Neutrophil Extracellular Traps and Thrombolysis Resistance: New Insights for Targeting Therapies
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu pozorovací studie, časopisecké články
PubMed
38465650
PubMed Central
PMC10962437
DOI
10.1161/strokeaha.123.045225
Knihovny.cz E-zdroje
- Klíčová slova
- extracellular traps, immunohistochemistry, ischemic stroke, myocardial infarction, pathology,
- MeSH
- extracelulární pasti * metabolismus MeSH
- heparin MeSH
- histony metabolismus MeSH
- lidé MeSH
- neutrofily metabolismus MeSH
- trombolytická terapie MeSH
- trombóza * farmakoterapie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
- Názvy látek
- heparin MeSH
- histony MeSH
BACKGROUND: Thrombosis is linked to neutrophil release of neutrophil extracellular traps (NETs). NETs are proposed as a mechanism of resistance to thrombolysis. This study intends to analyze the composition of thrombi retrieved after mechanical thrombectomy, estimate the age and organization of thrombi, and evaluate associations with the use of thrombolysis, antiplatelets, and heparin. METHODS: This retrospective observational study involved 72 samples (44 from cerebral and 28 coronary arteries), which were stained with hematoxylin and eosin, anti-NE (neutrophil elastase) antibody, and anti-histone H2B (histone H2B) antibody, representing different components in NET formation, all detectable during the later stages of NETosis, for histochemical and digital quantification of NET content. The histological and morphological evaluations of the specimens were correlated, through univariate and mediation analyses, with clinical information and therapy administered before intervention. RESULTS: The results demonstrated that the composition of cerebral and coronary thrombi differs, and there were significantly more lytic cerebral thrombi than coronary thrombi (66% versus 14%; P=0.005). There was a considerably higher expression of NETs in the cerebral thrombi as testified by the higher expression of H2B (P=0.031). Thrombolysis was remarkably associated with higher NE positivity (average marginal effect, 6.461 [95% CI, 0.7901-12.13]; P=0.02555), regardless of the origin of thrombi. There was no notable association between the administration of antiaggregant therapy/heparin and H2B/NE amount when adjusted for the thrombus location. Importantly, the age of the thrombus was the only independent predictor of NET content without any mediation of the thrombolytic treatment (P=0.014). CONCLUSIONS: The age of the thrombus is the driving force for NET content, which correlates with impaired clinical outcomes. The therapy that is currently administered does not modify NET content. This study supports the need to investigate new pharmacological approaches added to thrombolysis to prevent NET formation or enhance their disruption, such as recombinant human DNase I (deoxyribonuclease I).
Zobrazit více v PubMed
Feigin VL, Brainin M, Norrving B, Martins S, Sacco RL, Hacke W, Fisher M, Pandian J, Lindsay P. World Stroke Organization (WSO): global stroke fact sheet 2022. Int J Stroke. 2022;17:18–29. doi: 10.1177/17474930211065917 PubMed
Barreto AD. Intravenous thrombolytics for ischemic stroke. Neurotherapeutics. 2011;8:388–399. doi: 10.1007/s13311-011-0049-x PubMed PMC
Boeckh-Behrens T, Kleine JF, Zimmer C, Neff F, Scheipl F, Pelisek J, Schirmer L, Nguyen K, Karatas D, Poppert H. Thrombus histology suggests cardioembolic cause in cryptogenic stroke. Stroke. 2016;47:1864–1871. doi: 10.1161/STROKEAHA.116.013105 PubMed
Kimball AS, Obi AT, Diaz JA, Henke PK. The emerging role of NETs in venous thrombosis and immunothrombosis. Front Immunol. 2016;7:236. doi: 10.3389/fimmu.2016.00236. PubMed PMC
Laridan E, Denorme F, Desender L, François O, Andersson T, Deckmyn H, Vanhoorelbeke K, De Meyer SF. Neutrophil extracellular traps in ischemic stroke thrombi: NETs in stroke. Ann Neurol. 2017;82:223–232. doi: 10.1002/ana.24993 PubMed
Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–1535. doi: 10.1126/science.1092385 PubMed
Brinkmann V, Zychlinsky A. Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol. 2012;198:773–783. doi: 10.1083/jcb.201203170 PubMed PMC
Brinkmann V, Abu Abed U, Goosmann C, Zychlinsky A. Immunodetection of NETs in paraffin-embedded tissue. Front Immunol. 2016;7:513. doi: 10.3389/fimmu.2016.00513. PubMed PMC
Neeli I, Khan SN, Radic M. Histone deimination as a response to inflammatory stimuli in neutrophils. J Immunol. 2008;180:1895–1902. doi: 10.4049/jimmunol.180.3.1895 PubMed
Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, Hayama R, Leonelli L, Han H, Grigoryev SA, et al. . Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol. 2009;184:205–213. doi: 10.1083/jcb.200806072 PubMed PMC
Angelini A, Reimers B, Barbera MD, Saccà S, Pasquetto G, Cernetti C, Valente M, Pascotto P, Thiene G. Cerebral protection during carotid artery stenting: collection and histopathologic analysis of embolized debris. Stroke. 2002;33:456–461. doi: 10.1161/hs0202.102337 PubMed
Angelini A, Rubartelli P, Mistrorigo F, Della Barbera M, Abbadessa F, Vischi M, Thiene G, Chierchia S. Distal protection with a filter device during coronary stenting in patients with stable and unstable angina. Circulation. 2004;110:515–521. doi: 10.1161/01.CIR.0000137821.94074.EE PubMed
Rittersma SZH, Van Der Wal AC, Koch KT, Piek JJ, Henriques JPS, Mulder KJ, Ploegmakers JPHM, Meesterman M, De Winter RJ. Plaque instability frequently occurs days or weeks before occlusive coronary thrombosis: a pathological thrombectomy study in primary percutaneous coronary intervention. Circulation. 2005;111:1160–1165. doi: 10.1161/01.CIR.0000157141.00778.AC PubMed
Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18:134–147. doi: 10.1038/nri.2017.105 PubMed
Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, McQuaid S, Gray RT, Murray LJ, Coleman HG, et al. . QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7:1–7. PubMed PMC
Imai K, Keele L, Yamamoto T. Identification, inference and sensitivity analysis for causal mediation effects. Stat Sci. 2010;25:51–71. doi: 10.1214/10-STS321
R Core Team. R: A Language and Environment for Statistical Computing. 2022.
Tingley D, Yamamoto T, Hirose K, Keele L, Imai K. Mediation: R package for causal mediation analysis. J Stat Softw. 2014;59:1–38. doi: 10.18637/jss.v059.i05 PubMed
Novotny J, Oberdieck P, Titova A, Pelisek J, Chandraratne S, Nicol P, Hapfelmeier A, Joner M, Maegdefessel L, Poppert H, et al. . Thrombus NET content is associated with clinical outcome in stroke and myocardial infarction. Neurology. 2020;94:e2346–e2360. doi: 10.1212/WNL.0000000000009532 PubMed
Riegger J, Byrne RA, Joner M, Chandraratne S, Gershlick AH, Ten Berg JM, Adriaenssens T, Guagliumi G, Godschalk TC, Neumann FJ, et al. ; Prevention of Late Stent Thrombosis by an Interdisciplinary Global European Effort (PRESTIGE) Investigators. Histopathological evaluation of thrombus in patients presenting with stent thrombosis. A multicenter European study: a report of the prevention of late stent thrombosis by an interdisciplinary global European effort consortium†. Eur Heart J. 2016;37:1538–1549. doi: 10.1093/eurheartj/ehv419 PubMed PMC
Massberg S, Grahl L, Von Bruehl ML, Manukyan D, Pfeiler S, Goosmann C, Brinkmann V, Lorenz M, Bidzhekov K, Khandagale AB, et al. . Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16:887–896. doi: 10.1038/nm.2184 PubMed
von Brühl ML, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, Khandoga A, Tirniceriu A, Coletti R, Köllnberger M, et al. . Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209:819–835. doi: 10.1084/jem.20112322 PubMed PMC
Di Meglio L, Desilles JP, Ollivier V, Nomenjanahary MS, Di Meglio S, Deschildre C, Loyau S, Olivot JM, Blanc R, Piotin M, et al. . Acute ischemic stroke thrombi have an outer shell that impairs fibrinolysis. Neurology. 2019;93:e1686–e1698. doi: 10.1212/WNL.0000000000008395 PubMed PMC
Bryndová L, Bar M, Herzig R, Mikulík R, Neumann J, Šaňák D, Škoda O, Školoudík D, Václavík D, Tomek A. Concentrating stroke care provision in the Czech Republic: the establishment of Stroke Centres in 2011 has led to improved outcomes. Health Policy. 2021;125:520–525. doi: 10.1016/j.healthpol.2021.01.011 PubMed
Fugate JE, Klunder AM, Kallmes DF. What is meant by “TICI”? AJNR Am J Neuroradiol. 2013;34:1792–1797. doi: 10.3174/ajnr.A3496 PubMed PMC
Widimský P, Kucera D. Stroke thrombectomy (± thrombolysis), and not thrombolysis alone, should be the gold standard for stroke treatment. EuroIntervention. 2022;17:e1367–e1368. doi: 10.4244/EIJ-E-22-00002 PubMed PMC
Guo X, Miao Z. Advances in mechanical thrombectomy for acute ischaemic stroke from large vessel occlusions. Stroke Vasc Neurol. 2021;6:649–657. doi: 10.1136/svn-2021-000972 PubMed PMC
Huynh T, Perron S, O’Loughlin J, Joseph L, Labrecque M, Tu JV, Théroux P. Comparison of primary percutaneous coronary intervention and fibrinolytic therapy in ST-segment-elevation myocardial infarction: Bayesian hierarchical meta-analyses of randomized controlled trials and observational studies. Circulation. 2009;119:3101–3109. doi: 10.1161/CIRCULATIONAHA.108.793745 PubMed
Widimsky P, Snyder K, Sulzenko J, Hopkins LN, Stetkarova I. Acute ischaemic stroke: recent advances in reperfusion treatment. Eur Heart J. 2023;44:1205–1215. doi: 10.1093/eurheartj/ehac684 PubMed PMC
Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 2010;107:15880–15885. doi: 10.1073/pnas.1005743107 PubMed PMC
Fuchs TA, Bhandari AA, Wagner DD. Histones induce rapid and profound thrombocytopenia in mice. Blood. 2011;118:3708–3714. doi: 10.1182/blood-2011-01-332676 PubMed PMC
Higashida RT, Furlan AJ, Roberts H, Tomsick T, Connors B, Barr J, Dillon W, Warach S, Broderick J, Tilley B, et al. ; Technology Assessment Committee of the American Society of Interventional and Therapeutic Neuroradiology. Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke. Stroke. 2003;34:e109–e137. doi: 10.1161/01.STR.0000082721.62796.09. PubMed
Hosseinnejad A, Ludwig N, Wienkamp A-K, Rimal R, Bleilevens C, Rossaint R, Rossaint J, Singh S. DNase I functional microgels for neutrophil extracellular trap disruption. Biomater Sci. 2022;10:85–99. doi: 10.1039/d1bm01591e PubMed
Angeletti A, Volpi S, Bruschi M, Lugani F, Vaglio A, Prunotto M, Gattorno M, Schena F, Verrina E, Ravelli A, et al. . Neutrophil extracellular Traps-DNase balance and autoimmunity. Cells. 2021;10:2667. doi: 10.3390/cells10102667 PubMed PMC
Lazarus RA, Wagener JS. Recombinant human deoxyribonuclease I. In: Crommelin DJA, Sindelar RD, Meibohm B, eds. Pharmaceutical Biotechnology. Springer International Publishing; 2019:471–488.