2017). Clinical implications of novel genomic discoveries in chronic lymphocytic leukemia. J. Clin. Oncol. 35 984–993. 10.1200/jco.2016.71.0822 PubMed DOI PMC
Le Morvan M., Zinovyev A., Vert J.-P. (2017). NetNorM: capturing cancer-relevant information in somatic exome mutation data with gene networks for cancer stratification and prognosis. PLoS Comput. Biol. 13:e1005573. 10.1371/journal.pcbi.1005573 PubMed DOI PMC
Leiserson M. D. M., Vandin F., Wu H.-T., Dobson J. R., Eldridge J. V., Thomas J. L., et al. (2015). Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat. Genet. 47 106–114. 10.1038/ng.3168 PubMed DOI PMC
Liberzon A., Subramanian A., Pinchback R., Thorvaldsdóttir H., Tamayo P., Mesirov J. P. (2011). Molecular signatures database (MSigDB) 3.0. Bioinformatics 27 1739–1740. 10.1093/bioinformatics/btr260 PubMed DOI PMC
Martincorena I., Campbell P. J. (2015). Somatic mutation in cancer and normal cells. Science 349 1483–1489. 10.1126/science.aab4082 PubMed DOI
Noushmehr H., Weisenberger D. J., Diefes K., Phillips H. S., Pujara K., Berman B. P., et al. (2010). Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17 510–522. PubMed PMC
Papaemmanuil E., Gerstung M., Bullinger L., Gaidzik V. I., Paschka P., Roberts N. D., et al. (2016). Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 374 2209–2221. PubMed PMC
Puente X. S., Beà S., Valdés-Mas R., Villamor N., Gutiérrez-Abril J., Martín-Subero J. I., et al. (2015). Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 526 519–524. PubMed
R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available online at: https://www.R-project.org/.
Ronan T., Qi Z., Naegle K. M. (2016). Avoiding common pitfalls when clustering biological data. Sci. Signal. 9:re6. 10.1126/scisignal.aad1932 PubMed DOI
Schmitz R., Wright G. W., Huang D. W., Johnson C. A., Phelan J. D., Wang J. Q., et al. (2018). Genetics and pathogenesis of diffuse large B-Cell lymphoma. N. Engl. J. Med. 378 1396–1407. PubMed PMC
Shannon P., Markiel A., Ozier O., Baliga N. S., Wang J. T., Ramage D., et al. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13 2498–2504. 10.1101/gr.1239303 PubMed DOI PMC
Stoney R. A., Schwartz J.-M., Robertson D. L., Nenadic G. (2018). Using set theory to reduce redundancy in pathway sets. BMC Bioinformatics 19:386. 10.1186/s12859-018-2355-3 PubMed DOI PMC
Sutton L.-A., Hadzidimitriou A., Baliakas P., Agathangelidis A., Langerak A. W., Stilgenbauer S., et al. (2017). Immunoglobulin genes in chronic lymphocytic leukemia: key to understanding the disease and improving risk stratification. Haematologica 102 968–971. 10.3324/haematol.2017.165605 PubMed DOI PMC
Şenbabaoğlu Y., Michailidis G., Li J. Z. (2014). Critical limitations of consensus clustering in class discovery. Sci. Rep. 4:6207. PubMed PMC