Transmembrane formins as active cargoes of membrane trafficking

. 2024 Jun 24 ; 75 (12) : 3668-3684.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38401146

Grantová podpora
22-33471S Czech Science Foundation

Formins are a large, evolutionarily old family of cytoskeletal regulators whose roles include actin capping and nucleation, as well as modulation of microtubule dynamics. The plant class I formin clade is characterized by a unique domain organization, as most of its members are transmembrane proteins with possible cell wall-binding motifs exposed to the extracytoplasmic space-a structure that appears to be a synapomorphy of the plant kingdom. While such transmembrane formins are traditionally considered mainly as plasmalemma-localized proteins contributing to the organization of the cell cortex, we review, from a cell biology perspective, the growing evidence that they can also, at least temporarily, reside (and in some cases also function) in endomembranes including secretory and endocytotic pathway compartments, the endoplasmic reticulum, the nuclear envelope, and the tonoplast. Based on this evidence, we propose that class I formins may thus serve as 'active cargoes' of membrane trafficking-membrane-embedded proteins that modulate the fate of endo- or exocytotic compartments while being transported by them.

Zobrazit více v PubMed

Alzahofi N, Welz T, Robinson CL, et al.. 2020. Rab27a co-ordinates actin-dependent transport by controlling organelle-associated motors and track assembly proteins. Nature Communications 11, 3495. doi:10.1038/s41467-020-17212-6 PubMed DOI PMC

Anhezini L, Saita AP, Costa MS, Ramos RG, Simon CR.. 2012. Fhos encodes a Drosophila formin-like protein participating in autophagic programmed cell death. Genesis 50, 672–684. doi:10.1002/dvg.22025 PubMed DOI

Antoku S, Schwartz TU, Gundersen GG.. 2023. FHODs: nuclear tethered formins for nuclear mechanotransduction. Frontiers in Cell and Developmental Biology 11, 1160219. doi:10.3389/fcell.2023.1160219 PubMed DOI PMC

Aranda JF, Canfrán-Duque A, Goedeke L, Suárez Y, Fernández-Hernando C.. 2015. The miR-199–dynamin regulatory axis controls receptor-mediated endocytosis. Journal of Cell Science 128, 3197–3209. doi:10.1242/jcs.165233 PubMed DOI PMC

Armour WJ, Barton DA, Law AM, Overall RL.. 2015. Differential growth in periclinal and anticlinal walls during lobe formation in Arabidopsis cotyledon pavement cells. The Plant Cell 27, 2484–2500. doi:10.1105/tpc.114.126664 PubMed DOI PMC

Baluška F, Šamaj J, Menzel D.. 2003. Polar transport of auxin: carrier-mediated flux across the plasma membrane or neurotransmitter-like secretion? Trends in Cell Biology 13, 282–285. doi:10.1016/s0962-8924(03)00084-9 PubMed DOI

Baquero Forero A, Cvrčková F.. 2019. SH3Ps—evolution and diversity of a family of proteins engaged in plant cytokinesis. International Journal of Molecular Sciences 20, 5623. doi:10.3390/ijms20225623 PubMed DOI PMC

Bartolini F, Gundersen GG.. 2010. Formins and microtubules. Biochimica et Biophysica Acta 1803, 164–173. doi:10.1016/j.bbamcr.2009.07.006 PubMed DOI PMC

Bharadwaj R, Bhattacharya A, Somlata. 2021. Coordinated activity of amoebic formin and profilin are essential for phagocytosis. Molecular Microbiology 116, 974–995. doi:10.1111/mmi.14787 PubMed DOI

Bharadwaj R, Sharma S, Janhawi, Arya R, Bhattacharya S, Bhattacharya A.. 2018. EhRho1 regulates phagocytosis by modulating actin dynamics through EhFormin1 and EhProfilin1 in Entamoeba histolytica. Cellular Microbiology 20, e12851. doi:10.1111/cmi.12851 PubMed DOI

Billault-Chaumartin I, Muriel O, Michon L, Martin SG.. 2022. Condensation of the fusion focus by the intrinsically disordered region of the formin Fus1 is essential for cell–cell fusion. Current Biology 32, 4752–4761. doi:10.1016/j.cub.2022.09.026 PubMed DOI PMC

Blanchoin L, Staiger CJ.. 2010. Plant formins: diverse isoforms and unique molecular mechanism. Biochimica et Biophysica Acta 1803, 201–206. doi:10.1016/j.bbamcr.2008.09.015 PubMed DOI

Brandt DT, Marion S, Griffiths G, Watanabe T, Kaibuchi K, Grosse R.. 2007. Dia1 and IQGAP1 interact in cell migration and phagocytic cup formation. Journal of Cell Biology 178, 193–200. doi:10.1083/jcb.200612071 PubMed DOI PMC

Breitsprecher D, Goode BL.. 2013. Formins at a glance. Journal of Cell Science 126, 1–7. doi:10.1242/jcs.107250 PubMed DOI PMC

Bucki R, Wang YH, Yang C, Kandy SK, Fatunmbi O, Bradley R, Pogoda K, Svitkina T, Radhakrishnan R, Janmey PA.. 2019. Lateral distribution of phosphatidylinositol 4,5-bisphosphate in membranes regulates formin- and ARP2/3-mediated actin nucleation. Journal of Biological Chemistry 294, 4704–4722. doi:10.1074/jbc.RA118.005552 PubMed DOI PMC

Chakrabarti R, Lee M, Higgs HN.. 2021. Multiple roles for actin in secretory and endocytic pathways. Current Biology 31, R603–R618. doi:10.1016/j.cub.2021.03.038 PubMed DOI PMC

Cheng CY, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD.. 2017. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. The Plant Journal 89, 789–804. doi:10.1111/tpj.13415 PubMed DOI

Cheung AY, Niroomand S, Zou Y, Wu HM.. 2010. A transmembrane formin nucleates subapical actin assembly and controls tip-focused growth in pollen tubes. Proceedings of the National Academy of Sciences, USA 107, 16390–16395. doi:10.1073/pnas.1008527107 PubMed DOI PMC

Cheung AY, Wu HM.. 2004. Overexpression of an Arabidopsis formin stimulates supernumerary actin cable formation from pollen tube cell membrane. The Plant Cell 16, 257–269. doi:10.1105/tpc.016550 PubMed DOI PMC

Cifrová P, Oulehlová D, Kollárová E, Martinek J, Rosero A, Žárský V, Schwarzerová K, Cvrčková F.. 2020. Division of labor between two actin nucleators—the formin FH1 and the ARP2/3 complex—in Arabidopsis epidermal cell morphogenesis. Frontiers in Plant Sciences 11, 148. doi:10.3389/fpls.2020.00148 PubMed DOI PMC

Colucci-Guyon E, Niedergang F, Wallar BJ, Peng J, Alberts AS, Chavrier P.. 2005. A role for mammalian diaphanous-related formins in complement receptor (CR3)-mediated phagocytosis in macrophages. Current Biology 15, 2007–2012. doi:10.1016/j.cub.2005.09.051 PubMed DOI

Copeland J. 2019. Formins, Golgi, and the centriole. Results and Problems in Cell Differentiation 67, 27–48. doi:10.1007/978-3-030-23173-6_3 PubMed DOI

Courtemanche N. 2018. Mechanisms of formin-mediated actin assembly and dynamics. Biophysical Reviews 10, 1553–1569. doi:10.1007/s12551-018-0468-6 PubMed DOI PMC

Cui X, Zou M, Li J.. 2023. Basally distributed actin array drives embryonic hypocotyl elongation during the seed-to-seedling transition in Arabidopsis. New Phytologist 240, 191–206. doi:10.1111/nph.19149 PubMed DOI

Cvrčková F. 2000. Are plant formins integral membrane proteins? Genome Biology 1, RESEARCH001. doi:10.1186/gb-2000-1-1-research001 PubMed DOI PMC

Cvrčková F. 2012. Formins: emerging players in the dynamic plant cell cortex. Scientifica 2012, 712605. doi:10.6064/2012/712605 PubMed DOI PMC

Cvrčková F. 2013. Formins and membranes: anchoring cortical actin to the cell wall and beyond. Frontiers in Plant Sciences 4, 436. doi:10.3389/fpls.2013.00436 PubMed DOI PMC

Cvrčková F, Novotný M, Pícková D, Žárský V.. 2004. Formin homology 2 domains occur in multiple contexts in angiosperms. BMC Genomics 5, 44. doi:10.1186/1471-2164-5-44 PubMed DOI PMC

Cvrčková F, Oulehlová D, Žárský V.. 2014. Formins: linking cytoskeleton and endomembranes in plant cells. International Journal of Molecular Sciences 16, 1–18. doi:10.3390/ijms16010001 PubMed DOI PMC

Cvrčková F, Oulehlová D, Žárský V.. 2016. On growth and formins. Plant Signalling and Behaviour 11, e1155017. doi:10.1080/15592324.2016.1155017 PubMed DOI PMC

Dahhan DA, Reynolds GD, Cárdenas JJ, et al.. 2022. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. The Plant Cell 34, 2150–2173. doi:10.1093/plcell/koac071 PubMed DOI PMC

Das R, Bhattacharjee S, Letcher JM, et al.. 2021. Formin 3 directs dendritic architecture via microtubule regulation and is required for somatosensory nociceptive behavior. Development 148, dev187609. doi:10.1242/dev.187609 PubMed DOI PMC

Deeks MJ, Cvrčková F, Machesky LM, Mikitová V, Ketelaar T, Žárský V, Davies B, Hussey PJ.. 2005. Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression. New Phytologist 168, 529–540. doi:10.1111/j.1469-8137.2005.01582.x PubMed DOI

Deeks MJ, Fendrych M, Smertenko A, Bell KS, Oparka K, Cvrčková F, Žárský V, Hussey PJ.. 2010. The plant formin AtFH4 interacts with both actin and microtubules, and contains a newly identified microtubule-binding domain. Journal of Cell Science 123, 1209–1215. doi:10.1242/jcs.065557 PubMed DOI

Deeks MJ, Hussey PJ, Davies B.. 2002. Formins: intermediates in signal-transduction cascades that affect cytoskeletal reorganization. Trends in Plant Science 7, 492–498. doi:10.1016/s1360-1385(02)02341-5 PubMed DOI

Dhanda AS, Vogl AW, Ness F, Innocenti M, Guttman JA.. 2021. mDia1 assembles a linear F-actin coat at membrane invaginations to drive Listeria monocytogenes cell-to-cell spreading. mBio 12, e0293921. doi:10.1128/mBio.02939-21 PubMed DOI PMC

Diao M, Ren S, Wang Q, Qian L, Shen J, Liu Y, Huang S.. 2018. Arabidopsis formin 2 regulates cell-to-cell trafficking by capping and stabilizing actin filaments at plasmodesmata. eLife 7, e36316. doi:10.7554/eLife.36316 PubMed DOI PMC

Duan WJ, Liu ZH, Bai JF, et al.. 2021. Comprehensive analysis of formin gene family highlights candidate genes related to pollen cytoskeleton and male fertility in wheat (Triticum aestivum L.). BMC Genomics 22, 570. doi:10.1186/s12864-021-07878-7 PubMed DOI PMC

Dunkley TP, Hester S, Shadforth IP, et al.. 2006. Mapping the Arabidopsis organelle proteome. Proceedings of the National Academy of Sciences, USA 103, 6518–6523. doi:10.1073/pnas.0506958103 PubMed DOI PMC

Ecke M, Prassler J, Tanribil P, Müller-Taubenberger A, Körber S, Faix J, Gerisch G.. 2020. Formins specify membrane patterns generated by propagating actin waves. Molecular Biology of the Cell 31, 373–385. doi:10.1091/mbc.E19-08-0460 PubMed DOI PMC

Favery B, Chelysheva LA, Lebris M, Jammes F, Marmagne A, de Almeida-Engler J, Lecomte P, Vaury C, Arkowitz RA, Abad P.. 2004. Arabidopsis formin AtFH6 is a plasma membrane-associated protein upregulated in giant cells induced by parasitic nematodes. The Plant Cell 16, 2529–2540. doi:10.1105/tpc.104.024372 PubMed DOI PMC

Fernández-Barrera J, Alonso MA.. 2018. Coordination of microtubule acetylation and the actin cytoskeleton by formins. Cellular and Molecular Life Sciences 75, 3181–3191. doi:10.1007/s00018-018-2855-3 PubMed DOI PMC

Fernandez-Borja M, Janssen L, Verwoerd D, Hordijk P, Neefjes J.. 2005. RhoB regulates endosome transport by promoting actin assembly on endosomal membranes through Dia1. Journal of Cell Science 118, 2661–2670. doi:10.1242/jcs.02384 PubMed DOI

Frydrych Capelari E, da Fonseca GC, Guzman F, Margis R.. 2019. Circular and micro RNAs from Arabidopsis thaliana flowers are simultaneously isolated from AGO-IP libraries. Plants 8, 302. doi:10.3390/plants8090302 PubMed DOI PMC

Fullard JF, Baker NE.. 2015. Signaling by the engulfment receptor draper: a screen in Drosophila melanogaster implicates cytoskeletal regulators, Jun N-terminal kinase, and Yorkie. Genetics 199, 117–134. doi:10.1534/genetics.114.172544 PubMed DOI PMC

Fung TS, Chakrabarti R, Higgs HN.. 2023. The multiple links between actin and mitochondria. Nature Reviews. Molecular Cell Biology 24, 651–667. doi:10.1038/s41580-023-00613-y PubMed DOI PMC

Gachet Y, Hyams JS.. 2005. Endocytosis in fission yeast is spatially associated with the actin cytoskeleton during polarised cell growth and cytokinesis. Journal of Cell Science 118, 4231–4242. doi:10.1242/jcs.02530 PubMed DOI

Galotto G, Wisanpitayakorn P, Bibeau JP, Liu YC, Furt F, Pierce EC, Simpson PJ, Tüzel E, Vidali L.. 2021. Myosin XI drives polarized growth by vesicle focusing and local enrichment of F-actin in Physcomitrium patens. Plant Physiology 187, 2509–2529. doi:10.1093/plphys/kiab435 PubMed DOI PMC

Gasman S, Kalaidzidis Y, Zerial M.. 2003. RhoD regulates endosome dynamics through Diaphanous-related Formin and Src tyrosine kinase. Nature Cell Biology 5, 195–204. doi:10.1038/ncb935 PubMed DOI

Gatti P, Schiavon C, Manor U, Germain M.. 2023. Mitochondria- and ER-associated actin are required for mitochondrial fusion. bioRxiv doi: 10.1101/2023.06.13.544768 [Preprint]. DOI

1001 Genomes Consortium. 2016. 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166, 481–491. doi:10.1016/j.cell.2016.05.063 PubMed DOI PMC

Goodson HV, Kelley JB, Brawley SH.. 2021. Cytoskeletal diversification across 1 billion years: what red algae can teach us about the cytoskeleton, and vice versa. Bioessays 43, e2000278. doi:10.1002/bies.202000278 PubMed DOI

Gorelik R, Yang C, Kameswaran V, Dominguez R, Svitkina T.. 2011. Mechanisms of plasma membrane targeting of formin mDia2 through its amino terminal domains. Molecular Biology of the Cell 22, 189–201. doi:10.1091/mbc.E10-03-0256 PubMed DOI PMC

Groen AJ, Sancho-Andrés G, Breckels LM, Gatto L, Aniento F, Lilley KS.. 2014. Identification of trans-Golgi network proteins in Arabidopsis thaliana root tissue. Journal of Proteome Research 13, 763–776. doi:10.1021/pr4008464 PubMed DOI PMC

Grunt M, Žárský V, Cvrčková F.. 2008. Roots of angiosperm formins: the evolutionary history of plant FH2 domain-containing proteins. BMC Evolutionary Biology 8, 115. doi:10.1186/1471-2148-8-115 PubMed DOI PMC

Heard W, Sklenář J, Tomé DF, Robatzek S, Jones AM.. 2015. Identification of regulatory and cargo proteins of endosomal and secretory pathways in Arabidopsis thaliana by proteomic dissection. Molecular & Cellular Proteomics 14, 1796–1813. doi:10.1074/mcp.M115.050286 PubMed DOI PMC

Hille S, Akhmanova M, Glanc M, Johnson A, Friml J.. 2018. Relative contribution of PIN-containing secretory vesicles and plasma membrane PINs to the directed auxin transport: theoretical estimation. International Journal of Molecular Sciences 19, 3566. doi:10.3390/ijms19113566 PubMed DOI PMC

Hoffmann AK, Naj X, Linder S.. 2014. Daam1 is a regulator of filopodia formation and phagocytic uptake of Borrelia burgdorferi by primary human macrophages. FASEB Journal 28, 3075–3089. doi:10.1096/fj.13-247049 PubMed DOI

Huang J, Kim CM, Xuan YH, Liu J, Kim TH, Kim BK, Han CD.. 2013. Formin homology 1 (OsFH1) regulates root-hair elongation in rice (Oryza sativa). Planta 237, 1227–1239. doi:10.1007/s00425-013-1838-8 PubMed DOI

Huett A, Ng A, Cao Z, Kuballa P, Komatsu M, Daly MJ, Podolsky DK, Xavier RJ.. 2009. A novel hybrid yeast–human network analysis reveals an essential role for FNBP1L in antibacterial autophagy. Journal of Immunology 182, 4917–4930. doi:10.4049/jimmunol.0803050 PubMed DOI PMC

Ingouff M, Fitz Gerald JN, Guérin C, Robert H, Sørensen MB, Van Damme D, Geelen D, Blanchoin L, Berger F.. 2005. Plant formin AtFH5 is an evolutionarily conserved actin nucleator involved in cytokinesis. Nature Cell Biology 7, 374–380. doi:10.1038/ncb1238 PubMed DOI

Innocenti M. 2023. Investigating mammalian formins with SMIFH2 fifteen years in: novel targets and unexpected biology. International Journal of Molecular Sciences 24, 9058. doi:10.3390/ijms24109058 PubMed DOI PMC

Isogai T, Innocenti M.. 2016. New nuclear and perinuclear functions of formins. Biochemical Society Transactions 44, 1701–1708. doi:10.1042/BST20160187 PubMed DOI

Jacobs KC, Gladfelter AS, Lew DJ.. 2022. Targeted secretion: myosin V delivers vesicles through formin condensates. Current Biology 32, R1228–R1231. doi:10.1016/j.cub.2022.10.001 PubMed DOI

Junemann A, Filić V, Winterhoff M, Nordholz B, Litschko C, Schwellenbach H, Stephan T, Weber I, Faix J.. 2016. A Diaphanous-related formin links Ras signaling directly to actin assembly in macropinocytosis and phagocytosis. Proceedings of the National Academy of Sciences, USA 113, E7464–E7473. doi:10.1073/pnas.1611024113 PubMed DOI PMC

Kamioka Y, Fukuhara S, Sawa H, Nagashima K, Masuda M, Matsuda M, Mochizuki N.. 2004. A novel dynamin-associating molecule, formin-binding protein 17, induces tubular membrane invaginations and participates in endocytosis. Journal of Biological Chemistry 279, 40091–40099. doi:10.1074/jbc.M404899200 PubMed DOI

Kawabata Galbraith K, Kengaku M.. 2019. Multiple roles of the actin and microtubule-regulating formins in the developing brain. Neuroscience Research 138, 59–69. doi:10.1016/j.neures.2018.09.008 PubMed DOI

Ketelaar T. 2013. The actin cytoskeleton in root hairs: all is fine at the tip. Current Opinion in Plant Biology 16, 749–756. doi:10.1016/j.pbi.2013.10.003 PubMed DOI

Kim YJ, Maizel A, Chen X.. 2014. Traffic into silence: endomembranes and post-transcriptional RNA silencing. The EMBO Journal 33, 968–980. doi:10.1002/embj.201387262 PubMed DOI PMC

Klein O, Krier-Burris RA, Lazki-Hagenbach P, Gorzalczany Y, Mei Y, Ji P, Bochner BS, Sagi-Eisenberg R.. 2019. Mammalian diaphanous-related formin 1 (mDia1) coordinates mast cell migration and secretion through its actin-nucleating activity. Journal of Allergy and Clinical Immunology 144, 1074–1090. doi:10.1016/j.jaci.2019.06.028 PubMed DOI PMC

Knerr J, Werner R, Schwan C, et al.. 2023. Formin-mediated nuclear actin at androgen receptors promotes transcription. Nature 617, 616–622. doi:10.1038/s41586-023-05981-1 PubMed DOI

Kollárová E, Baquero Forero A, Cvrčková F.. 2021. The Arabidopsis thaliana class II formin FH13 modulates pollen tube growth. Frontiers in Plant Sciences 12, 599961. doi:10.3389/fpls.2021.599961 PubMed DOI PMC

Kollárová E, Baquero Forero A, Stillerová L, Přerostová S, Cvrčková F.. 2020. Arabidopsis class II formins AtFH13 and AtFH14 can form heterodimers but exhibit distinct patterns of cellular localization. International Journal of Molecular Sciences 21, 348. doi:10.3390/ijms21010348 PubMed DOI PMC

Körber S, Junemann A, Litschko C, Winterhoff M, Faix J.. 2023. Convergence of Ras- and Rac-regulated formin pathways is pivotal for phagosome formation and particle uptake in Dictyostelium. Proceedings of the National Academy of Sciences, USA 120, e2220825120. doi:10.1073/pnas.2220825120 PubMed DOI PMC

Kühn S, Geyer M.. 2014. Formins as effector proteins of Rho GTPases. Small GTPases 5, e29513. doi:10.4161/sgtp.29513 PubMed DOI PMC

Lan Y, Liu X, Fu Y, Huang S.. 2018. Arabidopsis class I formins control membrane-originated actin polymerization at pollen tube tips. PLoS Genetics 14, e1007789. doi:10.1371/journal.pgen.1007789 PubMed DOI PMC

Lara-Mondragón CM, Dorchak A, MacAlister CA.. 2022. O-Glycosylation of the extracellular domain of pollen class I formins modulates their plasma membrane mobility. Journal of Experimental Botany 73, 3929–3945. doi:10.1093/jxb/erac131 PubMed DOI PMC

Levayer R, Pelissier-Monier A, Lecuit T.. 2011. Spatial regulation of Dia and Myosin-II by RhoGEF2 controls initiation of E-cadherin endocytosis during epithelial morphogenesis. Nature Cell Biology 13, 529–540. doi:10.1038/ncb2224 PubMed DOI

Lewkowicz E, Herit F, Le Clainche C, Bourdoncle P, Perez F, Niedergang F.. 2008. The microtubule-binding protein CLIP-170 coordinates mDia1 and actin reorganization during CR3-mediated phagocytosis. Journal of Cell Biology 183, 1287–1298. doi:10.1083/jcb.200807023 PubMed DOI PMC

Li D, Sewer MB.. 2010. RhoA and DIAPH1 mediate adrenocorticotropin-stimulated cortisol biosynthesis by regulating mitochondrial trafficking. Endocrinology 151, 4313–4323. doi:10.1210/en.2010-0044 PubMed DOI PMC

Li G, Liang W, Zhang X, Ren H, Hu J, Bennett MJ, Zhang D.. 2014. Rice actin-binding protein RMD is a key link in the auxin–actin regulatory loop that controls cell growth. Proceedings of the National Academy of Sciences, USA 111, 10377–10382. doi:10.1073/pnas.1401680111 PubMed DOI PMC

Li G, Yang X, Zhang X, Song Y, Liang W, Zhang D.. 2018. Rice Morphology Determinant-mediated actin filament organization contributes to pollen tube growth. Plant Physiology 177, 255–270. doi:10.1104/pp.17.01759 PubMed DOI PMC

Li S, Dong H, Pei W, Liu C, Zhang S, Sun T, Xue X, Ren H.. 2017. LlFH1-mediated interaction between actin fringe and exocytic vesicles is involved in pollen tube tip growth. New Phytologist 214, 745–761. doi:10.1111/nph.14395 PubMed DOI

Li Y, Shen Y, Cai C, Zhong C, Zhu L, Yuan M, Ren H.. 2010. The type II Arabidopsis formin14 interacts with microtubules and microfilaments to regulate cell division. The Plant Cell 22, 2710–2726. doi:10.1105/tpc.110.075507 PubMed DOI PMC

Lian G, Chenn A, Ekuta V, Kanaujia S, Sheen V.. 2019. Formin 2 regulates lysosomal degradation of Wnt-associated β-catenin in neural progenitors. Cerebral Cortex 29, 1938–1952. doi:10.1093/cercor/bhy073 PubMed DOI PMC

Lian G, Dettenhofer M, Lu J, Downing M, Chenn A, Wong T, Sheen V.. 2016. Filamin A- and formin 2-dependent endocytosis regulates proliferation via the canonical Wnt pathway. Development 143, 4509–4520. doi:10.1242/dev.139295 PubMed DOI PMC

Liang P, Schmitz C, Lace B, et al.. 2021. Formin-mediated bridging of cell wall, plasma membrane, and cytoskeleton in symbiotic infections of Medicago truncatula. Current Biology 31, 2712–27195. doi:10.1016/j.cub.2021.04.002 PubMed DOI PMC

Liu C, Zhang Y, Ren H.. 2018. Actin polymerization mediated by AtFH5 directs the polarity establishment and vesicle trafficking for pollen germination in Arabidopsis. Molecular Plant 11, 1389–1399. doi:10.1016/j.molp.2018.09.004 PubMed DOI

Liu C, Zhang Y, Ren H.. 2021. Profilin promotes formin-mediated actin filament assembly and vesicle transport during polarity formation in pollen. The Plant Cell 33, 1252–1267. doi:10.1093/plcell/koab027 PubMed DOI

Liu D, Fu X, Wang Y, Wang X, Wang H, Wen J, Kang N.. 2020. Protein diaphanous homolog 1 (Diaph1) promotes myofibroblastic activation of hepatic stellate cells by regulating Rab5a activity and TGFβ receptor endocytosis. FASEB Journal 34, 7345–7359. doi:10.1096/fj.201903033R PubMed DOI PMC

Liu S, Jobert F, Rahneshan Z, Doyle SM, Robert S.. 2021. Solving the puzzle of shape regulation in plant epidermal pavement cells. Annual Review of Plant Biology 72, 525–550. doi:10.1146/annurev-arplant-080720-081920 PubMed DOI

Lu W, Gelfand VI.. 2023. Go with the flow—bulk transport by molecular motors. Journal of Cell Science 136, jcs260300. doi:10.1242/jcs.260300 PubMed DOI PMC

Ma Z, Liu X, Nath S, Sun H, Tran TM, Yang L, Mayor S, Miao Y.. 2021. Formin nanoclustering-mediated actin assembly during plant flagellin and DSF signaling. Cell Reports 34, 108884. doi:10.1016/j.celrep.2021.108884 PubMed DOI

Ma Z, Sun Y, Zhu X, Yang L, Chen X, Miao Y.. 2022. Membrane nanodomains modulate formin condensation for actin remodeling in Arabidopsis innate immune responses. The Plant Cell 34, 374–394. doi:10.1093/plcell/koab261 PubMed DOI PMC

Ma Z, Zhu K, Gao YG, Tan SM, Miao Y.. 2023. Molecular condensation and mechanoregulation of plant class I formin, an integrin-like actin nucleator. FEBS Journal 90, 3336–3354. doi:10.1111/febs.16571 PubMed DOI

Mao Y. 2011. FORMIN a link between kinetochores and microtubule ends. Trends in Cell Biology 21, 625–629. doi:10.1016/j.tcb.2011.08.005 PubMed DOI PMC

Martinière A, Gayral P, Hawes C, Runions J.. 2011. Building bridges: formin1 of Arabidopsis forms a connection between the cell wall and the actin cytoskeleton. The Plant Journal 66, 354–365. doi:10.1111/j.1365-313X.2011.04497.x PubMed DOI

Matsubayashi Y, Coulson-Gilmer C, Millard TH.. 2015. Endocytosis-dependent coordination of multiple actin regulators is required for wound healing. Journal of Cell Biology 210, 677–679. doi:10.1083/jcb.201411037 PubMed DOI PMC

Michelot A, Derivery E, Paterski-Boujemaa R, Guérin C, Huang S, Parcy F, Staiger CJ, Blanchoin L.. 2006. A novel mechanism for the formation of actin-filament bundles by a nonprocessive formin. Current Biology 16, 1924–1930. doi:10.1016/j.cub.2006.07.054 PubMed DOI

Minin AA, Kulik AV, Gyoeva FK, Li Y, Goshima G, Gelfand VI.. 2006. Regulation of mitochondria distribution by RhoA and formins. Journal of Cell Science 119, 659–670. doi:10.1242/jcs.02762 PubMed DOI

Mizuno H, Tanaka K, Yamashiro S, Narita A, Watanabe N.. 2018. Helical rotation of the diaphanous-related formin mDia1 generates actin filaments resistant to cofilin. Proceedings of the National Academy of Sciences, USA 115, E5000–E5007. doi:10.1073/pnas.1803415115 PubMed DOI PMC

Naj X, Hoffmann AK, Himmel M, Linder S.. 2013. The formins FMNL1 and mDia1 regulate coiling phagocytosis of Borrelia burgdorferi by primary human macrophages. Infection and Immunity 81, 1683–1695. doi:10.1128/IAI.01411-12 PubMed DOI PMC

Nie J, Wang H, Zhang W, Teng X, Yu C, Cai R, Wu G.. 2021. Characterization of lncRNAs and mRNAs involved in powdery mildew resistance in cucumber. Phytopathology 111, 1613–1624. doi:10.1094/PHYTO-11-20-0521-R PubMed DOI

Nishimura Y, Shi S, Zhang F, Liu R, Takagi Y, Bershadsky AD, Viasnoff V, Sellers JR.. 2021. The formin inhibitor SMIFH2 inhibits members of the myosin superfamily. Journal of Cell Science 134, jcs253708. doi:10.1242/jcs.253708 PubMed DOI PMC

Onwubiko UN, Mlynarczyk PJ, Wei B, Habiyaremye J, Clack A, Abel SM, Das ME.. 2019. A Cdc42 GEF, Gef1, through endocytosis organizes F-BAR Cdc15 along the actomyosin ring and promotes concentric furrowing. Journal of Cell Science 132, jcs223776. doi:10.1242/jcs.223776 PubMed DOI PMC

Orr RG, Cheng X, Vidali L, Bezanilla M.. 2020. Orchestrating cell morphology from the inside out—using polarized cell expansion in plants as a model. Current Opinion in Cell Biology 62, 46–53. doi:10.1016/j.ceb.2019.08.004 PubMed DOI

Oulehlová D, Kollárová E, Cifrová P, Pejchar P, Žárský V, Cvrčková F.. 2019. Arabidopsis class I formin FH1 relocates between membrane compartments during root cell ontogeny and associates with plasmodesmata. Plant and Cell Physiology 60, 1855–1870. doi:10.1093/pcp/pcz102 PubMed DOI

Palander O, Trimble WS.. 2020. DIAPH1 regulates ciliogenesis and trafficking in primary cilia. FASEB Journal 34, 16516–16535. doi:10.1096/fj.202001178R PubMed DOI

Paul AS, Pollard TD.. 2008. The role of the FH1 domain and profilin in formin-mediated actin-filament elongation and nucleation. Current Biology 18, 9–19. doi:10.1016/j.cub.2007.11.062 PubMed DOI PMC

Pinto-Costa R, Sousa MM.. 2020. Profilin as a dual regulator of actin and microtubule dynamics. Cytoskeleton 77, 76–83. doi:10.1002/cm.21586 PubMed DOI

Prosser DC, Drivas TG, Maldonado-Báez L, Wendland B.. 2011. Existence of a novel clathrin-independent endocytic pathway in yeast that depends on Rho1 and formin. Journal of Cell Biology 195, 657–671. doi:10.1083/jcb.201104045 PubMed DOI PMC

Pruyne D. 2016. Revisiting the phylogeny of the animal formins: two new subtypes, relationships with Multiple Wing Hairs proteins, and a lost human formin. PLoS One 11, e0164067. doi:10.1371/journal.pone.0164067 PubMed DOI PMC

Pruyne D. 2017. Probing the origins of metazoan formin diversity: evidence for evolutionary relationships between metazoan and non-metazoan formin subtypes. PLoS One 12, e0186081. doi:10.1371/journal.pone.0186081 PubMed DOI PMC

Qin L, Liu L, Tu J, et al.. 2021. The ARP2/3 complex, acting cooperatively with class I formins, modulates penetration resistance in Arabidopsis against powdery mildew invasion. The Plant Cell 33, 3151–3175. doi:10.1093/plcell/koab170 PubMed DOI PMC

Qin Y, Sun M, Li W, et al.. 2022. Single-cell RNA-seq reveals fate determination control of an individual fibre cell initiation in cotton (Gossypium hirsutum). Plant Biotechnology Journal 20, 2372–2388. doi:10.1111/pbi.13918 PubMed DOI PMC

Rae AE, Rolland V, White RG, Mathesius U.. 2021. New methods for confocal imaging of infection threads in crop and model legumes. Plant Methods 17, 24. doi:10.1186/s13007-021-00725-6 PubMed DOI PMC

Ren A, Zhang J, Liu Z, Du P, Zhang F, Ren H, Zhang D.. 2022. OsFH13, a type I formin, is indispensable for rice morphogenesis. Reproduction and Breeding 2, 46–55. doi:10.1016/j.repbre.2022.05.003 DOI

Rengarajan M, Hayer A, Theriot JA.. 2016. Endothelial cells use a formin-dependent phagocytosis-like process to internalize the bacterium Listeria monocytogenes. PLoS Pathogens 12, e1005603. doi:10.1371/journal.ppat.1005603 PubMed DOI PMC

Rivero F, Muramoto T, Meyer AK, Urushihara H, Uyeda TQ, Kitayama C.. 2005. A comparative sequence analysis reveals a common GBD/FH3–FH1–FH2–DAD architecture in formins from Dictyostelium, fungi and metazoa. BMC Genomics 6, 28. Doi:10.1186/1471-2164-6-28 PubMed DOI PMC

Rosero A, Oulehlová D, Stillerová L, Schiebertová P, Grunt M, Žárský V, Cvrčková F.. 2016. Arabidopsis FH1 formin affects cotyledon pavement cell shape by modulating cytoskeleton dynamics. Plant and Cell Physiology 57, 488–504. doi:10.1093/pcp/pcv209 PubMed DOI

Rosero A, Žárský V, Cvrčková F.. 2013. AtFH1 formin mutation affects actin filament and microtubule dynamics in Arabidopsis thaliana. Journal of Experimental Botany 64, 585–597. doi:10.1093/jxb/ers351 PubMed DOI PMC

Ruan H, Wang T, Ren H, Zhang Y.. 2023. At-FH5-labeled secretory vesicles-dependent calcium oscillation drives exocytosis and stepwise bulge during pollen germination. Cell Reports 42, 113319. doi:10.1016/j.celrep.2023.113319 PubMed DOI

Santos JD, Pinto FR, Ferreira JF, Amaral MD, Zaccolo M, Farinha CM.. 2020. Cytoskeleton regulators CAPZA2 and INF2 associate with CFTR to control its plasma membrane levels under EPAC1 activation. The Biochemical Journal 477, 2561–2580. doi:10.1042/BCJ20200287 PubMed DOI

Sassmann S, Rodrigues C, Milne SW, et al.. 2018. An immune-responsive cytoskeletal–plasma membrane feedback loop in plants. Current Biology 28, 2136–2144. doi:10.1016/j.cub.2018.05.014 PubMed DOI PMC

Serva A, Knapp B, Tsai YT, et al.. 2012. miR-17-5p regulates endocytic trafficking through targeting TBC1D2/Armus. PLoS One 7, e52555. doi:10.1371/journal.pone.0052555 PubMed DOI PMC

Smokvarska M, Bayle V, Maneta-Peyret L, et al.. 2023. The receptor kinase FERONIA regulates phosphatidylserine localization at the cell surface to modulate ROP signaling. Science Advances 9, eadd4791. doi:10.1126/sciadv.add4791 PubMed DOI PMC

Soykan T, Kaempf N, Sakaba T, Vollweiter D, Goerdeler F, Puchkov D, Kononenko NL, Haucke V.. 2017. Synaptic vesicle endocytosis occurs on multiple timescales and is mediated by formin-dependent actin assembly. Neuron 93, 854–866. doi:10.1016/j.neuron.2017.02.011 PubMed DOI

Stephan OOH. 2017. Actin fringes of polar cell growth. Journal of Experimental Botany 68, 3303–3320. doi:10.1093/jxb/erx195 PubMed DOI

Sun H, Qiao Z, Chua KP, Tursic A, Liu X, Gao YG, Mu Y, Hou X, Miao Y.. 2018. Profilin negatively regulates formin-mediated actin assembly to modulate PAMP-triggered plant immunity. Current Biology 28, 1882–1895. doi:10.1016/j.cub.2018.04.045 PubMed DOI

Sun T, Li S, Ren H.. 2017. OsFH15, a class I formin, interacts with microfilaments and microtubules to regulate grain size via affecting cell expansion in rice. Scientific Reports 7, 6538. doi:10.1038/s41598-017-06431-5 PubMed DOI PMC

Tilokani L, Nagashima S, Paupe V, Prudent J.. 2018. Mitochondrial dynamics: overview of molecular mechanisms. Essays in Biochemistry 62, 341–360. doi:10.1042/EBC20170104 PubMed DOI PMC

Ulrichs H, Gaska I, Shekhar S.. 2023. Multicomponent regulation of actin barbed end assembly by twinfilin, formin and capping protein. Nature Communications 14, 3981. doi:10.1038/s41467-023-39655-3 PubMed DOI PMC

Van Damme D, Bouget FY, Van Poucke K, Inzé D, Geelen D.. 2004. Molecular dissection of plant cytokinesis and phragmoplast structure: a survey of GFP-tagged proteins. The Plant Journal 40, 386–398. doi:10.1111/j.1365-313X.2004.02222.x PubMed DOI

van Gisbergen P, Wu SZ, Cheng X, Pattavina KA, Bezanilla M.. 2020. In vivo analysis of formin dynamics in the moss P. patens reveals functional class diversification. Journal of Cell Science 133, jcs233791. doi:10.1242/jcs.233791 PubMed DOI PMC

van Gisbergen PA, Bezanilla M.. 2013. Plant formins: membrane anchors for actin polymerization. Trends in Cell Biology 23, 227–233. doi:10.1016/j.tcb.2012.12.001 PubMed DOI

van Gisbergen PA, Li M, Wu SZ, Bezanilla M.. 2012. Class II formin targeting to the cell cortex by binding PI(3,5)P2 is essential for polarized growth. Journal of Cell Biology 198, 235–250. doi:10.1083/jcb.201112085 PubMed DOI PMC

van Gisbergen PAC, Wu SZ, Chang M, Pattavina KA, Bartlett ME, Bezanilla M.. 2018. An ancient Sec10–formin fusion provides insights into actin-mediated regulation of exocytosis. Journal of Cell Biology 217, 945–957. doi:10.1083/jcb.201705084 PubMed DOI PMC

Vidali L, van Gisbergen PA, Guérin C, Franco P, Li M, Burkart GM, Augustine RC, Blanchoin L, Bezanilla M.. 2009. Rapid formin-mediated actin-filament elongation is essential for polarized plant cell growth. Proceedings of the National Academy of Sciences, USA 106, 13341–13346. doi:10.1073/pnas.0901170106 PubMed DOI PMC

Wakita Y, Kakimoto T, Katoh H, Negishi M.. 2011. The F-BAR protein Rapostlin regulates dendritic spine formation in hippocampal neurons. Journal of Biological Chemistry 286, 32672–32683. doi:10.1074/jbc.M111.236265 PubMed DOI PMC

Wallar BJ, Deward AD, Resau JH, Alberts AS.. 2007. RhoB and the mammalian Diaphanous-related formin mDia2 in endosome trafficking. Experimental Cell Research 313, 560–571. doi:10.1016/j.yexcr.2006.10.033 PubMed DOI

Wang G, Zhao Z, Zheng X, Shan W, Fan J.. 2022. How a single receptor-like kinase exerts diverse roles: lessons from FERONIA. Molecular Horticulture 2, 25. doi:10.1186/s43897-022-00046-9 PubMed DOI PMC

Wang P, Hussey PJ.. 2015. Interactions between plant endomembrane systems and the actin cytoskeleton. Frontiers in Plant Science 6, 422. doi:10.3389/fpls.2015.00422 PubMed DOI PMC

Wang Y, Sherrard A, Zhao B, Melak M, Trautwein J, Kleinschnitz EM, Tsopoulidis N, Fackler OT, Schwan C, Grosse R.. 2019. GPCR-induced calcium transients trigger nuclear actin assembly for chromatin dynamics. Nature Communications 10, 5271. doi:10.1038/s41467-019-13322-y PubMed DOI PMC

Wen PJ, Grenklo S, Arpino G, et al.. 2016. Actin dynamics provides membrane tension to merge fusing vesicles into the plasma membrane. Nature Communications 7, 12604. doi:10.1038/ncomms12604 PubMed DOI PMC

Williams SK, Weiner ZP, Gilmore RD.. 2016. Human neuroglial cells internalize Borrelia burgdorferi by coiling phagocytosis mediated by Daam1. PLoS One 13, e0197413. doi:10.1371/journal.pone.0197413 PubMed DOI PMC

Woodard TK, Rioux DJ, Prosser DC.. 2023. Actin- and microtubule-based motors contribute to clathrin-independent endocytosis in yeast. Molecular Biology of the Cell 34, ar117. doi:10.1091/mbc.E23-05-0164 PubMed DOI PMC

Xie Y, Miao Y.. 2021. Polarisome assembly mediates actin remodeling during polarized yeast and fungal growth. Journal of Cell Science 134, jcs247916. doi:10.1242/jcs.247916 PubMed DOI

Xing J, Ji D, Duan Z, Chen T, Luo X.. 2022. Spatiotemporal dynamics of FERONIA reveal alternative endocytic pathways in response to flg22 elicitor stimuli. New Phytologist 235, 518–532. doi:10.1111/nph.18127 PubMed DOI

Xu Y, Huang S.. 2020. Control of the actin cytoskeleton within apical and subapical regions of pollen tubes. Frontiers in Cell and Developmental Biology 8, 614821. doi:10.3389/fcell.2020.614821 PubMed DOI PMC

Xue XH, Guo CQ, Du F, Lu QL, Zhang CM, Ren HY.. 2011. AtFH8 is involved in root development under effect of low-dose latrunculin B in dividing cells. Molecular Plant 4, 264–278. doi:10.1093/mp/ssq085 PubMed DOI

Ye J, Zheng Y, Yan A, Chen N, Wang Z, Huang S, Yang Z.. 2009. Arabidopsis formin3 directs the formation of actin cables and polarized growth in pollen tubes. The Plant Cell 21, 3868–3884. doi:10.1105/tpc.109.068700 PubMed DOI PMC

Yepuri G, Ramirez LM, Theophall GG, et al.. 2023. DIAPH1–MFN2 interaction regulates mitochondria–SR/ER contact and modulates ischemic/hypoxic stress. Nature Communications 14, 6900. doi:10.1038/s41467-023-42521-x PubMed DOI PMC

Yi K, Guo C, Chen D, Zhao B, Yang B, Ren H.. 2005. Cloning and functional characterization of a formin-like protein (AtFH8) from Arabidopsis. Plant Physiology 138, 1071–1082. doi:10.1104/pp.104.055665 PubMed DOI PMC

Yu M, Li R, Cui Y, et al.. 2020. The RALF1–FERONIA interaction modulates endocytosis to mediate control of root growth in Arabidopsis. Development 147, dev189902. doi:10.1242/dev.189902 PubMed DOI

Yu Y, Wu S, Nowak J, et al.. 2019. Live-cell imaging of the cytoskeleton in elongating cotton fibres. Nature Plants 5, 498–504. doi:10.1038/s41477-019-0418-8 PubMed DOI

Yun HS, Sul WJ, Chung HS, Lee JH, Kwon C.. 2023. Secretory membrane traffic in plant–microbe interactions. New Phytologist 237, 53–59. doi:10.1111/nph.18470 PubMed DOI

Yutin N, Wolf MY, Wolf YI, Koonin EV.. 2009. The origins of phagocytosis and eukaryogenesis. Biology Direct 4, 9. doi:10.1186/1745-6150-4-9 PubMed DOI PMC

Žárský V, Cvrčková F, Potocký M, Hála M.. 2009. Exocytosis and cell polarity in plants—exocyst and recycling domains. New Phytologist 183, 255–272. doi:10.1111/j.1469-8137.2009.02880.x PubMed DOI

Zhang C, Lauster T, Tang W, et al.. 2022. ROPGAP-dependent interaction between brassinosteroid and ROP2-GTPase signaling controls pavement cell shape in Arabidopsis. Current Biology 32, 518–531. doi:10.1016/j.cub.2021.12.043 PubMed DOI

Zhang K, Huang M, Li A, et al.. 2023. DIAPH3 condensates formed by liquid–liquid phase separation act as a regulatory hub for stress-induced actin cytoskeleton remodeling. Cell Reports 42, 111986. doi:10.1016/j.celrep.2022.111986 PubMed DOI

Zhang L, Smertenko T, Fahy D, et al.. 2021. Analysis of formin functions during cytokinesis using specific inhibitor SMIFH2. Plant Physiology 186, 945–963. doi:10.1093/plphys/kiab085 PubMed DOI PMC

Zhang R, Xu Y, Yi R, Shen J, Huang S.. 2023. Actin cytoskeleton in the control of vesicle transport, cytoplasmic organization, and pollen tube tip growth. Plant Physiology 193, 9–25. doi:10.1093/plphys/kiad203 PubMed DOI

Zhang S, Liu J, Xue X, Tan K, Wang C, Su H.. 2019. The migration direction of hair cell nuclei is closely related to the perinuclear actin filaments in Arabidopsis. Biochemical and Biophysical Research Communications 519, 783–789. doi:10.1016/j.bbrc.2019.09.047 PubMed DOI

Zhang Y, Dong G, Wu L, et al.. 2023. Formin protein DRT1 affects gross morphology and chloroplast relocation in rice. Plant Physiology 191, 280–298. doi:10.1093/plphys/kiac427 PubMed DOI PMC

Zweifel ME, Courtemanche N.. 2020. Competition for delivery of profilin–actin to barbed ends limits the rate of formin-mediated actin filament elongation. Journal of Biological Chemistry 295, 4513–4525. doi:10.1074/jbc.RA119.012000 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace