• This record comes from PubMed

Identification of Clinically Relevant Subgroups of Chronic Lymphocytic Leukemia Through Discovery of Abnormal Molecular Pathways

. 2021 ; 12 () : 627964. [epub] 20210628

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Chronic lymphocytic leukemia (CLL) is the most common form of adult leukemia in the Western world with a highly variable clinical course. Its striking genetic heterogeneity is not yet fully understood. Although the CLL genetic landscape has been well-described, patient stratification based on mutation profiles remains elusive mainly due to the heterogeneity of data. Here we attempted to decrease the heterogeneity of somatic mutation data by mapping mutated genes in the respective biological processes. From the sequencing data gathered by the International Cancer Genome Consortium for 506 CLL patients, we generated pathway mutation scores, applied ensemble clustering on them, and extracted abnormal molecular pathways with a machine learning approach. We identified four clusters differing in pathway mutational profiles and time to first treatment. Interestingly, common CLL drivers such as ATM or TP53 were associated with particular subtypes, while others like NOTCH1 or SF3B1 were not. This study provides an important step in understanding mutational patterns in CLL.

See more in PubMed

Cancer Genome Atlas Research Network (2011). Integrated genomic analyses of ovarian carcinoma. Nature 474 609–615.10.1038/nature10166 PubMed DOI PMC

Chen T., Guestrin C. (2016). “XGBoost: a scalable tree boosting system,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (New York, NY: ACM; ).

Chiu D. S., Talhouk A. (2018). diceR: an R package for class discovery using an ensemble driven approach. BMC Bioinform 19:11. 10.1186/s12859-017-1996-y PubMed DOI PMC

Damle R. N., Wasil T., Fais F., Ghiotto F., Valetto A., Allen S. L., et al. (1999). Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94 1840–1847.10.1182/blood.v94.6.1840 PubMed DOI

Döhner H., Stilgenbauer S., Benner A., Leupolt E., Kröber A., Bullinger L., et al. (2000). Genomic aberrations and survival in chronic lymphocytic leukemia. N. Engl. J. Med. 343 1910–1916. PubMed

Hallek M. (2019). Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment. Am. J. Hematol. 94 1266–1287. 10.1002/ajh.25595 PubMed DOI

Hamblin T. J., Davis Z., Gardiner A., Oscier D. G., Stevenson F. K. (1999). Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94 1848–1854. 10.1182/blood.v94.6.1848 PubMed DOI

Hedegaard J., Lamy P., Nordentoft I., Algaba F., Høyer S., Ulhøi B. P., et al. (2016). Comprehensive transcriptional analysis of early-stage urothelial carcinoma. Cancer Cell 30 27–42. PubMed

Hofree M., Shen J. P., Carter H., Gross A., Ideker T. (2013). Network-based stratification of tumor mutations. Nat. Methods 10 1108–1115. 10.1038/nmeth.2651 PubMed DOI PMC

Kipps T. J., Stevenson F. K., Wu C. J., Croce C. M., Packham G., Wierda W. G., et al. (2017). Chronic lymphocytic leukaemia. Nat. Rev. Dis. Primer 3:16096. PubMed PMC

Kuijjer M. L., Paulson J. N., Salzman P., Ding W., Quackenbush J. (2018). Cancer subtype identification using somatic mutation data. Br. J. Cancer 118 1492–1501. 10.1038/s41416-018-0109-7 PubMed DOI PMC

Landau D. A., Carter S. L., Stojanov P., McKenna A., Stevenson K., Lawrence M. S., et al. (2013). Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152 714–726. PubMed PMC

Landau D. A., Tausch E., Taylor-Weiner A. N., Stewart C., Reiter J. G., Bahlo J., et al. (2015). Mutations driving CLL and their evolution in progression and relapse. Nature 526 525–530. 10.1038/nature15395 PubMed DOI PMC

Lawrence M. S., Stojanov P., Polak P., Kryukov G. V., Cibulskis K., Sivachenko A., et al. (2013). Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499 214–218. PubMed PMC

Lazarian G., Guièze R., Wu C. J. (2017). Clinical implications of novel genomic discoveries in chronic lymphocytic leukemia. J. Clin. Oncol. 35 984–993. 10.1200/jco.2016.71.0822 PubMed DOI PMC

Le Morvan M., Zinovyev A., Vert J.-P. (2017). NetNorM: capturing cancer-relevant information in somatic exome mutation data with gene networks for cancer stratification and prognosis. PLoS Comput. Biol. 13:e1005573. 10.1371/journal.pcbi.1005573 PubMed DOI PMC

Leiserson M. D. M., Vandin F., Wu H.-T., Dobson J. R., Eldridge J. V., Thomas J. L., et al. (2015). Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat. Genet. 47 106–114. 10.1038/ng.3168 PubMed DOI PMC

Liberzon A., Subramanian A., Pinchback R., Thorvaldsdóttir H., Tamayo P., Mesirov J. P. (2011). Molecular signatures database (MSigDB) 3.0. Bioinformatics 27 1739–1740. 10.1093/bioinformatics/btr260 PubMed DOI PMC

Martincorena I., Campbell P. J. (2015). Somatic mutation in cancer and normal cells. Science 349 1483–1489. 10.1126/science.aab4082 PubMed DOI

Noushmehr H., Weisenberger D. J., Diefes K., Phillips H. S., Pujara K., Berman B. P., et al. (2010). Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17 510–522. PubMed PMC

Papaemmanuil E., Gerstung M., Bullinger L., Gaidzik V. I., Paschka P., Roberts N. D., et al. (2016). Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 374 2209–2221. PubMed PMC

Puente X. S., Beà S., Valdés-Mas R., Villamor N., Gutiérrez-Abril J., Martín-Subero J. I., et al. (2015). Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 526 519–524. PubMed

R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available online at: https://www.R-project.org/.

Ronan T., Qi Z., Naegle K. M. (2016). Avoiding common pitfalls when clustering biological data. Sci. Signal. 9:re6. 10.1126/scisignal.aad1932 PubMed DOI

Schmitz R., Wright G. W., Huang D. W., Johnson C. A., Phelan J. D., Wang J. Q., et al. (2018). Genetics and pathogenesis of diffuse large B-Cell lymphoma. N. Engl. J. Med. 378 1396–1407. PubMed PMC

Shannon P., Markiel A., Ozier O., Baliga N. S., Wang J. T., Ramage D., et al. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13 2498–2504. 10.1101/gr.1239303 PubMed DOI PMC

Stoney R. A., Schwartz J.-M., Robertson D. L., Nenadic G. (2018). Using set theory to reduce redundancy in pathway sets. BMC Bioinformatics 19:386. 10.1186/s12859-018-2355-3 PubMed DOI PMC

Sutton L.-A., Hadzidimitriou A., Baliakas P., Agathangelidis A., Langerak A. W., Stilgenbauer S., et al. (2017). Immunoglobulin genes in chronic lymphocytic leukemia: key to understanding the disease and improving risk stratification. Haematologica 102 968–971. 10.3324/haematol.2017.165605 PubMed DOI PMC

Şenbabaoğlu Y., Michailidis G., Li J. Z. (2014). Critical limitations of consensus clustering in class discovery. Sci. Rep. 4:6207. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...