Community Parameters and Genome-Wide RAD-Seq Loci of Ceratothoa oestroides Imply Its Transfer between Farmed European Sea Bass and Wild Farm-Aggregating Fish

. 2021 Jan 21 ; 10 (2) : . [epub] 20210121

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33494355

Grantová podpora
634429 (ParaFishControl) European Union, through the Horizon H2020

Wild fish assemblages that aggregate within commercial marine aquaculture sites for feeding and shelter have been considered as a primary source of pathogenic parasites vectored to farmed fish maintained in net pens at an elevated density. In order to evaluate whether Ceratothoa oestroides (Isopoda, Cymothoidae), a generalist and pestilent isopod that is frequently found in Adriatic and Greek stocks of farmed European sea bass (Dicentrarchus labrax), transfers between wild and farmed fish, a RAD-Seq (restriction-site-associated DNA sequencing)-mediated genetic screening approach was employed. The double-digest RAD-Seq of 310 C. oestroides specimens collected from farmed European sea bass (138) and different wild farm-aggregating fish (172) identified 313 robust SNPs that evidenced a close genetic relatedness between the "wild" and "farmed" genotypes. ddRAD-Seq proved to be an effective method for detecting the discrete genetic structuring of C. oestroides and genotype intermixing between two populations. The parasite prevalence in the farmed sea bass was 1.02%, with a mean intensity of 2.0 and mean abundance of 0.02, while in the wild fish, the prevalence was 8.1%; the mean intensity, 1.81; and the mean abundance, 0.15. Such differences are likely a consequence of human interventions during the farmed fish's rearing cycle that, nevertheless, did not affect the transfer of C. oestroides.

Zobrazit více v PubMed

Fioravanti M.L., Mladineo I., Palenzuela O., Beraldo P., Massimo M., Gustinelli A., Sitjà-Bobadilla A. In: Guide 4—Fish Farmer’s Guide to Combating Parasitic Infections in European Sea Bass and Gilthead Sea Bream Aquaculture. Sitjà-Bobadilla A., Bello-Gómez E., editors. Springer; Cham, Switzerland: 2020. p. 29. 833-20-104-5. A Series of ParaFishControl Guides to Combating Fish Parasite Infections in Aquaculture.

Romestand B., Thuet P., Trilles J.-P. Quelques aspects des mécanismes nutritionnels chez l’isopode cymothoidae: Ceratothoa oestroides (Risso, 1826) Ann. Parasitol. Hum. Comparée. 1982;57:79–89. doi: 10.1051/parasite/1982571079. PubMed DOI

Nagler C., Haug J.T. Functional morphology of parasitic isopods: Understanding morphological adaptations of attachment and feeding structures in Nerocila as a pre-requisite for reconstructing the evolution of Cymothoidae. Peer J. 2016;4:e2188. doi: 10.7717/peerj.2188. PubMed DOI PMC

Whittington I.D., Chisholm L.A. Chapter 13: Diseases caused by Monogenea. In: Eiras J.C., Segner H., Wahli T., Kapoor B.G., editors. Fish Diseases. Science Publishers; Enfield, NH, USA: 2008. pp. 683–816.

Charfi-Cheikhrouha F., Zghidi W., Ould Yarba L., Trilles J.P. Les Cymothoidae (Isopodes parasites de poissons) des côtes tunisiennes: Ecologie et indices parasitologiques. Syst. Parasitol. 2000;46:143–150. doi: 10.1023/A:1006336516776. PubMed DOI

Trilles J.-P., Radujković B., Romestand B. Parasites des poissons marins du Monténégro: Isopodes. Acta Adriat. 1989;30:279–306.

Arechavala-Lopez P., Fernandez-Jover D., Black K.D., Ladoukakis E., Bayle-Sempere J.T., Sanchez-Jerez P., Dempster T. Differentiating the wild or farmed origin of Mediterranean fish: A review of tools for sea bream and sea bass. Rev. Aquac. 2013;5:137–157. doi: 10.1111/raq.12006. DOI

Peeler E., Thrush M., Paisley L., Rodgers C. An assessment of the risk of spreading the fish parasite Gyrodactylus salaris to uninfected territories in the European Union with the movement of live Atlantic salmon (Salmo salar) from coastal waters. Aquaculture. 2006;258:187–197. doi: 10.1016/j.aquaculture.2005.07.042. DOI

Mladineo I., Šegvić T., Grubišić L. Molecular evidence for the lack of transmission of the monogenean Sparicotyle chrysophrii (Monogenea, Polyopisthocotylea) and isopod Ceratothoa oestroides (Crustacea, Cymothoidae) between wild bogue (Boops boops) and cage-reared sea b. Aquaculture. 2009;295:160–167. doi: 10.1016/j.aquaculture.2009.07.017. DOI

Mladineo I., Šegvić-Bubić T., Stanić R., Desdevises Y. Morphological plasticity and phylogeny in a monogenean parasite transferring between wild and reared fish populations. PLoS ONE. 2013;8:e62011. doi: 10.1371/journal.pone.0062011. PubMed DOI PMC

Davey J.W., Hohenlohe P.A., Etter P.D., Boone J.Q., Catchen J.M., Blaxter M.L. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 2011;12:499–510. doi: 10.1038/nrg3012. PubMed DOI

Hendricks S., Anderson E.C., Antao T., Bernatchez L., Forester B.R., Garner B., Hand B.K., Hohenlohe P.A., Kardos M., Koop B., et al. Recent advances in conservation and population genomics data analysis. Evol. Appl. 2018;11:1197–1211. doi: 10.1111/eva.12659. DOI

Robledo D., Palaiokostas C., Bargelloni L., Martínez P., Houston R. Applications of genotyping by sequencing in aquaculture breeding and genetics. Rev. Aquac. 2018;10:670–682. doi: 10.1111/raq.12193. PubMed DOI PMC

Baird N.A., Etter P.D., Atwood T.S., Currey M.C., Shiver A.L., Lewis Z.A., Selker E.U., Cresko W.A., Johnson E.A. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE. 2008;3:e3376. doi: 10.1371/journal.pone.0003376. PubMed DOI PMC

Peterson B.K., Weber J.N., Kay E.H., Fisher H.S., Hoekstra H.E. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE. 2012;7:e37135. doi: 10.1371/journal.pone.0037135. PubMed DOI PMC

Wang S., Meyer E., Mckay J.K., Matz M.V. 2b-RAD: A simple and flexible method for genome-wide genotyping. Nat. Methods. 2012;9:808–810. doi: 10.1038/nmeth.2023. PubMed DOI

Pante E., Abdelkrim J., Viricel A., Gey D., France S.C., Boisselier M.C., Samadi S. Use of RAD sequencing for delimiting species. Heredity. 2015;114:450–459. doi: 10.1038/hdy.2014.105. PubMed DOI PMC

Pavey S.A., Gaudin J., Normandeau E., Dionne M., Castonguay M., Audet C., Bernatchez L. RAD sequencing highlights polygenic discrimination of habitat ecotypes in the panmictic american eel. Curr. Biol. 2015;25:1666–1671. doi: 10.1016/j.cub.2015.04.062. PubMed DOI

Crawford D.L., Oleksiak M.F. Ecological population genomics in the marine environment. Brief. Funct. Genom. 2016;15:342–351. doi: 10.1093/bfgp/elw008. PubMed DOI

Pfaller J.B., Payton A.C., Bjorndal K.A., Bolten A.B., McDaniel S.F. Hitchhiking the high seas: Global genomics of rafting crabs. Ecol. Evol. 2019;9:957–974. doi: 10.1002/ece3.4694. PubMed DOI PMC

Vendrami D.L.J., de Noia M., Telesca L., Handal W., Charrier G., Boudry P., Eberhart-Phillips L., Hoffman J.I. RAD sequencing sheds new light on the genetic structure and local adaptation of European scallops and resolves their demographic histories. Sci. Rep. 2019;9:7455. doi: 10.1038/s41598-019-43939-4. PubMed DOI PMC

Hupalo D.N., Bradic M., Carlton J.M. The impact of genomics on population genetics of parasitic diseases. Curr. Opin. Microbiol. 2015;23:49–54. doi: 10.1016/j.mib.2014.11.001. PubMed DOI PMC

Barría A., Christensen K.A., Yoshida G.M., Correa K., Jedlicki A., Lhorente J.P., Davidson W.S., Yáñez J.M. Genomic predictions and genome-wide association study of resistance against Piscirickettsia salmonis in coho salmon (Oncorhynchus kisutch) using ddRAD sequencing. G3 Genes Genomes Genet. 2018;8:1183–1194. doi: 10.1534/g3.118.200053. PubMed DOI PMC

Barría A., Marín-Nahuelpi R., Cáceres P., López M.E., Bassini L.N., Lhorente J.P., Yáñez J.M. Single-step genome-wide association study for resistance to Piscirickettsia salmonis in rainbow trout (Oncorhynchus mykiss) G3 Genes Genomes Genet. 2019;9:3833–3841. doi: 10.1534/g3.119.400204. PubMed DOI PMC

Carmichael S.N., Bekaert M., Taggart J.B., Christie H.R.L., Bassett D.I., Bron J.E., Skuce P.J., Gharbi K., Skern-Mauritzen R., Sturm A. Identification of a sex-linked SNP marker in the salmon louse (Lepeophtheirus salmonis) using RAD sequencing. PLoS ONE. 2013;8:e77832. doi: 10.1371/journal.pone.0077832. PubMed DOI PMC

Jacobs A., de Noia M., Praebel K., Kanstad-Hanssen Ø., Paterno M., Jackson D., McGinnity P., Sturm A., Elmer K.R., Llewellyn M.S. Genetic fingerprinting of salmon louse (Lepeophtheirus salmonis) populations in the North-East Atlantic using a random forest classification approach. Sci. Rep. 2018;8:1203. doi: 10.1038/s41598-018-19323-z. PubMed DOI PMC

Vagianou S., Athanassopoulou F., Ragias V., di Cave D., Leontides L., Golomazou E. Prevalence and pathology of ectoparasites of mediterranean sea bream and sea bass reared under different environmental and aquaculture conditions. Isr. J. Aquac. Bamidgeh. 2006;58:78–88.

Horton T., Okamura B. Post-haemorrhagic anaemia in sea bass, Dicentrarchus labrax (L.), caused by blood feeding of Ceratothoa oestroides (Isopoda: Cymothoidae) J. Fish Dis. 2003;26:401–406. doi: 10.1046/j.1365-2761.2003.00476.x. PubMed DOI

Šarušić G. Preliminary report of infestation by isopod Ceratothoa oestroides (Risso, 1826), in marine cultured fis. Bull. Eur. Assoc. Fish Pathol. 1999;19:110–112.

Horton T., Okamura B. Cymothoid isopod parasites in aquaculture: A review and case study of a Turkish sea bass (Dicentrarchus labrax) and sea bream (Sparus auratus) farm. Dis. Aquat. Organ. 2001;46:181–188. doi: 10.3354/dao046181. PubMed DOI

Mladineo I., Hrabar J., Vidjak O., Bočina I., Čolak S., Katharios P., Cascarano M.C., Keklikoglou K., Volpatti D., Beraldo P. Host-parasite interaction between parasitic cymothoid Ceratothoa oestroides and its host, farmed European sea bass (Dicentrarchus labrax) Pathogens. 2020;9:230. doi: 10.3390/pathogens9030230. PubMed DOI PMC

Čolak S., Kolega M., Mejdandžić D., Župan I., Šarić T., Piplović E., Mustać B. Prevalence and effects of the cymothoid isopod (Ceratothoa oestroides, Risso 1816) on cultured meagre (Argyrosomus regius, Asso 1801) in the Eastern Adriatic Sea. Aquac. Res. 2018;49:1001–1007. doi: 10.1111/are.13547. DOI

Mladineo I. Prevalence of Ceratothoa oestroides (Risso, 1826), a cymothoid isopod parasite, in cultured sea bass (Dicentrarchus labrax, L.) on two farms in the middle of Adriatic Sea. Acta Adriat. 2002;43:97–102.

Diamant A., Colorni A., Ucko M. Parasite and disease transfer between cultured and wild coastal marine fish. CIESM Work. Monogr. 2007;32:49–53.

Boxaspen K. A review of the biology and genetics of sea lice. ICES J. Mar. Sci. 2006;63:1304–1316. doi: 10.1016/j.icesjms.2006.04.017. DOI

Mennerat A., Ugelvik M.S., Håkonsrud Jensen C., Skorping A. Invest more and die faster: The life history of a parasite on intensive farms. Evol. Appl. 2017;10:890–896. doi: 10.1111/eva.12488. PubMed DOI PMC

Todd C.D., Walker A.M., Ritchie M.G., Graves J.A., Walker A.F. Population genetic differentiation of sea lice (Lepeophtheirus salmonis) parasitic on Atlantic and Pacific salmonids: Analyses of microsatellite DNA variation among wild and farmed hosts. Can. J. Fish. Aquat. Sci. 2004;61:1176–1190. doi: 10.1139/f04-069. DOI

Besnier F., Kent M., Skern-Mauritzen R., Lien S., Malde K., Edvardsen R.B., Taylor S., Ljungfeldt L.E.R., Nilsen F., Glover K.A. Human-induced evolution caught in action: SNP-array reveals rapid amphi-atlantic spread of pesticide resistance in the salmon ecotoparasite Lepeophtheirus salmonis. BMC Genom. 2014;15:937. doi: 10.1186/1471-2164-15-937. PubMed DOI PMC

Bush A.O., Lafferty K.D., Lotz J.M., Shostak A.W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 1997;83:575–583. doi: 10.2307/3284227. PubMed DOI

Reiczigel J., Marozzi M., Fabian I., Rozsa L. Biostatistics for parasitologists—A primer to Quantitative Parasitology. Trend. Parasitol. 2019;35:277–281. doi: 10.1016/j.pt.2019.01.003. PubMed DOI

Manousaki T., Tsakogiannis A., Taggart J.B., Palaiokostas C., Tsaparis D., Lagnel J., Chatziplis D., Magoulas A., Papandroulakis N., Mylonas C.C., et al. Exploring a nonmodel teleost genome through rad sequencing-linkage mapping in common pandora, Pagellus erythrinus and comparative genomic analysis. G3 Genes Genomes Genet. 2016;6:509–519. PubMed PMC

Catchen J., Hohenlohe P.A., Bassham S., Amores A., Cresko W.A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 2013;22:3124–3140. doi: 10.1111/mec.12354. PubMed DOI PMC

Falush D., Stephens M., Pritchard J.K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics. 2003;164:1567–1587. PubMed PMC

Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005;14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x. PubMed DOI

Zheng X., Levine D., Shen J., Gogarten S.M., Laurie C., Weir B.S. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012;28:3326–3328. doi: 10.1093/bioinformatics/bts606. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...