Arabidopsis Class II Formins AtFH13 and AtFH14 Can Form Heterodimers but Exhibit Distinct Patterns of Cellular Localization
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NPUI LO1417
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31948069
PubMed Central
PMC6982070
DOI
10.3390/ijms21010348
PII: ijms21010348
Knihovny.cz E-zdroje
- Klíčová slova
- At1g31810, At5g58160, AtFH13, AtFH14, FH2 domain, PTEN-like domain, class II formin, confocal laser scanning microscopy,
- MeSH
- Arabidopsis genetika metabolismus MeSH
- dimerizace MeSH
- endoplazmatické retikulum metabolismus MeSH
- exprese genu MeSH
- forminy genetika metabolismus MeSH
- mikrotubuly metabolismus MeSH
- proteinové domény MeSH
- proteiny huseníčku genetika metabolismus MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- tabák metabolismus MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- forminy MeSH
- proteiny huseníčku MeSH
- rekombinantní proteiny MeSH
Formins are evolutionarily conserved multi-domain proteins participating in the control of both actin and microtubule dynamics. Angiosperm formins form two evolutionarily distinct families, Class I and Class II, with class-specific domain layouts. The model plant Arabidopsis thaliana has 21 formin-encoding loci, including 10 Class II members. In this study, we analyze the subcellular localization of two A. thaliana Class II formins exhibiting typical domain organization, the so far uncharacterized formin AtFH13 (At5g58160) and its distant homolog AtFH14 (At1g31810), previously reported to bind microtubules. Fluorescent protein-tagged full length formins and their individual domains were transiently expressed in Nicotiana benthamiana leaves under the control of a constitutive promoter and their subcellular localization (including co-localization with cytoskeletal structures and the endoplasmic reticulum) was examined using confocal microscopy. While the two formins exhibit distinct and only partially overlapping localization patterns, they both associate with microtubules via the conserved formin homology 2 (FH2) domain and with the periphery of the endoplasmic reticulum, at least in part via the N-terminal PTEN (Phosphatase and Tensin)-like domain. Surprisingly, FH2 domains of AtFH13 and AtFH14 can form heterodimers in the yeast two-hybrid assay-a first case of potentially biologically relevant formin heterodimerization mediated solely by the FH2 domain.
Zobrazit více v PubMed
Hasley A., Chavez S., Danilchik M., Wühr M., Pelegri F. Vertebrate embryonic cleavage pattern Determination. Adv. Exp. Med. Biol. 2017;953:117–171. PubMed PMC
Eng R.C., Sampathkumar A. Getting into shape: The mechanics behind plant morphogenesis. Curr. Opin. Plant Biol. 2018;46:25–31. doi: 10.1016/j.pbi.2018.07.002. PubMed DOI
Vaškovičová K., Žárský V., Rösel D., Nikolič M., Buccione R., Cvrčková F., Brábek J. Invasive cells in animals and plants: Searching for LECA machineries in later eukaryotic life. Biol. Direct. 2013;8:8. doi: 10.1186/1745-6150-8-8. PubMed DOI PMC
Thomas C., Staiger C.J. A dynamic interplay between membranes and the cytoskeleton critical for cell development and signaling. Front. Plant Sci. 2014;5:325. doi: 10.3389/fpls.2014.00335. PubMed DOI PMC
Paul A.S., Pollard T.D. Review of the mechanism of processive actin filament elongation by formins. Cell Motil. Cytoskelet. 2009;66:606–617. doi: 10.1002/cm.20379. PubMed DOI PMC
Deeks M.J., Fendrych M., Smertenko A., Bell K.S., Oparka K., Cvrčková F., Žárský V., Hussey P.J. The plant formin AtFH4 interacts with both actin and microtubules, and contains a newly identified microtubule-binding domain. J. Cell Sci. 2010;123:1209–1215. doi: 10.1242/jcs.065557. PubMed DOI
Bartolini F., Gundersen G.G. Formins and microtubules. Biochim. Biophys. Acta. 2010;1803:164–173. doi: 10.1016/j.bbamcr.2009.07.006. PubMed DOI PMC
Wang J., Xue X., Ren H. New insights into the role of plant formins: Regulating the organization of the actin and microtubule cytoskeleton. Protoplasma. 2012;249:S101–S107. doi: 10.1007/s00709-011-0368-0. PubMed DOI
Fernández-Barrera J., Alonso M.A. Coordination of microtubule acetylation and the actin cytoskeleton by formins. Cell. Mol. Life Sci. 2018;75:3181–3191. doi: 10.1007/s00018-018-2855-3. PubMed DOI PMC
Rivero F., Muramoto T., Meyer A.-K., Urushihara H., Uyeda T.Q.P., Kitayama C. A comparative sequence analysis reveals a common GBD/FH3-FH1-FH2-DAD architecture in formins from Dictyostelium, fungi and metazoa. BMC Genom. 2005;6:28. doi: 10.1186/1471-2164-6-28. PubMed DOI PMC
Grunt M., Žárský V., Cvrčková F. Roots of angiosperm formins: The evolutionary history of plant FH2 domain-containing proteins. BMC Evol. Biol. 2008;8:115. doi: 10.1186/1471-2148-8-115. PubMed DOI PMC
Pruyne D. Probing the origins of metazoan formin diversity: Evidence for evolutionary relationships between metazoan and non-metazoan formin subtypes. PLoS ONE. 2017;12:e0186081. doi: 10.1371/journal.pone.0186081. PubMed DOI PMC
Xu Y., Moseley J.B., Sagot I., Poy F., Pellman D., Goode B.L., Eck M.J. Crystal structures of a Formin Homology-2 domain reveal a tethered dimer architecture. Cell. 2004;116:711–723. doi: 10.1016/S0092-8674(04)00210-7. PubMed DOI
Copeland S.J., Green B.J., Burchat S., Papalia G.A., Banner D., Copeland J.W. The diaphanous inhibitory domain/diaphanous autoregulatory domain interaction is able to mediate heterodimerization between mDia1 and mDia2. J. Biol. Chem. 2007;282:30120–30130. doi: 10.1074/jbc.M703834200. PubMed DOI
Gavard J., Patel V., Gutkind J.S. Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev. Cell. 2008;14:25–36. doi: 10.1016/j.devcel.2007.10.019. PubMed DOI
Vaillant D.C., Copeland S.J., Davis C., Thurston S.F., Abdennur N., Copeland J.W. Interaction of the N- and C-terminal autoregulatory domains of FRL2 does not inhibit FRL2 activity. J. Biol. Chem. 2008;283:33750–33762. doi: 10.1074/jbc.M803156200. PubMed DOI PMC
Deeks M.J., Hussey P.J., Davies B. Formins: Intermediates in signal-transduction cascades that affect cytoskeletal reorganization. Trends Plant Sci. 2002;7:492–498. doi: 10.1016/S1360-1385(02)02341-5. PubMed DOI
Cvrčková F., Novotný M., Pícková D., Žárský V. Formin homology 2 domains occur in multiple contexts in angiosperms. BMC Genom. 2004;5:44. doi: 10.1186/1471-2164-5-44. PubMed DOI PMC
Vidali L., van Gisbergen P.A.C., Guérin C., Franco P., Li M., Burkart G.M., Augustine R.C., Blanchoin L., Bezanilla M. Rapid formin-mediated actin-filament elongation is essential for polarized plant cell growth. Proc. Natl. Acad. Sci. USA. 2009;106:13341–13346. doi: 10.1073/pnas.0901170106. PubMed DOI PMC
Li G., Yang X., Zhang X., Song Y., Liang W., Zhang D. Rice Morphology Determinant-mediated actin filament organization contributes to pollen tube growth. Plant Physiol. 2018;177:255–270. doi: 10.1104/pp.17.01759. PubMed DOI PMC
Zhang Z., Zhang Y., Tan H., Wang Y., Li G., Liang W., Yuan Z., Hu J., Ren H., Zhang D. Rice morphology determinant encodes the type II formin FH5 and regulates rice morphogenesis. Plant Cell. 2011;23:681–700. doi: 10.1105/tpc.110.081349. PubMed DOI PMC
Zhang S., Liu C., Wang J., Ren Z., Staiger C.J., Ren H. A processive Arabidopsis formin modulates actin filament dynamics in association with profilin. Mol. Plant. 2016;9:900–910. doi: 10.1016/j.molp.2016.03.006. PubMed DOI
Li Y., Shen Y., Cai C., Zhong C., Zhu L., Yuan M., Ren H. The type II Arabidopsis Formin14 interacts with microtubules and microfilaments to regulate cell division. Plant Cell. 2010;22:2710–2726. doi: 10.1105/tpc.110.075507. PubMed DOI PMC
Van Gisbergen P.A.C., Li M., Wu S.-Z., Bezanilla M. Class II formin targeting to the cell cortex by binding PI(3,5)P2 is essential for polarized growth. J. Cell Biol. 2012;198:235–250. doi: 10.1083/jcb.201112085. PubMed DOI PMC
Cvrčková F., Oulehlová D., Žárský V. Formins: Linking cytoskeleton and endomembranes in plant cells. Int. J. Mol. Sci. 2014;16:1–18. doi: 10.3390/ijms16010001. PubMed DOI PMC
Rosero A., Žársky V., Cvrčková F. AtFH1 formin mutation affects actin filament and microtubule dynamics in Arabidopsis thaliana. J. Exp. Bot. 2013;64:585–597. doi: 10.1093/jxb/ers351. PubMed DOI PMC
Rosero A., Oulehlová D., Stillerová L., Schiebertová P., Grunt M., Žárský V., Cvrčková F. Arabidopsis FH1 formin affects cotyledon pavement cell shape by nodulating cytoskeleton dynamics. Plant Cell Physiol. 2016;57:488–504. doi: 10.1093/pcp/pcv209. PubMed DOI
Cvrčková F. Are plant formins integral membrane proteins? Genome Biol. 2000;1:RESEARCH001. doi: 10.1186/gb-2000-1-1-research001. PubMed DOI PMC
Cvrčková F. Formins and membranes: Anchoring cortical actin to the cell wall and beyond. Front. Plant Sci. 2013;4:436. doi: 10.3389/fpls.2013.00436. PubMed DOI PMC
Favery B., Chelysheva L.A., Lebris M., Jammes F., Marmagne A., De Almeida-Engler J., Lecomte P., Vaury C., Arkowitz R.A., Abad P. Arabidopsis formin AtFH6 is a plasma membrane-associated protein upregulated in giant cells induced by parasitic nematodes. Plant Cell. 2004;16:2529–2540. doi: 10.1105/tpc.104.024372. PubMed DOI PMC
Ingouff M., Fitz Gerald J.N., Guérin C., Robert H., Sørensen M.B., Van Damme D., Geelen D., Blanchoin L., Berger F. Plant formin AtFH5 is an evolutionarily conserved actin nucleator involved in cytokinesis. Nat. Cell Biol. 2005;7:374–380. doi: 10.1038/ncb1238. PubMed DOI
Deeks M.J., Cvrčková F., Machesky L.M., Mikitová V., Ketelaar T., Žárský V., Davies B., Hussey P.J. Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression. New Phytol. 2005;168:529–540. doi: 10.1111/j.1469-8137.2005.01582.x. PubMed DOI
Martinière A., Gayral P., Hawes C., Runions J. Building bridges: formin1 of Arabidopsis forms a connection between the cell wall and the actin cytoskeleton. Plant J. 2011;66:354–365. doi: 10.1111/j.1365-313X.2011.04497.x. PubMed DOI
Lan Y., Liu X., Fu Y., Huang S. Arabidopsis class I formins control membrane-originated actin polymerization at pollen tube tips. PLoS Genet. 2018;14:e1007789. doi: 10.1371/journal.pgen.1007789. PubMed DOI PMC
Oulehlová D., Kollárová E., Cifrová P., Pejchar P., Žárský V., Cvrčková F. Arabidopsis class I formin FH1 relocates between membrane compartments during root cell ontogeny and associates with plasmodesmata. Plant Cell Physiol. 2019;60:1855–1870. doi: 10.1093/pcp/pcz102. PubMed DOI
Oulehlová D., Hála M., Potocký M., Žárský V., Cvrčková F. Plant antigens cross-react with rat polyclonal antibodies against KLH-conjugated peptides. Cell Biol. Int. 2009;31:113–118. doi: 10.1016/j.cellbi.2008.10.003. PubMed DOI
Sharma I., Russinova E. Probing plant receptor kinase functions with labeled ligands. Plant Cell Physiol. 2018;59:1520–1527. doi: 10.1093/pcp/pcy092. PubMed DOI
Lang C., Schulze J., Mendel R.R., Hänsch R. HaloTag: A new versatile reporter gene system in plant cells. J. Exp. Bot. 2006;57:2985–2992. doi: 10.1093/jxb/erl065. PubMed DOI
Yang W., Ren S., Zhang X., Gao M., Ye S., Qi Y., Zheng Y., Wang J., Zeng L., Li Q., et al. Bent uppermost internode1 encodes the class II formin FH5 crucial for actin organization and rice development. Plant Cell. 2011;23:661–680. doi: 10.1105/tpc.110.081802. PubMed DOI PMC
Wang J., Zhang Y., Wu J., Meng L., Ren H. AtFH16, an Arabidopsis type II formin, binds and bundles both microfilaments and microtubules, and preferentially binds to microtubules. J. Integr. Plant Biol. 2013;55:1002–1015. doi: 10.1111/jipb.12089. PubMed DOI
Gaillard J., Ramabhadran V., Neumanne E., Gurel P., Blanchoin L., Vantard M., Higgs H.N. Differential interactions of the formins INF2, mDia1, and mDia2 with microtubules. Mol. Biol. Cell. 2011;22:4575–4587. doi: 10.1091/mbc.e11-07-0616. PubMed DOI PMC
Courtemanche N. Mechanisms of formin-mediated actin assembly and dynamics. Biophys. Rev. 2018;10:1553–1569. doi: 10.1007/s12551-018-0468-6. PubMed DOI PMC
Bartolini F., Moseley J.B., Schmoranzer J., Cassimeris L., Goode B.L., Gundersen G.G. The formin mDia2 stabilizes microtubules independently of its actin nucleation activity. J. Cell Biol. 2008;181:523–536. doi: 10.1083/jcb.200709029. PubMed DOI PMC
Roth-Johnson E.A., Vizcarra C.L., Bois J.S., Quinlan M.E. Interaction between microtubules and the Drosophila formin Cappuccino and its effect on actin assembly. J. Biol. Chem. 2014;289:4395–4404. doi: 10.1074/jbc.M113.499921. PubMed DOI PMC
Foldi I., Szikora S., Mihály J. Formin’ bridges between microtubules and actin filaments in axonal growth cones. Neural Regen. Res. 2017;12:1971–1973. PubMed PMC
Sun T., Li S., Ren H. OsFH15, a class I formin, interacts with microfilaments and microtubules to regulate grain size via affecting cell expansion in rice. Sci. Rep. 2017;7:6538. doi: 10.1038/s41598-017-06431-5. PubMed DOI PMC
DeWard A.D., Alberts A.S. Microtubule stabilization: Formins assert their independence. Curr. Biol. 2008;18:R605–R608. doi: 10.1016/j.cub.2008.06.001. PubMed DOI
Chhabra E.S., Ramabhadran V., Gerber S.A., Higgs H.N. INF2 is an endoplasmic reticulum-associated formin protein. J. Cell. Sci. 2009;122:1430–1440. doi: 10.1242/jcs.040691. PubMed DOI PMC
Nezami A., Poy F., Toms A., Zheng W., Eck M.J. Crystal structure of a complex between amino and carboxy terminal fragments of mDia1: Insights into autoinhibition of diaphanous-related formins. PLoS ONE. 2010;5:e12992. doi: 10.1371/journal.pone.0012992. PubMed DOI PMC
Baquero Forero A., Cvrčková F. SH3Ps-evolution and diversity of a family of proteins engaged in plant cytokinesis. Int. J. Mol. Sci. 2019;20:5623. doi: 10.3390/ijms20225623. PubMed DOI PMC
Grefen C., Donald N., Hashimoto K., Kudla J., Schumacher K., Blatt M.R. A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant J. 2010;64:355–365. doi: 10.1111/j.1365-313X.2010.04322.x. PubMed DOI
Fendrych M., Synek L., Pečenková T., Drdová E.J., Sekereš J., de Rycke R., Nowack M.K., Žárský V. Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana. Mol. Biol. Cell. 2013;24:510–520. doi: 10.1091/mbc.e12-06-0492. PubMed DOI PMC
Nelson B.K., Cai X., Nebenführ A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 2007;51:1126–1136. doi: 10.1111/j.1365-313X.2007.03212.x. PubMed DOI
Voinnet O., Rivas S., Mestre P., Baulcombe D. An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 2003;33:949–956. doi: 10.1046/j.1365-313X.2003.01676.x. Retraction published in: Plant J.2015, 84, 846. PubMed DOI
Tinevez J.-Y., Perry N., Schindelin J., Hoopes G.M., Reynolds G.D., Laplantine E., Bednarek S.Y., Shorte S.L., Eliceiri K.W. TrackMate: An open and extensible platform for single-particle tracking. Methods. 2017;115:80–90. doi: 10.1016/j.ymeth.2016.09.016. PubMed DOI
Spitzer M., Wildenhain J., Rappsilber J., Tyers M. BoxPlotR: A web tool for generation of box plots. Nat. Methods. 2014;11:121–122. doi: 10.1038/nmeth.2811. PubMed DOI PMC
Bolte S., Cordelieres F.P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 2006;224:213–232. doi: 10.1111/j.1365-2818.2006.01706.x. PubMed DOI
Online Web Statistical Calculators. [(accessed on 30 November 2019)]; Available online: https://astatsa.com.
Transmembrane formins as active cargoes of membrane trafficking
The Arabidopsis thaliana Class II Formin FH13 Modulates Pollen Tube Growth
Complementary Superresolution Visualization of Composite Plant Microtubule Organization and Dynamics