Community Parameters and Genome-Wide RAD-Seq Loci of Ceratothoa oestroides Imply Its Transfer between Farmed European Sea Bass and Wild Farm-Aggregating Fish
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
634429 (ParaFishControl)
European Union, through the Horizon H2020
PubMed
33494355
PubMed Central
PMC7912605
DOI
10.3390/pathogens10020100
PII: pathogens10020100
Knihovny.cz E-zdroje
- Klíčová slova
- Ceratothoa oestroides, Dicentrarchus labrax, RAD-Seq, mean abundance, mean intensity, parasite transfer, prevalence,
- Publikační typ
- časopisecké články MeSH
Wild fish assemblages that aggregate within commercial marine aquaculture sites for feeding and shelter have been considered as a primary source of pathogenic parasites vectored to farmed fish maintained in net pens at an elevated density. In order to evaluate whether Ceratothoa oestroides (Isopoda, Cymothoidae), a generalist and pestilent isopod that is frequently found in Adriatic and Greek stocks of farmed European sea bass (Dicentrarchus labrax), transfers between wild and farmed fish, a RAD-Seq (restriction-site-associated DNA sequencing)-mediated genetic screening approach was employed. The double-digest RAD-Seq of 310 C. oestroides specimens collected from farmed European sea bass (138) and different wild farm-aggregating fish (172) identified 313 robust SNPs that evidenced a close genetic relatedness between the "wild" and "farmed" genotypes. ddRAD-Seq proved to be an effective method for detecting the discrete genetic structuring of C. oestroides and genotype intermixing between two populations. The parasite prevalence in the farmed sea bass was 1.02%, with a mean intensity of 2.0 and mean abundance of 0.02, while in the wild fish, the prevalence was 8.1%; the mean intensity, 1.81; and the mean abundance, 0.15. Such differences are likely a consequence of human interventions during the farmed fish's rearing cycle that, nevertheless, did not affect the transfer of C. oestroides.
Institute of Aquaculture Faculty of Natural Sciences University of Stirling Stirling FK9 4LA UK
Institute of Oceanography and Fisheries Laboratory of Aquaculture 21000 Split Croatia
University Department of Marine Studies University of Split 21000 Split Croatia
Zobrazit více v PubMed
Fioravanti M.L., Mladineo I., Palenzuela O., Beraldo P., Massimo M., Gustinelli A., Sitjà-Bobadilla A. In: Guide 4—Fish Farmer’s Guide to Combating Parasitic Infections in European Sea Bass and Gilthead Sea Bream Aquaculture. Sitjà-Bobadilla A., Bello-Gómez E., editors. Springer; Cham, Switzerland: 2020. p. 29. 833-20-104-5. A Series of ParaFishControl Guides to Combating Fish Parasite Infections in Aquaculture.
Romestand B., Thuet P., Trilles J.-P. Quelques aspects des mécanismes nutritionnels chez l’isopode cymothoidae: Ceratothoa oestroides (Risso, 1826) Ann. Parasitol. Hum. Comparée. 1982;57:79–89. doi: 10.1051/parasite/1982571079. PubMed DOI
Nagler C., Haug J.T. Functional morphology of parasitic isopods: Understanding morphological adaptations of attachment and feeding structures in Nerocila as a pre-requisite for reconstructing the evolution of Cymothoidae. Peer J. 2016;4:e2188. doi: 10.7717/peerj.2188. PubMed DOI PMC
Whittington I.D., Chisholm L.A. Chapter 13: Diseases caused by Monogenea. In: Eiras J.C., Segner H., Wahli T., Kapoor B.G., editors. Fish Diseases. Science Publishers; Enfield, NH, USA: 2008. pp. 683–816.
Charfi-Cheikhrouha F., Zghidi W., Ould Yarba L., Trilles J.P. Les Cymothoidae (Isopodes parasites de poissons) des côtes tunisiennes: Ecologie et indices parasitologiques. Syst. Parasitol. 2000;46:143–150. doi: 10.1023/A:1006336516776. PubMed DOI
Trilles J.-P., Radujković B., Romestand B. Parasites des poissons marins du Monténégro: Isopodes. Acta Adriat. 1989;30:279–306.
Arechavala-Lopez P., Fernandez-Jover D., Black K.D., Ladoukakis E., Bayle-Sempere J.T., Sanchez-Jerez P., Dempster T. Differentiating the wild or farmed origin of Mediterranean fish: A review of tools for sea bream and sea bass. Rev. Aquac. 2013;5:137–157. doi: 10.1111/raq.12006. DOI
Peeler E., Thrush M., Paisley L., Rodgers C. An assessment of the risk of spreading the fish parasite Gyrodactylus salaris to uninfected territories in the European Union with the movement of live Atlantic salmon (Salmo salar) from coastal waters. Aquaculture. 2006;258:187–197. doi: 10.1016/j.aquaculture.2005.07.042. DOI
Mladineo I., Šegvić T., Grubišić L. Molecular evidence for the lack of transmission of the monogenean Sparicotyle chrysophrii (Monogenea, Polyopisthocotylea) and isopod Ceratothoa oestroides (Crustacea, Cymothoidae) between wild bogue (Boops boops) and cage-reared sea b. Aquaculture. 2009;295:160–167. doi: 10.1016/j.aquaculture.2009.07.017. DOI
Mladineo I., Šegvić-Bubić T., Stanić R., Desdevises Y. Morphological plasticity and phylogeny in a monogenean parasite transferring between wild and reared fish populations. PLoS ONE. 2013;8:e62011. doi: 10.1371/journal.pone.0062011. PubMed DOI PMC
Davey J.W., Hohenlohe P.A., Etter P.D., Boone J.Q., Catchen J.M., Blaxter M.L. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 2011;12:499–510. doi: 10.1038/nrg3012. PubMed DOI
Hendricks S., Anderson E.C., Antao T., Bernatchez L., Forester B.R., Garner B., Hand B.K., Hohenlohe P.A., Kardos M., Koop B., et al. Recent advances in conservation and population genomics data analysis. Evol. Appl. 2018;11:1197–1211. doi: 10.1111/eva.12659. DOI
Robledo D., Palaiokostas C., Bargelloni L., Martínez P., Houston R. Applications of genotyping by sequencing in aquaculture breeding and genetics. Rev. Aquac. 2018;10:670–682. doi: 10.1111/raq.12193. PubMed DOI PMC
Baird N.A., Etter P.D., Atwood T.S., Currey M.C., Shiver A.L., Lewis Z.A., Selker E.U., Cresko W.A., Johnson E.A. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE. 2008;3:e3376. doi: 10.1371/journal.pone.0003376. PubMed DOI PMC
Peterson B.K., Weber J.N., Kay E.H., Fisher H.S., Hoekstra H.E. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE. 2012;7:e37135. doi: 10.1371/journal.pone.0037135. PubMed DOI PMC
Wang S., Meyer E., Mckay J.K., Matz M.V. 2b-RAD: A simple and flexible method for genome-wide genotyping. Nat. Methods. 2012;9:808–810. doi: 10.1038/nmeth.2023. PubMed DOI
Pante E., Abdelkrim J., Viricel A., Gey D., France S.C., Boisselier M.C., Samadi S. Use of RAD sequencing for delimiting species. Heredity. 2015;114:450–459. doi: 10.1038/hdy.2014.105. PubMed DOI PMC
Pavey S.A., Gaudin J., Normandeau E., Dionne M., Castonguay M., Audet C., Bernatchez L. RAD sequencing highlights polygenic discrimination of habitat ecotypes in the panmictic american eel. Curr. Biol. 2015;25:1666–1671. doi: 10.1016/j.cub.2015.04.062. PubMed DOI
Crawford D.L., Oleksiak M.F. Ecological population genomics in the marine environment. Brief. Funct. Genom. 2016;15:342–351. doi: 10.1093/bfgp/elw008. PubMed DOI
Pfaller J.B., Payton A.C., Bjorndal K.A., Bolten A.B., McDaniel S.F. Hitchhiking the high seas: Global genomics of rafting crabs. Ecol. Evol. 2019;9:957–974. doi: 10.1002/ece3.4694. PubMed DOI PMC
Vendrami D.L.J., de Noia M., Telesca L., Handal W., Charrier G., Boudry P., Eberhart-Phillips L., Hoffman J.I. RAD sequencing sheds new light on the genetic structure and local adaptation of European scallops and resolves their demographic histories. Sci. Rep. 2019;9:7455. doi: 10.1038/s41598-019-43939-4. PubMed DOI PMC
Hupalo D.N., Bradic M., Carlton J.M. The impact of genomics on population genetics of parasitic diseases. Curr. Opin. Microbiol. 2015;23:49–54. doi: 10.1016/j.mib.2014.11.001. PubMed DOI PMC
Barría A., Christensen K.A., Yoshida G.M., Correa K., Jedlicki A., Lhorente J.P., Davidson W.S., Yáñez J.M. Genomic predictions and genome-wide association study of resistance against Piscirickettsia salmonis in coho salmon (Oncorhynchus kisutch) using ddRAD sequencing. G3 Genes Genomes Genet. 2018;8:1183–1194. doi: 10.1534/g3.118.200053. PubMed DOI PMC
Barría A., Marín-Nahuelpi R., Cáceres P., López M.E., Bassini L.N., Lhorente J.P., Yáñez J.M. Single-step genome-wide association study for resistance to Piscirickettsia salmonis in rainbow trout (Oncorhynchus mykiss) G3 Genes Genomes Genet. 2019;9:3833–3841. doi: 10.1534/g3.119.400204. PubMed DOI PMC
Carmichael S.N., Bekaert M., Taggart J.B., Christie H.R.L., Bassett D.I., Bron J.E., Skuce P.J., Gharbi K., Skern-Mauritzen R., Sturm A. Identification of a sex-linked SNP marker in the salmon louse (Lepeophtheirus salmonis) using RAD sequencing. PLoS ONE. 2013;8:e77832. doi: 10.1371/journal.pone.0077832. PubMed DOI PMC
Jacobs A., de Noia M., Praebel K., Kanstad-Hanssen Ø., Paterno M., Jackson D., McGinnity P., Sturm A., Elmer K.R., Llewellyn M.S. Genetic fingerprinting of salmon louse (Lepeophtheirus salmonis) populations in the North-East Atlantic using a random forest classification approach. Sci. Rep. 2018;8:1203. doi: 10.1038/s41598-018-19323-z. PubMed DOI PMC
Vagianou S., Athanassopoulou F., Ragias V., di Cave D., Leontides L., Golomazou E. Prevalence and pathology of ectoparasites of mediterranean sea bream and sea bass reared under different environmental and aquaculture conditions. Isr. J. Aquac. Bamidgeh. 2006;58:78–88.
Horton T., Okamura B. Post-haemorrhagic anaemia in sea bass, Dicentrarchus labrax (L.), caused by blood feeding of Ceratothoa oestroides (Isopoda: Cymothoidae) J. Fish Dis. 2003;26:401–406. doi: 10.1046/j.1365-2761.2003.00476.x. PubMed DOI
Šarušić G. Preliminary report of infestation by isopod Ceratothoa oestroides (Risso, 1826), in marine cultured fis. Bull. Eur. Assoc. Fish Pathol. 1999;19:110–112.
Horton T., Okamura B. Cymothoid isopod parasites in aquaculture: A review and case study of a Turkish sea bass (Dicentrarchus labrax) and sea bream (Sparus auratus) farm. Dis. Aquat. Organ. 2001;46:181–188. doi: 10.3354/dao046181. PubMed DOI
Mladineo I., Hrabar J., Vidjak O., Bočina I., Čolak S., Katharios P., Cascarano M.C., Keklikoglou K., Volpatti D., Beraldo P. Host-parasite interaction between parasitic cymothoid Ceratothoa oestroides and its host, farmed European sea bass (Dicentrarchus labrax) Pathogens. 2020;9:230. doi: 10.3390/pathogens9030230. PubMed DOI PMC
Čolak S., Kolega M., Mejdandžić D., Župan I., Šarić T., Piplović E., Mustać B. Prevalence and effects of the cymothoid isopod (Ceratothoa oestroides, Risso 1816) on cultured meagre (Argyrosomus regius, Asso 1801) in the Eastern Adriatic Sea. Aquac. Res. 2018;49:1001–1007. doi: 10.1111/are.13547. DOI
Mladineo I. Prevalence of Ceratothoa oestroides (Risso, 1826), a cymothoid isopod parasite, in cultured sea bass (Dicentrarchus labrax, L.) on two farms in the middle of Adriatic Sea. Acta Adriat. 2002;43:97–102.
Diamant A., Colorni A., Ucko M. Parasite and disease transfer between cultured and wild coastal marine fish. CIESM Work. Monogr. 2007;32:49–53.
Boxaspen K. A review of the biology and genetics of sea lice. ICES J. Mar. Sci. 2006;63:1304–1316. doi: 10.1016/j.icesjms.2006.04.017. DOI
Mennerat A., Ugelvik M.S., Håkonsrud Jensen C., Skorping A. Invest more and die faster: The life history of a parasite on intensive farms. Evol. Appl. 2017;10:890–896. doi: 10.1111/eva.12488. PubMed DOI PMC
Todd C.D., Walker A.M., Ritchie M.G., Graves J.A., Walker A.F. Population genetic differentiation of sea lice (Lepeophtheirus salmonis) parasitic on Atlantic and Pacific salmonids: Analyses of microsatellite DNA variation among wild and farmed hosts. Can. J. Fish. Aquat. Sci. 2004;61:1176–1190. doi: 10.1139/f04-069. DOI
Besnier F., Kent M., Skern-Mauritzen R., Lien S., Malde K., Edvardsen R.B., Taylor S., Ljungfeldt L.E.R., Nilsen F., Glover K.A. Human-induced evolution caught in action: SNP-array reveals rapid amphi-atlantic spread of pesticide resistance in the salmon ecotoparasite Lepeophtheirus salmonis. BMC Genom. 2014;15:937. doi: 10.1186/1471-2164-15-937. PubMed DOI PMC
Bush A.O., Lafferty K.D., Lotz J.M., Shostak A.W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 1997;83:575–583. doi: 10.2307/3284227. PubMed DOI
Reiczigel J., Marozzi M., Fabian I., Rozsa L. Biostatistics for parasitologists—A primer to Quantitative Parasitology. Trend. Parasitol. 2019;35:277–281. doi: 10.1016/j.pt.2019.01.003. PubMed DOI
Manousaki T., Tsakogiannis A., Taggart J.B., Palaiokostas C., Tsaparis D., Lagnel J., Chatziplis D., Magoulas A., Papandroulakis N., Mylonas C.C., et al. Exploring a nonmodel teleost genome through rad sequencing-linkage mapping in common pandora, Pagellus erythrinus and comparative genomic analysis. G3 Genes Genomes Genet. 2016;6:509–519. PubMed PMC
Catchen J., Hohenlohe P.A., Bassham S., Amores A., Cresko W.A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 2013;22:3124–3140. doi: 10.1111/mec.12354. PubMed DOI PMC
Falush D., Stephens M., Pritchard J.K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics. 2003;164:1567–1587. PubMed PMC
Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005;14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x. PubMed DOI
Zheng X., Levine D., Shen J., Gogarten S.M., Laurie C., Weir B.S. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012;28:3326–3328. doi: 10.1093/bioinformatics/bts606. PubMed DOI PMC